Development of FTIR-ATR spectra and PLS regression combination model for discrimination of pure and adulterated acacia honey
A Fourier Transform Infrared Spectroscopy and attenuated total reflectance (FTIR-ATR)-based chemometric model was evaluated for the rapid identification and estimation of adulterants in honey. Two types of honey, bee honey and stingless bee honey, were adulterated with acid adulterants (acetic acid,...
Gespeichert in:
| Veröffentlicht in: | Food control Jg. 169; S. 110996 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.03.2025
|
| Schlagworte: | |
| ISSN: | 0956-7135 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A Fourier Transform Infrared Spectroscopy and attenuated total reflectance (FTIR-ATR)-based chemometric model was evaluated for the rapid identification and estimation of adulterants in honey. Two types of honey, bee honey and stingless bee honey, were adulterated with acid adulterants (acetic acid, citric acid, and tamarind extract) at different concentrations of 1%, 3%, 5%, and 7% and sugar adulterants (liquid corn syrup, cane sugar, palm sugar, and inverted sugar) at different concentrations of 1%, 2%, and 3%. The physicochemical properties (Brix, moisture content, pH, and free acidity) and sugar contents (glucose, fructose, and sucrose) of each type of honey and their adulterated samples were determined before FTIR analysis. For all the samples, FTIR spectra were acquired in the mid-infrared range (400-3600 cm−1) and the spectra obtained were subjected to partial least squares (PLS) analysis to develop the model for the determination of adulterants in honey samples. The PLS model produced high coefficient of determination (R2) for bee honey adulterated with acetic acid (0.95), citric acid (0.98), tamarind extract (0.97), and stingless bee honey adulterated with liquid corn syrup (0.99), inverted sugar (0.91), cane sugar (0.86), and palm sugar (0.77). A recognition model was developed for mixture detection and verified through the physicochemical analysis. The combination of FTIR-ATR spectra and the PLS regression model can be a fast, reliable, nondestructive method to detect honey adulteration.
•Analysing the physicochemical properties of pure and adulterated honey.•Sugar contents determination of pure and adulterated honey by using HPLC.•FTIR-ATR based PLS-R for discrimination of pure and adulterated honey. |
|---|---|
| AbstractList | A Fourier Transform Infrared Spectroscopy and attenuated total reflectance (FTIR-ATR)-based chemometric model was evaluated for the rapid identification and estimation of adulterants in honey. Two types of honey, bee honey and stingless bee honey, were adulterated with acid adulterants (acetic acid, citric acid, and tamarind extract) at different concentrations of 1%, 3%, 5%, and 7% and sugar adulterants (liquid corn syrup, cane sugar, palm sugar, and inverted sugar) at different concentrations of 1%, 2%, and 3%. The physicochemical properties (Brix, moisture content, pH, and free acidity) and sugar contents (glucose, fructose, and sucrose) of each type of honey and their adulterated samples were determined before FTIR analysis. For all the samples, FTIR spectra were acquired in the mid-infrared range (400-3600 cm⁻¹) and the spectra obtained were subjected to partial least squares (PLS) analysis to develop the model for the determination of adulterants in honey samples. The PLS model produced high coefficient of determination (R²) for bee honey adulterated with acetic acid (0.95), citric acid (0.98), tamarind extract (0.97), and stingless bee honey adulterated with liquid corn syrup (0.99), inverted sugar (0.91), cane sugar (0.86), and palm sugar (0.77). A recognition model was developed for mixture detection and verified through the physicochemical analysis. The combination of FTIR-ATR spectra and the PLS regression model can be a fast, reliable, nondestructive method to detect honey adulteration. A Fourier Transform Infrared Spectroscopy and attenuated total reflectance (FTIR-ATR)-based chemometric model was evaluated for the rapid identification and estimation of adulterants in honey. Two types of honey, bee honey and stingless bee honey, were adulterated with acid adulterants (acetic acid, citric acid, and tamarind extract) at different concentrations of 1%, 3%, 5%, and 7% and sugar adulterants (liquid corn syrup, cane sugar, palm sugar, and inverted sugar) at different concentrations of 1%, 2%, and 3%. The physicochemical properties (Brix, moisture content, pH, and free acidity) and sugar contents (glucose, fructose, and sucrose) of each type of honey and their adulterated samples were determined before FTIR analysis. For all the samples, FTIR spectra were acquired in the mid-infrared range (400-3600 cm−1) and the spectra obtained were subjected to partial least squares (PLS) analysis to develop the model for the determination of adulterants in honey samples. The PLS model produced high coefficient of determination (R2) for bee honey adulterated with acetic acid (0.95), citric acid (0.98), tamarind extract (0.97), and stingless bee honey adulterated with liquid corn syrup (0.99), inverted sugar (0.91), cane sugar (0.86), and palm sugar (0.77). A recognition model was developed for mixture detection and verified through the physicochemical analysis. The combination of FTIR-ATR spectra and the PLS regression model can be a fast, reliable, nondestructive method to detect honey adulteration. •Analysing the physicochemical properties of pure and adulterated honey.•Sugar contents determination of pure and adulterated honey by using HPLC.•FTIR-ATR based PLS-R for discrimination of pure and adulterated honey. |
| ArticleNumber | 110996 |
| Author | Babadi, Arman Amani Xiaobo, Zou Fakhlaei, Rafieh Ariffin, Naziruddin Mat |
| Author_xml | – sequence: 1 givenname: Rafieh orcidid: 0000-0002-9525-6927 surname: Fakhlaei fullname: Fakhlaei, Rafieh email: 1000006353@ujs.edu.cn organization: School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China – sequence: 2 givenname: Arman Amani surname: Babadi fullname: Babadi, Arman Amani organization: School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China – sequence: 3 givenname: Naziruddin Mat orcidid: 0000-0002-8100-4403 surname: Ariffin fullname: Ariffin, Naziruddin Mat organization: Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia, Serdang, 43400, Selangor, Malaysia – sequence: 4 givenname: Zou surname: Xiaobo fullname: Xiaobo, Zou email: zou_xiaobo@ujs.edu.cn organization: School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China |
| BookMark | eNqFkU1rHDEMhn1IoUmav1B87GW21ni-DD00pM0HLDSk27PR2prWy4w9tb2BQH98vdnm0ktOEkjPi_z4jJ344Imx9yBWIKD7uFuNIVgTfF7Vom5WAEKp7oSdCtV2VQ-yfcvOUtoJAb0Accr-fKFHmsIyk888jPx6c_dQXW4eeFrI5IgcveX36-880s9IKbnguQnz1nnMh34OliY-hsitSya6-WVQspZ9pGce7X7KFDFT6Q0ah_xXufvpHXsz4pTo4l89Zz-uv26ubqv1t5u7q8t1ZWTT5kpaJEE4dE072Eb1CraAirCvraJGSDGABFEPQEqMtW1tj1LJfkuEXbdVKM_Zh2PuEsPvPaWs53IsTRN6CvukJbRN3Q4CoKx-Oq6aGFKKNGrj8vOLigw3aRD6IFrv9ItofRCtj6IL3v2HL8UJxqfXwc9HkIqHR0dRJ-PIG7Iulo_QNrjXIv4CuCSh8g |
| CitedBy_id | crossref_primary_10_1039_D4AY02250E crossref_primary_10_1016_j_saa_2025_126723 crossref_primary_10_1016_j_foodcont_2025_111687 crossref_primary_10_3390_foods14132199 crossref_primary_10_1016_j_talanta_2025_127943 crossref_primary_10_1016_j_est_2025_117300 crossref_primary_10_3390_foods14173026 crossref_primary_10_3390_agriculture15121250 crossref_primary_10_3390_bios15060363 crossref_primary_10_1016_j_seppur_2024_130642 crossref_primary_10_1515_ijfe_2024_0196 crossref_primary_10_1016_j_jfca_2025_108303 crossref_primary_10_1016_j_trac_2025_118215 crossref_primary_10_1016_j_fochx_2025_102770 |
| Cites_doi | 10.3390/molecules24224091 10.1016/j.foodcont.2022.108992 10.3390/molecules27072324 10.1016/j.foodcont.2021.108266 10.1016/j.talanta.2022.123961 10.1016/j.chemolab.2022.104540 10.3390/foods9060710 10.1016/j.heliyon.2023.e20830 10.1016/j.saa.2020.118297 10.1007/s11947-019-02296-w 10.1080/23311932.2023.2258784 10.1186/1752-153X-7-138 10.3390/resources10100094 10.3390/foods12030473 10.3390/molecules27103080 10.1016/j.foodcont.2019.106940 10.1016/j.jksus.2021.101447 10.5772/intechopen.109484 10.1007/s00217-024-04535-7 10.1016/j.foodcont.2023.110010 10.3390/foods12193656 10.3390/foods13152425 10.1016/j.crfs.2023.100565 10.1016/j.foodchem.2022.132920 10.1016/j.heliyon.2020.e03662 10.3390/foods12030523 10.1016/j.foodcont.2018.07.037 10.1016/j.foodcont.2022.109482 10.1016/j.foodchem.2024.138402 10.1016/j.foodres.2018.02.017 10.1111/joss.12494 10.1038/s41598-020-73306-7 10.1016/j.trac.2016.10.013 10.1016/j.foodcont.2021.108574 10.1080/19476337.2011.596576 10.1021/acs.jafc.9b05317 10.1016/j.jfp.2024.100241 10.1016/j.jfca.2019.103390 10.3390/molecules27030780 10.3390/molecules26206222 10.1016/j.foodchem.2009.05.001 10.3390/foods9111538 10.3390/antibiotics10111365 10.1021/acsfoodscitech.4c00377 10.1016/j.talanta.2019.05.067 10.1016/j.fochx.2023.100850 10.1016/j.foodchem.2020.128561 10.1016/j.foodcont.2024.110590 |
| ContentType | Journal Article |
| Copyright | 2024 |
| Copyright_xml | – notice: 2024 |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.foodcont.2024.110996 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_foodcont_2024_110996 S0956713524007138 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29H 3EH 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXKI AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACRLP ACRPL ADBBV ADEZE ADHUB ADMUD ADNMO ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HVGLF HZ~ IHE J1W K-O KOM LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SES SEW SPCBC SSA SSZ T5K WH7 WUQ Y6R ~G- ~KM 9DU AATTM AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c345t-3dae0ea86458d49791b1a9ea72d9e403081310281e90f2d5d7a3937beea66b9a3 |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001356081800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0956-7135 |
| IngestDate | Mon Sep 29 06:07:54 EDT 2025 Tue Nov 18 21:32:41 EST 2025 Sat Nov 29 05:16:25 EST 2025 Sat Dec 14 16:13:47 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | FTIR-ATR Bee honey Stingless bee honey Adulteration |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c345t-3dae0ea86458d49791b1a9ea72d9e403081310281e90f2d5d7a3937beea66b9a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-9525-6927 0000-0002-8100-4403 |
| PQID | 3154258011 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3154258011 crossref_citationtrail_10_1016_j_foodcont_2024_110996 crossref_primary_10_1016_j_foodcont_2024_110996 elsevier_sciencedirect_doi_10_1016_j_foodcont_2024_110996 |
| PublicationCentury | 2000 |
| PublicationDate | March 2025 2025-03-00 20250301 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: March 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Food control |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – sequence: 0 name: Elsevier Ltd |
| References | Formosa, Lia, Mifsud, Farrugia (bib26) 2020; 9 Riswahyuli, Rohman, Setyabudi, Raharjo (bib44) 2020; 6 Moniruzzaman, Sulaiman, Khalil, Gan (bib35) 2013; 7 Bogdanov, Martin, Lullmann (bib7) 2002; 5 Song, She, Xin, Chen, Li, Heyden (bib50) 2020; 86 Kozłowicz, Różyło, Gładyszewska, Matwijczuk, Gładyszewski, Chocyk (bib32) 2020; 10 Cagliani, Maestri, Consonni (bib9) 2022; 133 Rios-Corripio, Rojas-López, Delgado-Macuil (bib43) 2012; 10 Smetanska, Alharthi, Selim (bib48) 2021; 33 Gemeda, Negera (bib27) 2017; 5 Guerzou, Aouissi, Guerzou, Burlakovs, Doumandji, Krauklis (bib28) 2021; 10 Damto, Birhanu, Zewdu (bib13) 2023; 9 Commission (bib12) 2001 Zhang, Abdulla (bib56) 2022 Majkut, Kwiecińska-Piróg, Wszelaczyńska, Pobereżny, Gospodarek-Komkowska, Wojtacki (bib33) 2021; 343 Bogdanov, Baumann (bib6) 1988; 79 Fakhlaei, Selamat, Razis, Sukor, Ahmad, Amani Babadi (bib24) 2021; 26 Sobrino-Gregorio, Vilanova, Prohens, Escriche (bib49) 2019; 95 Wu, Xu, Luo, Ma, Du, Zhang (bib54) 2023; 154 Ezeanaka, Nsor-Atindana, Zhang (bib21) 2019; 12 Gün, Karaoğlu (bib29) 2024; 250 Shehata, Dodd, Mosca, Matousek, Parmar, Kevei (bib47) 2024; 13 Huang, Song, Guo, Guang, Yang, Li (bib30) 2020; 235 Karabagias, Karabournioti, Karabagias, Badeka (bib31) 2020; 109 Damto, Zewdu, Birhanu (bib16) 2024; 87 Damto, Zewdu, Birhanu (bib15) 2023; 7 Esa, Ansari, Razak, Ismail, Jusoh, Zawawi (bib20) 2022; 27 Raypah, Omar, Muncan, Zulkurnain, Abdul Najib (bib41) 2022; 27 Tarapoulouzi, Mironescu, Drouza, Mironescu, Agriopoulou (bib51) 2023; 12 Zhang, Abdulla (bib55) 2022; 138 Ciursă, Pauliuc, Dranca, Ropciuc, Oroian (bib11) 2021; 130 Fakhlaei, Selamat, Razis, Sukor, Ahmad, Khatib (bib25) 2024; 141736 Zhang, Gu, Liu, Qing, Nie (bib57) 2023; 19 Fakhlaei, Selamat, Khatib, Razis, Sukor, Ahmad (bib23) 2020; 9 Aykas (bib4) 2023; 12 Wu, Du, Vander Heyden, Chen, Zhao, Wang (bib53) 2017; 86 Brar, Pant, Krishnan, Kaur, Rasane, Nanda (bib8) 2023; 145 Pérez, Lavín, Harrod, Echeveste (bib37) 2024; 164 Mat Ramlan, Md Zin, Safari, Chan, Zawawi (bib34) 2021; 10 Cárdenas-Escudero, Galán-Madruga, Cáceres (bib10) 2023; 253 (bib3) 2000 Rivera-Mondragón, Marrone, Bruner-Montero, Gaitán, de Núñez, Otero-Palacio (bib45) 2023; 12 Bodor, Benedek, Aouadi, Zsom-Muha, Kovacs (bib5) 2022; 27 Dranca, Ropciuc, Pauliuc, Oroian (bib18) 2022; 168 Valverde, Ares, Elmore, Bernal (bib52) 2022; 387 Damto, Kebebe, Gemeda (bib14) 2023; 9 Qu, Jiang, Huang, Cui, Ning, Liu (bib40) 2019; 67 Saxena, Gautam, Sharma (bib46) 2010; 118 Price, Tang, El Kadri, Gkatzionis (bib39) 2019; 34 Aliaño-González, Ferreiro-González, Espada-Bellido, Palma, Barbero (bib1) 2019; 203 Anguebes-Franseschi, Abatal, Pat, Flores, Córdova Quiroz, Ramírez-Elias (bib2) 2019; 24 Elhamdaoui, El Orche, Cheikh, Mojemmi, Nejjari, Bouatia (bib19) 2020; 2020 Fakhlaei, Babadi, Sun, Ariffin, Khatib, Selamat (bib22) 2024; 441 Mwale, M.M. (2023). Health risk of food additives: Recent developments and trends in the food sector. In: Health Risks of Food Additives, edited by A. Muhammad Sajid and K. Waseem. Chapter 1. DOI: 10.5772/intechopen.109484. Devi, Jangir, Anu-Appaiah (bib17) 2018; 107 Raypah, Zhi, Loon, Omar (bib42) 2022; 224 Prata, da Costa (bib38) 2024; 4 Raypah (10.1016/j.foodcont.2024.110996_bib41) 2022; 27 Aliaño-González (10.1016/j.foodcont.2024.110996_bib1) 2019; 203 Huang (10.1016/j.foodcont.2024.110996_bib30) 2020; 235 Majkut (10.1016/j.foodcont.2024.110996_bib33) 2021; 343 Sobrino-Gregorio (10.1016/j.foodcont.2024.110996_bib49) 2019; 95 Valverde (10.1016/j.foodcont.2024.110996_bib52) 2022; 387 Rios-Corripio (10.1016/j.foodcont.2024.110996_bib43) 2012; 10 Formosa (10.1016/j.foodcont.2024.110996_bib26) 2020; 9 Damto (10.1016/j.foodcont.2024.110996_bib14) 2023; 9 Esa (10.1016/j.foodcont.2024.110996_bib20) 2022; 27 Dranca (10.1016/j.foodcont.2024.110996_bib18) 2022; 168 Wu (10.1016/j.foodcont.2024.110996_bib53) 2017; 86 Cagliani (10.1016/j.foodcont.2024.110996_bib9) 2022; 133 Bodor (10.1016/j.foodcont.2024.110996_bib5) 2022; 27 Damto (10.1016/j.foodcont.2024.110996_bib15) 2023; 7 Price (10.1016/j.foodcont.2024.110996_bib39) 2019; 34 Fakhlaei (10.1016/j.foodcont.2024.110996_bib24) 2021; 26 Bogdanov (10.1016/j.foodcont.2024.110996_bib7) 2002; 5 Elhamdaoui (10.1016/j.foodcont.2024.110996_bib19) 2020; 2020 Damto (10.1016/j.foodcont.2024.110996_bib16) 2024; 87 Guerzou (10.1016/j.foodcont.2024.110996_bib28) 2021; 10 Moniruzzaman (10.1016/j.foodcont.2024.110996_bib35) 2013; 7 Zhang (10.1016/j.foodcont.2024.110996_bib57) 2023; 19 Wu (10.1016/j.foodcont.2024.110996_bib54) 2023; 154 Aykas (10.1016/j.foodcont.2024.110996_bib4) 2023; 12 Zhang (10.1016/j.foodcont.2024.110996_bib56) 2022 Gemeda (10.1016/j.foodcont.2024.110996_bib27) 2017; 5 Anguebes-Franseschi (10.1016/j.foodcont.2024.110996_bib2) 2019; 24 Qu (10.1016/j.foodcont.2024.110996_bib40) 2019; 67 Karabagias (10.1016/j.foodcont.2024.110996_bib31) 2020; 109 Cárdenas-Escudero (10.1016/j.foodcont.2024.110996_bib10) 2023; 253 Fakhlaei (10.1016/j.foodcont.2024.110996_bib22) 2024; 441 Song (10.1016/j.foodcont.2024.110996_bib50) 2020; 86 Brar (10.1016/j.foodcont.2024.110996_bib8) 2023; 145 Damto (10.1016/j.foodcont.2024.110996_bib13) 2023; 9 Mat Ramlan (10.1016/j.foodcont.2024.110996_bib34) 2021; 10 Rivera-Mondragón (10.1016/j.foodcont.2024.110996_bib45) 2023; 12 Commission (10.1016/j.foodcont.2024.110996_bib12) 2001 Tarapoulouzi (10.1016/j.foodcont.2024.110996_bib51) 2023; 12 Fakhlaei (10.1016/j.foodcont.2024.110996_bib25) 2024; 141736 Pérez (10.1016/j.foodcont.2024.110996_bib37) 2024; 164 Ciursă (10.1016/j.foodcont.2024.110996_bib11) 2021; 130 Gün (10.1016/j.foodcont.2024.110996_bib29) 2024; 250 10.1016/j.foodcont.2024.110996_bib36 Prata (10.1016/j.foodcont.2024.110996_bib38) 2024; 4 Zhang (10.1016/j.foodcont.2024.110996_bib55) 2022; 138 Devi (10.1016/j.foodcont.2024.110996_bib17) 2018; 107 Ezeanaka (10.1016/j.foodcont.2024.110996_bib21) 2019; 12 Riswahyuli (10.1016/j.foodcont.2024.110996_bib44) 2020; 6 Raypah (10.1016/j.foodcont.2024.110996_bib42) 2022; 224 Bogdanov (10.1016/j.foodcont.2024.110996_bib6) 1988; 79 Kozłowicz (10.1016/j.foodcont.2024.110996_bib32) 2020; 10 Saxena (10.1016/j.foodcont.2024.110996_bib46) 2010; 118 Shehata (10.1016/j.foodcont.2024.110996_bib47) 2024; 13 Fakhlaei (10.1016/j.foodcont.2024.110996_bib23) 2020; 9 Smetanska (10.1016/j.foodcont.2024.110996_bib48) 2021; 33 (10.1016/j.foodcont.2024.110996_bib3) 2000 |
| References_xml | – volume: 10 year: 2020 ident: bib32 article-title: Identification of sugars and phenolic compounds in honey powders with the use of GC–MS, FTIR spectroscopy, and X-ray diffraction publication-title: Scientific Reports – start-page: 12 year: 2001 end-page: 1981 ident: bib12 article-title: Revised Codex standard for honey publication-title: Codex stan 2001 – volume: 12 year: 2023 ident: bib4 article-title: Determination of possible adulteration and quality assessment in commercial honey publication-title: Foods – volume: 5 start-page: 34 year: 2017 end-page: 39 ident: bib27 article-title: Assessing the effect of adulteration on honey and beeswax quality and designing way of identification in oromia publication-title: International Journal Research Studying. Bioscience – volume: 235 year: 2020 ident: bib30 article-title: Detection of adulteration in Chinese honey using NIR and ATR-FTIR spectral data fusion publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy – volume: 2020 year: 2020 ident: bib19 article-title: Development of fast analytical method for the detection and quantification of honey adulteration using vibrational spectroscopy and chemometrics tools publication-title: Jounal of Analytical Methods Chemistry – volume: 9 start-page: 710 year: 2020 ident: bib26 article-title: Application of ATR-FT-MIR for tracing the geographical origin of honey produced in the Maltese islands publication-title: Foods – volume: 168 year: 2022 ident: bib18 article-title: Honey adulteration detection based on composition and differential scanning calorimetry (DSC) parameters publication-title: Lebensmittel-Wissenschaft und -Technologie – reference: Mwale, M.M. (2023). Health risk of food additives: Recent developments and trends in the food sector. In: Health Risks of Food Additives, edited by A. Muhammad Sajid and K. Waseem. Chapter 1. DOI: 10.5772/intechopen.109484. – volume: 118 start-page: 391 year: 2010 end-page: 397 ident: bib46 article-title: Physical, biochemical and antioxidant properties of some Indian honeys publication-title: Food Chemistry – volume: 164 year: 2024 ident: bib37 article-title: Differences in the adulteration degree and antimicrobial activity of chilean ulmo honey versus multifloral honey revealed by stable isotope analysis publication-title: Food Control – volume: 133 year: 2022 ident: bib9 article-title: Detection and evaluation of saccharide adulteration in Italian honey by NMR spectroscopy publication-title: Food Control – volume: 145 year: 2023 ident: bib8 article-title: A comprehensive review on unethical honey: Validation by emerging techniques publication-title: Food Control – volume: 107 start-page: 216 year: 2018 end-page: 226 ident: bib17 article-title: Chemical characterization complemented with chemometrics for the botanical origin identification of unifloral and multifloral honeys from India publication-title: Food Research International – volume: 253 year: 2023 ident: bib10 article-title: Rapid, reliable and easy-to-perform chemometric-less method for rice syrup adulterated honey detection using FTIR-ATR publication-title: Talanta – volume: 12 start-page: 1435 year: 2019 end-page: 1451 ident: bib21 article-title: Online low-field nuclear magnetic resonance (LF-NMR) and magnetic resonance imaging (MRI) for food quality optimization in food processing publication-title: Food and Bioprocess Technology – volume: 27 start-page: 3080 year: 2022 ident: bib20 article-title: A review on recent progress of stingless bee honey and its hydrogel-based compound for wound care management publication-title: Molecules – volume: 13 year: 2024 ident: bib47 article-title: Application of spatial offset Raman spectroscopy (SORS) and machine learning for sugar syrup adulteration detection in UK honey publication-title: Foods – volume: 203 start-page: 235 year: 2019 end-page: 241 ident: bib1 article-title: A screening method based on Visible-NIR spectroscopy for the identification and quantification of different adulterants in high-quality honey publication-title: Talanta – volume: 27 start-page: 780 year: 2022 ident: bib5 article-title: Revealing the effect of heat treatment on the spectral pattern of unifloral honeys using aquaphotomics publication-title: Molecules – volume: 154 year: 2023 ident: bib54 article-title: Adulteration quantification of cheap honey in high-quality Manuka honey by two-dimensional correlation spectroscopy combined with deep learning publication-title: Food Control – volume: 79 start-page: 198 year: 1988 end-page: 206 ident: bib6 article-title: Bestimmung von Honigzucker mit HPLC publication-title: Mitt. Geb. Lebensm. Hyg – volume: 24 start-page: 4091 year: 2019 ident: bib2 article-title: Raman spectroscopy and chemometric modeling to predict physical-chemical honey properties from campeche, Mexico publication-title: Molecules – volume: 109 year: 2020 ident: bib31 article-title: Palynological, physico-chemical and bioactivity parameters determination, of a less common Greek honeydew honey:“dryomelo” publication-title: Food Control – volume: 33 year: 2021 ident: bib48 article-title: Physicochemical, antioxidant capacity and color analysis of six honeys from different origin publication-title: Journal of King Saud University Science – volume: 141736 year: 2024 ident: bib25 article-title: Development of a zebrafish model for toxicity evaluation of adulterated Apis mellifera honey publication-title: Chemosphere – volume: 343 year: 2021 ident: bib33 article-title: Antimicrobial activity of heat-treated Polish honeys publication-title: Food Chemistry – volume: 4 start-page: 1817 year: 2024 end-page: 1828 ident: bib38 article-title: Fourier transform infrared spectroscopy use in honey characterization and authentication: A systematic review publication-title: ACS Food Science & Technology – volume: 6 year: 2020 ident: bib44 article-title: Indonesian wild honey authenticity analysis using attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy combined with multivariate statistical techniques publication-title: Heliyon – volume: 95 start-page: 57 year: 2019 end-page: 62 ident: bib49 article-title: Detection of honey adulteration by conventional and real-time PCR publication-title: Food Control – volume: 130 year: 2021 ident: bib11 article-title: Detection of honey adulterated with agave, corn, inverted sugar, maple and rice syrups using FTIR analysis publication-title: Food Control – volume: 5 start-page: 1 year: 2002 end-page: 62 ident: bib7 article-title: Harmonised methods of the international honey commission publication-title: Swiss Bee Research Centre, FAM, Liebefeld – volume: 87 year: 2024 ident: bib16 article-title: Impact of different adulterants on honey quality properties and evaluating different analytical approaches for adulteration detection publication-title: Journal of Food Protection – volume: 10 start-page: 1365 year: 2021 ident: bib34 article-title: Application of heating on the antioxidant and antibacterial properties of Malaysian and Australian stingless bee honey publication-title: Antibiotics – volume: 12 start-page: 473 year: 2023 ident: bib51 article-title: Insight into the recent application of chemometrics in quality analysis and characterization of bee honey during processing and storage publication-title: Foods – volume: 10 start-page: 94 year: 2021 ident: bib28 article-title: From the beehives: Identification and comparison of physicochemical properties of Algerian honey publication-title: Resources – volume: 7 start-page: 1 year: 2013 end-page: 12 ident: bib35 article-title: Evaluation of physicochemical and antioxidant properties of sourwood and other Malaysian honeys: A comparison with manuka honey publication-title: Chemistry Central Journal – volume: 86 start-page: 25 year: 2017 end-page: 38 ident: bib53 article-title: Recent advancements in detecting sugar-based adulterants in honey–A challenge publication-title: TrAC, Trends in Analytical Chemistry – volume: 26 start-page: 6222 year: 2021 ident: bib24 article-title: In vivo toxicity evaluation of sugar adulterated Heterotrigona itama honey using zebrafish model publication-title: Molecules – year: 2022 ident: bib56 article-title: On honey authentication and adulterant detection techniques publication-title: Food Control – volume: 138 year: 2022 ident: bib55 article-title: On honey authentication and adulterant detection techniques publication-title: Food Control – year: 2000 ident: bib3 article-title: Official method 969.33. – volume: 9 year: 2020 ident: bib23 article-title: The toxic impact of honey adulteration: A review publication-title: Foods – volume: 19 year: 2023 ident: bib57 article-title: A comprehensive review of the current trends and recent advancements on the authenticity of honey publication-title: Food Chemistry X – volume: 86 year: 2020 ident: bib50 article-title: Detection of adulteration in Chinese monofloral honey using 1H nuclear magnetic resonance and chemometrics publication-title: Journal of Food Composition and Analysis – volume: 441 year: 2024 ident: bib22 article-title: Application, challenges and future prospects of recent nondestructive techniques based on the electromagnetic spectrum in food quality and safety publication-title: Food Chemistry – volume: 387 year: 2022 ident: bib52 article-title: Recent trends in the analysis of honey constituents publication-title: Food Chemistry – volume: 224 year: 2022 ident: bib42 article-title: Near-infrared spectroscopy with chemometrics for identification and quantification of adulteration in high-quality stingless bee honey publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 250 start-page: 2255 year: 2024 end-page: 2272 ident: bib29 article-title: Detection of honey adulteration by characterization of the physico-chemical properties of honey adulterated with the addition of glucose–fructose and maltose corn syrups publication-title: European Food Research and Technology – volume: 7 year: 2023 ident: bib15 article-title: Application of Fourier transform infrared (FT-IR) spectroscopy and multivariate analysis for detection of adulteration in honey markets in Ethiopia publication-title: Current Research in Food Science – volume: 10 start-page: 119 year: 2012 end-page: 122 ident: bib43 article-title: Analysis of adulteration in honey with standard sugar solutions and syrups using attenuated total reflectance-Fourier transform infrared spectroscopy and multivariate methods publication-title: CyTA – Journal of Food – volume: 12 start-page: 3656 year: 2023 ident: bib45 article-title: Assessment of the quality, chemometric and pollen diversity of Apis mellifera honey from different seasonal harvests publication-title: Foods – volume: 9 year: 2023 ident: bib13 article-title: Physicochemical and antioxidant characterization of commercially available honey sample from Addis Ababa market, Ethiopia publication-title: Heliyon – volume: 9 year: 2023 ident: bib14 article-title: Physicochemical properties and microbial qualities of honey produced by a stingless bee (Meliponula beccarii L.) in the Oromia region, Ethiopia publication-title: Cogent Food & Agriculture – volume: 34 year: 2019 ident: bib39 article-title: Sensory analysis of honey using flash profile: A cross‐cultural comparison of Greek and Chinese panels publication-title: Journal of Sensory Studies – volume: 67 start-page: 11256 year: 2019 end-page: 11261 ident: bib40 article-title: High-throughput monitoring of multiclass syrup adulterants in honey based on the oligosaccharide and polysaccharide profiles by MALDI mass spectrometry publication-title: Journal of Agricultural and Food Chemistry – volume: 27 start-page: 2324 year: 2022 ident: bib41 article-title: Identification of stingless bee honey adulteration using visible-near infrared spectroscopy combined with aquaphotomics publication-title: Molecules – volume: 24 start-page: 4091 issue: 22 year: 2019 ident: 10.1016/j.foodcont.2024.110996_bib2 article-title: Raman spectroscopy and chemometric modeling to predict physical-chemical honey properties from campeche, Mexico publication-title: Molecules doi: 10.3390/molecules24224091 – year: 2022 ident: 10.1016/j.foodcont.2024.110996_bib56 article-title: On honey authentication and adulterant detection techniques publication-title: Food Control doi: 10.1016/j.foodcont.2022.108992 – volume: 27 start-page: 2324 issue: 7 year: 2022 ident: 10.1016/j.foodcont.2024.110996_bib41 article-title: Identification of stingless bee honey adulteration using visible-near infrared spectroscopy combined with aquaphotomics publication-title: Molecules doi: 10.3390/molecules27072324 – year: 2000 ident: 10.1016/j.foodcont.2024.110996_bib3 – volume: 130 year: 2021 ident: 10.1016/j.foodcont.2024.110996_bib11 article-title: Detection of honey adulterated with agave, corn, inverted sugar, maple and rice syrups using FTIR analysis publication-title: Food Control doi: 10.1016/j.foodcont.2021.108266 – volume: 168 year: 2022 ident: 10.1016/j.foodcont.2024.110996_bib18 article-title: Honey adulteration detection based on composition and differential scanning calorimetry (DSC) parameters publication-title: Lebensmittel-Wissenschaft und -Technologie – volume: 253 year: 2023 ident: 10.1016/j.foodcont.2024.110996_bib10 article-title: Rapid, reliable and easy-to-perform chemometric-less method for rice syrup adulterated honey detection using FTIR-ATR publication-title: Talanta doi: 10.1016/j.talanta.2022.123961 – volume: 224 year: 2022 ident: 10.1016/j.foodcont.2024.110996_bib42 article-title: Near-infrared spectroscopy with chemometrics for identification and quantification of adulteration in high-quality stingless bee honey publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2022.104540 – volume: 9 start-page: 710 issue: 6 year: 2020 ident: 10.1016/j.foodcont.2024.110996_bib26 article-title: Application of ATR-FT-MIR for tracing the geographical origin of honey produced in the Maltese islands publication-title: Foods doi: 10.3390/foods9060710 – volume: 9 issue: 10 year: 2023 ident: 10.1016/j.foodcont.2024.110996_bib13 article-title: Physicochemical and antioxidant characterization of commercially available honey sample from Addis Ababa market, Ethiopia publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e20830 – volume: 235 year: 2020 ident: 10.1016/j.foodcont.2024.110996_bib30 article-title: Detection of adulteration in Chinese honey using NIR and ATR-FTIR spectral data fusion publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy doi: 10.1016/j.saa.2020.118297 – volume: 12 start-page: 1435 issue: 9 year: 2019 ident: 10.1016/j.foodcont.2024.110996_bib21 article-title: Online low-field nuclear magnetic resonance (LF-NMR) and magnetic resonance imaging (MRI) for food quality optimization in food processing publication-title: Food and Bioprocess Technology doi: 10.1007/s11947-019-02296-w – volume: 9 issue: 1 year: 2023 ident: 10.1016/j.foodcont.2024.110996_bib14 article-title: Physicochemical properties and microbial qualities of honey produced by a stingless bee (Meliponula beccarii L.) in the Oromia region, Ethiopia publication-title: Cogent Food & Agriculture doi: 10.1080/23311932.2023.2258784 – volume: 5 start-page: 34 year: 2017 ident: 10.1016/j.foodcont.2024.110996_bib27 article-title: Assessing the effect of adulteration on honey and beeswax quality and designing way of identification in oromia publication-title: International Journal Research Studying. Bioscience – volume: 7 start-page: 1 year: 2013 ident: 10.1016/j.foodcont.2024.110996_bib35 article-title: Evaluation of physicochemical and antioxidant properties of sourwood and other Malaysian honeys: A comparison with manuka honey publication-title: Chemistry Central Journal doi: 10.1186/1752-153X-7-138 – volume: 10 start-page: 94 issue: 10 year: 2021 ident: 10.1016/j.foodcont.2024.110996_bib28 article-title: From the beehives: Identification and comparison of physicochemical properties of Algerian honey publication-title: Resources doi: 10.3390/resources10100094 – volume: 12 start-page: 473 issue: 3 year: 2023 ident: 10.1016/j.foodcont.2024.110996_bib51 article-title: Insight into the recent application of chemometrics in quality analysis and characterization of bee honey during processing and storage publication-title: Foods doi: 10.3390/foods12030473 – volume: 27 start-page: 3080 issue: 10 year: 2022 ident: 10.1016/j.foodcont.2024.110996_bib20 article-title: A review on recent progress of stingless bee honey and its hydrogel-based compound for wound care management publication-title: Molecules doi: 10.3390/molecules27103080 – volume: 109 year: 2020 ident: 10.1016/j.foodcont.2024.110996_bib31 article-title: Palynological, physico-chemical and bioactivity parameters determination, of a less common Greek honeydew honey:“dryomelo” publication-title: Food Control doi: 10.1016/j.foodcont.2019.106940 – volume: 33 issue: 5 year: 2021 ident: 10.1016/j.foodcont.2024.110996_bib48 article-title: Physicochemical, antioxidant capacity and color analysis of six honeys from different origin publication-title: Journal of King Saud University Science doi: 10.1016/j.jksus.2021.101447 – ident: 10.1016/j.foodcont.2024.110996_bib36 doi: 10.5772/intechopen.109484 – volume: 250 start-page: 2255 issue: 8 year: 2024 ident: 10.1016/j.foodcont.2024.110996_bib29 article-title: Detection of honey adulteration by characterization of the physico-chemical properties of honey adulterated with the addition of glucose–fructose and maltose corn syrups publication-title: European Food Research and Technology doi: 10.1007/s00217-024-04535-7 – volume: 154 year: 2023 ident: 10.1016/j.foodcont.2024.110996_bib54 article-title: Adulteration quantification of cheap honey in high-quality Manuka honey by two-dimensional correlation spectroscopy combined with deep learning publication-title: Food Control doi: 10.1016/j.foodcont.2023.110010 – volume: 12 start-page: 3656 issue: 19 year: 2023 ident: 10.1016/j.foodcont.2024.110996_bib45 article-title: Assessment of the quality, chemometric and pollen diversity of Apis mellifera honey from different seasonal harvests publication-title: Foods doi: 10.3390/foods12193656 – volume: 13 issue: 15 year: 2024 ident: 10.1016/j.foodcont.2024.110996_bib47 article-title: Application of spatial offset Raman spectroscopy (SORS) and machine learning for sugar syrup adulteration detection in UK honey publication-title: Foods doi: 10.3390/foods13152425 – volume: 7 year: 2023 ident: 10.1016/j.foodcont.2024.110996_bib15 article-title: Application of Fourier transform infrared (FT-IR) spectroscopy and multivariate analysis for detection of adulteration in honey markets in Ethiopia publication-title: Current Research in Food Science doi: 10.1016/j.crfs.2023.100565 – volume: 387 year: 2022 ident: 10.1016/j.foodcont.2024.110996_bib52 article-title: Recent trends in the analysis of honey constituents publication-title: Food Chemistry doi: 10.1016/j.foodchem.2022.132920 – volume: 6 issue: 4 year: 2020 ident: 10.1016/j.foodcont.2024.110996_bib44 article-title: Indonesian wild honey authenticity analysis using attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy combined with multivariate statistical techniques publication-title: Heliyon doi: 10.1016/j.heliyon.2020.e03662 – volume: 12 issue: 3 year: 2023 ident: 10.1016/j.foodcont.2024.110996_bib4 article-title: Determination of possible adulteration and quality assessment in commercial honey publication-title: Foods doi: 10.3390/foods12030523 – volume: 95 start-page: 57 year: 2019 ident: 10.1016/j.foodcont.2024.110996_bib49 article-title: Detection of honey adulteration by conventional and real-time PCR publication-title: Food Control doi: 10.1016/j.foodcont.2018.07.037 – volume: 145 year: 2023 ident: 10.1016/j.foodcont.2024.110996_bib8 article-title: A comprehensive review on unethical honey: Validation by emerging techniques publication-title: Food Control doi: 10.1016/j.foodcont.2022.109482 – volume: 441 year: 2024 ident: 10.1016/j.foodcont.2024.110996_bib22 article-title: Application, challenges and future prospects of recent nondestructive techniques based on the electromagnetic spectrum in food quality and safety publication-title: Food Chemistry doi: 10.1016/j.foodchem.2024.138402 – volume: 138 year: 2022 ident: 10.1016/j.foodcont.2024.110996_bib55 article-title: On honey authentication and adulterant detection techniques publication-title: Food Control doi: 10.1016/j.foodcont.2022.108992 – volume: 107 start-page: 216 year: 2018 ident: 10.1016/j.foodcont.2024.110996_bib17 article-title: Chemical characterization complemented with chemometrics for the botanical origin identification of unifloral and multifloral honeys from India publication-title: Food Research International doi: 10.1016/j.foodres.2018.02.017 – volume: 34 issue: 3 year: 2019 ident: 10.1016/j.foodcont.2024.110996_bib39 article-title: Sensory analysis of honey using flash profile: A cross‐cultural comparison of Greek and Chinese panels publication-title: Journal of Sensory Studies doi: 10.1111/joss.12494 – volume: 5 start-page: 1 year: 2002 ident: 10.1016/j.foodcont.2024.110996_bib7 article-title: Harmonised methods of the international honey commission publication-title: Swiss Bee Research Centre, FAM, Liebefeld – volume: 10 issue: 1 year: 2020 ident: 10.1016/j.foodcont.2024.110996_bib32 article-title: Identification of sugars and phenolic compounds in honey powders with the use of GC–MS, FTIR spectroscopy, and X-ray diffraction publication-title: Scientific Reports doi: 10.1038/s41598-020-73306-7 – volume: 86 start-page: 25 year: 2017 ident: 10.1016/j.foodcont.2024.110996_bib53 article-title: Recent advancements in detecting sugar-based adulterants in honey–A challenge publication-title: TrAC, Trends in Analytical Chemistry doi: 10.1016/j.trac.2016.10.013 – volume: 79 start-page: 198 year: 1988 ident: 10.1016/j.foodcont.2024.110996_bib6 article-title: Bestimmung von Honigzucker mit HPLC publication-title: Mitt. Geb. Lebensm. Hyg – volume: 133 year: 2022 ident: 10.1016/j.foodcont.2024.110996_bib9 article-title: Detection and evaluation of saccharide adulteration in Italian honey by NMR spectroscopy publication-title: Food Control doi: 10.1016/j.foodcont.2021.108574 – volume: 2020 year: 2020 ident: 10.1016/j.foodcont.2024.110996_bib19 article-title: Development of fast analytical method for the detection and quantification of honey adulteration using vibrational spectroscopy and chemometrics tools publication-title: Jounal of Analytical Methods Chemistry – volume: 10 start-page: 119 issue: 2 year: 2012 ident: 10.1016/j.foodcont.2024.110996_bib43 article-title: Analysis of adulteration in honey with standard sugar solutions and syrups using attenuated total reflectance-Fourier transform infrared spectroscopy and multivariate methods publication-title: CyTA – Journal of Food doi: 10.1080/19476337.2011.596576 – volume: 67 start-page: 11256 issue: 40 year: 2019 ident: 10.1016/j.foodcont.2024.110996_bib40 article-title: High-throughput monitoring of multiclass syrup adulterants in honey based on the oligosaccharide and polysaccharide profiles by MALDI mass spectrometry publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/acs.jafc.9b05317 – volume: 87 issue: 4 year: 2024 ident: 10.1016/j.foodcont.2024.110996_bib16 article-title: Impact of different adulterants on honey quality properties and evaluating different analytical approaches for adulteration detection publication-title: Journal of Food Protection doi: 10.1016/j.jfp.2024.100241 – volume: 86 year: 2020 ident: 10.1016/j.foodcont.2024.110996_bib50 article-title: Detection of adulteration in Chinese monofloral honey using 1H nuclear magnetic resonance and chemometrics publication-title: Journal of Food Composition and Analysis doi: 10.1016/j.jfca.2019.103390 – volume: 27 start-page: 780 issue: 3 year: 2022 ident: 10.1016/j.foodcont.2024.110996_bib5 article-title: Revealing the effect of heat treatment on the spectral pattern of unifloral honeys using aquaphotomics publication-title: Molecules doi: 10.3390/molecules27030780 – volume: 26 start-page: 6222 issue: 20 year: 2021 ident: 10.1016/j.foodcont.2024.110996_bib24 article-title: In vivo toxicity evaluation of sugar adulterated Heterotrigona itama honey using zebrafish model publication-title: Molecules doi: 10.3390/molecules26206222 – start-page: 12 year: 2001 ident: 10.1016/j.foodcont.2024.110996_bib12 article-title: Revised Codex standard for honey – volume: 118 start-page: 391 issue: 2 year: 2010 ident: 10.1016/j.foodcont.2024.110996_bib46 article-title: Physical, biochemical and antioxidant properties of some Indian honeys publication-title: Food Chemistry doi: 10.1016/j.foodchem.2009.05.001 – volume: 141736 year: 2024 ident: 10.1016/j.foodcont.2024.110996_bib25 article-title: Development of a zebrafish model for toxicity evaluation of adulterated Apis mellifera honey publication-title: Chemosphere – volume: 9 issue: 11 year: 2020 ident: 10.1016/j.foodcont.2024.110996_bib23 article-title: The toxic impact of honey adulteration: A review publication-title: Foods doi: 10.3390/foods9111538 – volume: 10 start-page: 1365 issue: 11 year: 2021 ident: 10.1016/j.foodcont.2024.110996_bib34 article-title: Application of heating on the antioxidant and antibacterial properties of Malaysian and Australian stingless bee honey publication-title: Antibiotics doi: 10.3390/antibiotics10111365 – volume: 4 start-page: 1817 issue: 8 year: 2024 ident: 10.1016/j.foodcont.2024.110996_bib38 article-title: Fourier transform infrared spectroscopy use in honey characterization and authentication: A systematic review publication-title: ACS Food Science & Technology doi: 10.1021/acsfoodscitech.4c00377 – volume: 203 start-page: 235 year: 2019 ident: 10.1016/j.foodcont.2024.110996_bib1 article-title: A screening method based on Visible-NIR spectroscopy for the identification and quantification of different adulterants in high-quality honey publication-title: Talanta doi: 10.1016/j.talanta.2019.05.067 – volume: 19 year: 2023 ident: 10.1016/j.foodcont.2024.110996_bib57 article-title: A comprehensive review of the current trends and recent advancements on the authenticity of honey publication-title: Food Chemistry X doi: 10.1016/j.fochx.2023.100850 – volume: 343 year: 2021 ident: 10.1016/j.foodcont.2024.110996_bib33 article-title: Antimicrobial activity of heat-treated Polish honeys publication-title: Food Chemistry doi: 10.1016/j.foodchem.2020.128561 – volume: 164 year: 2024 ident: 10.1016/j.foodcont.2024.110996_bib37 article-title: Differences in the adulteration degree and antimicrobial activity of chilean ulmo honey versus multifloral honey revealed by stable isotope analysis publication-title: Food Control doi: 10.1016/j.foodcont.2024.110590 |
| SSID | ssj0017010 |
| Score | 2.5034523 |
| Snippet | A Fourier Transform Infrared Spectroscopy and attenuated total reflectance (FTIR-ATR)-based chemometric model was evaluated for the rapid identification and... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 110996 |
| SubjectTerms | Acacia acetic acid acidity adulterated products Adulteration Bee honey brix cane sugar chemometrics citric acid corn syrup food safety Fourier transform infrared spectroscopy fructose FTIR-ATR glucose honey liquids nondestructive methods reflectance regression analysis Stingless bee honey stingless bees sucrose tamarinds water content |
| Title | Development of FTIR-ATR spectra and PLS regression combination model for discrimination of pure and adulterated acacia honey |
| URI | https://dx.doi.org/10.1016/j.foodcont.2024.110996 https://www.proquest.com/docview/3154258011 |
| Volume | 169 |
| WOSCitedRecordID | wos001356081800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0956-7135 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017010 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxgEOiE9t40NGQlwiQ74THwtqxVApqGSo4mI5icO6VWno2mlC3Pm3ec9O0hQNbRy4RJVbu01_v9jPz-_9HiEvXLAqCs-2WZo7BfPDwGUyjTjLpbILFBhzdN7al1E0HsfTKf_U6_1qcmHO51FZxhcXvPqvUEMbgI2ps_8AdzsoNMBrAB2uADtcrwV8JwwILcFhcjhh_WRi6ZzKpTTpAaPP1lJ9MzGwOhAdNsiGCro0jg4-xIRdU_SrsSqr5rRBq3agHDOYqzKTgK91vCi3j4iHqJdcR8K3LJGnx3OpdATBRBYz1Tqj38hU5rq9j2kMVh91OTZsRM-SyQyTP2bLdQ4rrvVBtiE705lcpNrp-3Wx7joy3GATydV6JEOGFQO3JueQW5WWReUhu3TKN96Hk1cF3BXeFOz5Xb_usVnkmoP98UcxPBqNRDKYJi-r7wzLj-ExfV2L5QbZdaOAw_S42z8cTN-3B1KRrYUt2t_YSTa__Kv_Zuf8seJrMya5S-7U-w_aN7y5R3qqvE9ud1QpH5CfHQbRRUEbBtGaQRQYQIFBdMMg2mEQ1QyiwCC6zSAcCxmk-3cYRA2DqGbQQ3I0HCRv37G6SAfLPD9YMQ-faiXj0A_i3OcRd1JHciUjN-fKRzUkx0Mj1lHcLtw8yCOJGoypUjIMUy69R2SnhPH3CFVelsLbvhd6tq94KKMM1hM_zPJYgaXu7JOg-UtFVivYYyGVuWhCFU9EA4VAKISBYp-8bvtVRsPlyh68QUzUlqixMAWw7sq-zxuIBUzVeP4mS7VYnwkPtituACahc3CNzzwmtzZPyROys1qu1VNyMztfzc6Wz2p-_gaapLmR |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+FTIR-ATR+spectra+and+PLS+regression+combination+model+for+discrimination+of+pure+and+adulterated+acacia+honey&rft.jtitle=Food+control&rft.au=Fakhlaei%2C+Rafieh&rft.au=Babadi%2C+Arman+Amani&rft.au=Ariffin%2C+Naziruddin+Mat&rft.au=Xiaobo%2C+Zou&rft.date=2025-03-01&rft.issn=0956-7135&rft.volume=169+p.110996-&rft_id=info:doi/10.1016%2Fj.foodcont.2024.110996&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-7135&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-7135&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-7135&client=summon |