Development of FTIR-ATR spectra and PLS regression combination model for discrimination of pure and adulterated acacia honey

A Fourier Transform Infrared Spectroscopy and attenuated total reflectance (FTIR-ATR)-based chemometric model was evaluated for the rapid identification and estimation of adulterants in honey. Two types of honey, bee honey and stingless bee honey, were adulterated with acid adulterants (acetic acid,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food control Jg. 169; S. 110996
Hauptverfasser: Fakhlaei, Rafieh, Babadi, Arman Amani, Ariffin, Naziruddin Mat, Xiaobo, Zou
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.03.2025
Schlagworte:
ISSN:0956-7135
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A Fourier Transform Infrared Spectroscopy and attenuated total reflectance (FTIR-ATR)-based chemometric model was evaluated for the rapid identification and estimation of adulterants in honey. Two types of honey, bee honey and stingless bee honey, were adulterated with acid adulterants (acetic acid, citric acid, and tamarind extract) at different concentrations of 1%, 3%, 5%, and 7% and sugar adulterants (liquid corn syrup, cane sugar, palm sugar, and inverted sugar) at different concentrations of 1%, 2%, and 3%. The physicochemical properties (Brix, moisture content, pH, and free acidity) and sugar contents (glucose, fructose, and sucrose) of each type of honey and their adulterated samples were determined before FTIR analysis. For all the samples, FTIR spectra were acquired in the mid-infrared range (400-3600 cm−1) and the spectra obtained were subjected to partial least squares (PLS) analysis to develop the model for the determination of adulterants in honey samples. The PLS model produced high coefficient of determination (R2) for bee honey adulterated with acetic acid (0.95), citric acid (0.98), tamarind extract (0.97), and stingless bee honey adulterated with liquid corn syrup (0.99), inverted sugar (0.91), cane sugar (0.86), and palm sugar (0.77). A recognition model was developed for mixture detection and verified through the physicochemical analysis. The combination of FTIR-ATR spectra and the PLS regression model can be a fast, reliable, nondestructive method to detect honey adulteration. •Analysing the physicochemical properties of pure and adulterated honey.•Sugar contents determination of pure and adulterated honey by using HPLC.•FTIR-ATR based PLS-R for discrimination of pure and adulterated honey.
AbstractList A Fourier Transform Infrared Spectroscopy and attenuated total reflectance (FTIR-ATR)-based chemometric model was evaluated for the rapid identification and estimation of adulterants in honey. Two types of honey, bee honey and stingless bee honey, were adulterated with acid adulterants (acetic acid, citric acid, and tamarind extract) at different concentrations of 1%, 3%, 5%, and 7% and sugar adulterants (liquid corn syrup, cane sugar, palm sugar, and inverted sugar) at different concentrations of 1%, 2%, and 3%. The physicochemical properties (Brix, moisture content, pH, and free acidity) and sugar contents (glucose, fructose, and sucrose) of each type of honey and their adulterated samples were determined before FTIR analysis. For all the samples, FTIR spectra were acquired in the mid-infrared range (400-3600 cm⁻¹) and the spectra obtained were subjected to partial least squares (PLS) analysis to develop the model for the determination of adulterants in honey samples. The PLS model produced high coefficient of determination (R²) for bee honey adulterated with acetic acid (0.95), citric acid (0.98), tamarind extract (0.97), and stingless bee honey adulterated with liquid corn syrup (0.99), inverted sugar (0.91), cane sugar (0.86), and palm sugar (0.77). A recognition model was developed for mixture detection and verified through the physicochemical analysis. The combination of FTIR-ATR spectra and the PLS regression model can be a fast, reliable, nondestructive method to detect honey adulteration.
A Fourier Transform Infrared Spectroscopy and attenuated total reflectance (FTIR-ATR)-based chemometric model was evaluated for the rapid identification and estimation of adulterants in honey. Two types of honey, bee honey and stingless bee honey, were adulterated with acid adulterants (acetic acid, citric acid, and tamarind extract) at different concentrations of 1%, 3%, 5%, and 7% and sugar adulterants (liquid corn syrup, cane sugar, palm sugar, and inverted sugar) at different concentrations of 1%, 2%, and 3%. The physicochemical properties (Brix, moisture content, pH, and free acidity) and sugar contents (glucose, fructose, and sucrose) of each type of honey and their adulterated samples were determined before FTIR analysis. For all the samples, FTIR spectra were acquired in the mid-infrared range (400-3600 cm−1) and the spectra obtained were subjected to partial least squares (PLS) analysis to develop the model for the determination of adulterants in honey samples. The PLS model produced high coefficient of determination (R2) for bee honey adulterated with acetic acid (0.95), citric acid (0.98), tamarind extract (0.97), and stingless bee honey adulterated with liquid corn syrup (0.99), inverted sugar (0.91), cane sugar (0.86), and palm sugar (0.77). A recognition model was developed for mixture detection and verified through the physicochemical analysis. The combination of FTIR-ATR spectra and the PLS regression model can be a fast, reliable, nondestructive method to detect honey adulteration. •Analysing the physicochemical properties of pure and adulterated honey.•Sugar contents determination of pure and adulterated honey by using HPLC.•FTIR-ATR based PLS-R for discrimination of pure and adulterated honey.
ArticleNumber 110996
Author Babadi, Arman Amani
Xiaobo, Zou
Fakhlaei, Rafieh
Ariffin, Naziruddin Mat
Author_xml – sequence: 1
  givenname: Rafieh
  orcidid: 0000-0002-9525-6927
  surname: Fakhlaei
  fullname: Fakhlaei, Rafieh
  email: 1000006353@ujs.edu.cn
  organization: School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
– sequence: 2
  givenname: Arman Amani
  surname: Babadi
  fullname: Babadi, Arman Amani
  organization: School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, China
– sequence: 3
  givenname: Naziruddin Mat
  orcidid: 0000-0002-8100-4403
  surname: Ariffin
  fullname: Ariffin, Naziruddin Mat
  organization: Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia, Serdang, 43400, Selangor, Malaysia
– sequence: 4
  givenname: Zou
  surname: Xiaobo
  fullname: Xiaobo, Zou
  email: zou_xiaobo@ujs.edu.cn
  organization: School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
BookMark eNqFkU1rHDEMhn1IoUmav1B87GW21ni-DD00pM0HLDSk27PR2prWy4w9tb2BQH98vdnm0ktOEkjPi_z4jJ344Imx9yBWIKD7uFuNIVgTfF7Vom5WAEKp7oSdCtV2VQ-yfcvOUtoJAb0Accr-fKFHmsIyk888jPx6c_dQXW4eeFrI5IgcveX36-880s9IKbnguQnz1nnMh34OliY-hsitSya6-WVQspZ9pGce7X7KFDFT6Q0ah_xXufvpHXsz4pTo4l89Zz-uv26ubqv1t5u7q8t1ZWTT5kpaJEE4dE072Eb1CraAirCvraJGSDGABFEPQEqMtW1tj1LJfkuEXbdVKM_Zh2PuEsPvPaWs53IsTRN6CvukJbRN3Q4CoKx-Oq6aGFKKNGrj8vOLigw3aRD6IFrv9ItofRCtj6IL3v2HL8UJxqfXwc9HkIqHR0dRJ-PIG7Iulo_QNrjXIv4CuCSh8g
CitedBy_id crossref_primary_10_1039_D4AY02250E
crossref_primary_10_1016_j_saa_2025_126723
crossref_primary_10_1016_j_foodcont_2025_111687
crossref_primary_10_3390_foods14132199
crossref_primary_10_1016_j_talanta_2025_127943
crossref_primary_10_1016_j_est_2025_117300
crossref_primary_10_3390_foods14173026
crossref_primary_10_3390_agriculture15121250
crossref_primary_10_3390_bios15060363
crossref_primary_10_1016_j_seppur_2024_130642
crossref_primary_10_1515_ijfe_2024_0196
crossref_primary_10_1016_j_jfca_2025_108303
crossref_primary_10_1016_j_trac_2025_118215
crossref_primary_10_1016_j_fochx_2025_102770
Cites_doi 10.3390/molecules24224091
10.1016/j.foodcont.2022.108992
10.3390/molecules27072324
10.1016/j.foodcont.2021.108266
10.1016/j.talanta.2022.123961
10.1016/j.chemolab.2022.104540
10.3390/foods9060710
10.1016/j.heliyon.2023.e20830
10.1016/j.saa.2020.118297
10.1007/s11947-019-02296-w
10.1080/23311932.2023.2258784
10.1186/1752-153X-7-138
10.3390/resources10100094
10.3390/foods12030473
10.3390/molecules27103080
10.1016/j.foodcont.2019.106940
10.1016/j.jksus.2021.101447
10.5772/intechopen.109484
10.1007/s00217-024-04535-7
10.1016/j.foodcont.2023.110010
10.3390/foods12193656
10.3390/foods13152425
10.1016/j.crfs.2023.100565
10.1016/j.foodchem.2022.132920
10.1016/j.heliyon.2020.e03662
10.3390/foods12030523
10.1016/j.foodcont.2018.07.037
10.1016/j.foodcont.2022.109482
10.1016/j.foodchem.2024.138402
10.1016/j.foodres.2018.02.017
10.1111/joss.12494
10.1038/s41598-020-73306-7
10.1016/j.trac.2016.10.013
10.1016/j.foodcont.2021.108574
10.1080/19476337.2011.596576
10.1021/acs.jafc.9b05317
10.1016/j.jfp.2024.100241
10.1016/j.jfca.2019.103390
10.3390/molecules27030780
10.3390/molecules26206222
10.1016/j.foodchem.2009.05.001
10.3390/foods9111538
10.3390/antibiotics10111365
10.1021/acsfoodscitech.4c00377
10.1016/j.talanta.2019.05.067
10.1016/j.fochx.2023.100850
10.1016/j.foodchem.2020.128561
10.1016/j.foodcont.2024.110590
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.foodcont.2024.110996
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_foodcont_2024_110996
S0956713524007138
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29H
3EH
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXKI
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ACRPL
ADBBV
ADEZE
ADHUB
ADMUD
ADNMO
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HVGLF
HZ~
IHE
J1W
K-O
KOM
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SES
SEW
SPCBC
SSA
SSZ
T5K
WH7
WUQ
Y6R
~G-
~KM
9DU
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-3dae0ea86458d49791b1a9ea72d9e403081310281e90f2d5d7a3937beea66b9a3
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001356081800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0956-7135
IngestDate Mon Sep 29 06:07:54 EDT 2025
Tue Nov 18 21:32:41 EST 2025
Sat Nov 29 05:16:25 EST 2025
Sat Dec 14 16:13:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords FTIR-ATR
Bee honey
Stingless bee honey
Adulteration
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-3dae0ea86458d49791b1a9ea72d9e403081310281e90f2d5d7a3937beea66b9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9525-6927
0000-0002-8100-4403
PQID 3154258011
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3154258011
crossref_citationtrail_10_1016_j_foodcont_2024_110996
crossref_primary_10_1016_j_foodcont_2024_110996
elsevier_sciencedirect_doi_10_1016_j_foodcont_2024_110996
PublicationCentury 2000
PublicationDate March 2025
2025-03-00
20250301
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationTitle Food control
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – sequence: 0
  name: Elsevier Ltd
References Formosa, Lia, Mifsud, Farrugia (bib26) 2020; 9
Riswahyuli, Rohman, Setyabudi, Raharjo (bib44) 2020; 6
Moniruzzaman, Sulaiman, Khalil, Gan (bib35) 2013; 7
Bogdanov, Martin, Lullmann (bib7) 2002; 5
Song, She, Xin, Chen, Li, Heyden (bib50) 2020; 86
Kozłowicz, Różyło, Gładyszewska, Matwijczuk, Gładyszewski, Chocyk (bib32) 2020; 10
Cagliani, Maestri, Consonni (bib9) 2022; 133
Rios-Corripio, Rojas-López, Delgado-Macuil (bib43) 2012; 10
Smetanska, Alharthi, Selim (bib48) 2021; 33
Gemeda, Negera (bib27) 2017; 5
Guerzou, Aouissi, Guerzou, Burlakovs, Doumandji, Krauklis (bib28) 2021; 10
Damto, Birhanu, Zewdu (bib13) 2023; 9
Commission (bib12) 2001
Zhang, Abdulla (bib56) 2022
Majkut, Kwiecińska-Piróg, Wszelaczyńska, Pobereżny, Gospodarek-Komkowska, Wojtacki (bib33) 2021; 343
Bogdanov, Baumann (bib6) 1988; 79
Fakhlaei, Selamat, Razis, Sukor, Ahmad, Amani Babadi (bib24) 2021; 26
Sobrino-Gregorio, Vilanova, Prohens, Escriche (bib49) 2019; 95
Wu, Xu, Luo, Ma, Du, Zhang (bib54) 2023; 154
Ezeanaka, Nsor-Atindana, Zhang (bib21) 2019; 12
Gün, Karaoğlu (bib29) 2024; 250
Shehata, Dodd, Mosca, Matousek, Parmar, Kevei (bib47) 2024; 13
Huang, Song, Guo, Guang, Yang, Li (bib30) 2020; 235
Karabagias, Karabournioti, Karabagias, Badeka (bib31) 2020; 109
Damto, Zewdu, Birhanu (bib16) 2024; 87
Damto, Zewdu, Birhanu (bib15) 2023; 7
Esa, Ansari, Razak, Ismail, Jusoh, Zawawi (bib20) 2022; 27
Raypah, Omar, Muncan, Zulkurnain, Abdul Najib (bib41) 2022; 27
Tarapoulouzi, Mironescu, Drouza, Mironescu, Agriopoulou (bib51) 2023; 12
Zhang, Abdulla (bib55) 2022; 138
Ciursă, Pauliuc, Dranca, Ropciuc, Oroian (bib11) 2021; 130
Fakhlaei, Selamat, Razis, Sukor, Ahmad, Khatib (bib25) 2024; 141736
Zhang, Gu, Liu, Qing, Nie (bib57) 2023; 19
Fakhlaei, Selamat, Khatib, Razis, Sukor, Ahmad (bib23) 2020; 9
Aykas (bib4) 2023; 12
Wu, Du, Vander Heyden, Chen, Zhao, Wang (bib53) 2017; 86
Brar, Pant, Krishnan, Kaur, Rasane, Nanda (bib8) 2023; 145
Pérez, Lavín, Harrod, Echeveste (bib37) 2024; 164
Mat Ramlan, Md Zin, Safari, Chan, Zawawi (bib34) 2021; 10
Cárdenas-Escudero, Galán-Madruga, Cáceres (bib10) 2023; 253
(bib3) 2000
Rivera-Mondragón, Marrone, Bruner-Montero, Gaitán, de Núñez, Otero-Palacio (bib45) 2023; 12
Bodor, Benedek, Aouadi, Zsom-Muha, Kovacs (bib5) 2022; 27
Dranca, Ropciuc, Pauliuc, Oroian (bib18) 2022; 168
Valverde, Ares, Elmore, Bernal (bib52) 2022; 387
Damto, Kebebe, Gemeda (bib14) 2023; 9
Qu, Jiang, Huang, Cui, Ning, Liu (bib40) 2019; 67
Saxena, Gautam, Sharma (bib46) 2010; 118
Price, Tang, El Kadri, Gkatzionis (bib39) 2019; 34
Aliaño-González, Ferreiro-González, Espada-Bellido, Palma, Barbero (bib1) 2019; 203
Anguebes-Franseschi, Abatal, Pat, Flores, Córdova Quiroz, Ramírez-Elias (bib2) 2019; 24
Elhamdaoui, El Orche, Cheikh, Mojemmi, Nejjari, Bouatia (bib19) 2020; 2020
Fakhlaei, Babadi, Sun, Ariffin, Khatib, Selamat (bib22) 2024; 441
Mwale, M.M. (2023). Health risk of food additives: Recent developments and trends in the food sector. In: Health Risks of Food Additives, edited by A. Muhammad Sajid and K. Waseem. Chapter 1. DOI: 10.5772/intechopen.109484.
Devi, Jangir, Anu-Appaiah (bib17) 2018; 107
Raypah, Zhi, Loon, Omar (bib42) 2022; 224
Prata, da Costa (bib38) 2024; 4
Raypah (10.1016/j.foodcont.2024.110996_bib41) 2022; 27
Aliaño-González (10.1016/j.foodcont.2024.110996_bib1) 2019; 203
Huang (10.1016/j.foodcont.2024.110996_bib30) 2020; 235
Majkut (10.1016/j.foodcont.2024.110996_bib33) 2021; 343
Sobrino-Gregorio (10.1016/j.foodcont.2024.110996_bib49) 2019; 95
Valverde (10.1016/j.foodcont.2024.110996_bib52) 2022; 387
Rios-Corripio (10.1016/j.foodcont.2024.110996_bib43) 2012; 10
Formosa (10.1016/j.foodcont.2024.110996_bib26) 2020; 9
Damto (10.1016/j.foodcont.2024.110996_bib14) 2023; 9
Esa (10.1016/j.foodcont.2024.110996_bib20) 2022; 27
Dranca (10.1016/j.foodcont.2024.110996_bib18) 2022; 168
Wu (10.1016/j.foodcont.2024.110996_bib53) 2017; 86
Cagliani (10.1016/j.foodcont.2024.110996_bib9) 2022; 133
Bodor (10.1016/j.foodcont.2024.110996_bib5) 2022; 27
Damto (10.1016/j.foodcont.2024.110996_bib15) 2023; 7
Price (10.1016/j.foodcont.2024.110996_bib39) 2019; 34
Fakhlaei (10.1016/j.foodcont.2024.110996_bib24) 2021; 26
Bogdanov (10.1016/j.foodcont.2024.110996_bib7) 2002; 5
Elhamdaoui (10.1016/j.foodcont.2024.110996_bib19) 2020; 2020
Damto (10.1016/j.foodcont.2024.110996_bib16) 2024; 87
Guerzou (10.1016/j.foodcont.2024.110996_bib28) 2021; 10
Moniruzzaman (10.1016/j.foodcont.2024.110996_bib35) 2013; 7
Zhang (10.1016/j.foodcont.2024.110996_bib57) 2023; 19
Wu (10.1016/j.foodcont.2024.110996_bib54) 2023; 154
Aykas (10.1016/j.foodcont.2024.110996_bib4) 2023; 12
Zhang (10.1016/j.foodcont.2024.110996_bib56) 2022
Gemeda (10.1016/j.foodcont.2024.110996_bib27) 2017; 5
Anguebes-Franseschi (10.1016/j.foodcont.2024.110996_bib2) 2019; 24
Qu (10.1016/j.foodcont.2024.110996_bib40) 2019; 67
Karabagias (10.1016/j.foodcont.2024.110996_bib31) 2020; 109
Cárdenas-Escudero (10.1016/j.foodcont.2024.110996_bib10) 2023; 253
Fakhlaei (10.1016/j.foodcont.2024.110996_bib22) 2024; 441
Song (10.1016/j.foodcont.2024.110996_bib50) 2020; 86
Brar (10.1016/j.foodcont.2024.110996_bib8) 2023; 145
Damto (10.1016/j.foodcont.2024.110996_bib13) 2023; 9
Mat Ramlan (10.1016/j.foodcont.2024.110996_bib34) 2021; 10
Rivera-Mondragón (10.1016/j.foodcont.2024.110996_bib45) 2023; 12
Commission (10.1016/j.foodcont.2024.110996_bib12) 2001
Tarapoulouzi (10.1016/j.foodcont.2024.110996_bib51) 2023; 12
Fakhlaei (10.1016/j.foodcont.2024.110996_bib25) 2024; 141736
Pérez (10.1016/j.foodcont.2024.110996_bib37) 2024; 164
Ciursă (10.1016/j.foodcont.2024.110996_bib11) 2021; 130
Gün (10.1016/j.foodcont.2024.110996_bib29) 2024; 250
10.1016/j.foodcont.2024.110996_bib36
Prata (10.1016/j.foodcont.2024.110996_bib38) 2024; 4
Zhang (10.1016/j.foodcont.2024.110996_bib55) 2022; 138
Devi (10.1016/j.foodcont.2024.110996_bib17) 2018; 107
Ezeanaka (10.1016/j.foodcont.2024.110996_bib21) 2019; 12
Riswahyuli (10.1016/j.foodcont.2024.110996_bib44) 2020; 6
Raypah (10.1016/j.foodcont.2024.110996_bib42) 2022; 224
Bogdanov (10.1016/j.foodcont.2024.110996_bib6) 1988; 79
Kozłowicz (10.1016/j.foodcont.2024.110996_bib32) 2020; 10
Saxena (10.1016/j.foodcont.2024.110996_bib46) 2010; 118
Shehata (10.1016/j.foodcont.2024.110996_bib47) 2024; 13
Fakhlaei (10.1016/j.foodcont.2024.110996_bib23) 2020; 9
Smetanska (10.1016/j.foodcont.2024.110996_bib48) 2021; 33
(10.1016/j.foodcont.2024.110996_bib3) 2000
References_xml – volume: 10
  year: 2020
  ident: bib32
  article-title: Identification of sugars and phenolic compounds in honey powders with the use of GC–MS, FTIR spectroscopy, and X-ray diffraction
  publication-title: Scientific Reports
– start-page: 12
  year: 2001
  end-page: 1981
  ident: bib12
  article-title: Revised Codex standard for honey
  publication-title: Codex stan 2001
– volume: 12
  year: 2023
  ident: bib4
  article-title: Determination of possible adulteration and quality assessment in commercial honey
  publication-title: Foods
– volume: 5
  start-page: 34
  year: 2017
  end-page: 39
  ident: bib27
  article-title: Assessing the effect of adulteration on honey and beeswax quality and designing way of identification in oromia
  publication-title: International Journal Research Studying. Bioscience
– volume: 235
  year: 2020
  ident: bib30
  article-title: Detection of adulteration in Chinese honey using NIR and ATR-FTIR spectral data fusion
  publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
– volume: 2020
  year: 2020
  ident: bib19
  article-title: Development of fast analytical method for the detection and quantification of honey adulteration using vibrational spectroscopy and chemometrics tools
  publication-title: Jounal of Analytical Methods Chemistry
– volume: 9
  start-page: 710
  year: 2020
  ident: bib26
  article-title: Application of ATR-FT-MIR for tracing the geographical origin of honey produced in the Maltese islands
  publication-title: Foods
– volume: 168
  year: 2022
  ident: bib18
  article-title: Honey adulteration detection based on composition and differential scanning calorimetry (DSC) parameters
  publication-title: Lebensmittel-Wissenschaft und -Technologie
– reference: Mwale, M.M. (2023). Health risk of food additives: Recent developments and trends in the food sector. In: Health Risks of Food Additives, edited by A. Muhammad Sajid and K. Waseem. Chapter 1. DOI: 10.5772/intechopen.109484.
– volume: 118
  start-page: 391
  year: 2010
  end-page: 397
  ident: bib46
  article-title: Physical, biochemical and antioxidant properties of some Indian honeys
  publication-title: Food Chemistry
– volume: 164
  year: 2024
  ident: bib37
  article-title: Differences in the adulteration degree and antimicrobial activity of chilean ulmo honey versus multifloral honey revealed by stable isotope analysis
  publication-title: Food Control
– volume: 133
  year: 2022
  ident: bib9
  article-title: Detection and evaluation of saccharide adulteration in Italian honey by NMR spectroscopy
  publication-title: Food Control
– volume: 145
  year: 2023
  ident: bib8
  article-title: A comprehensive review on unethical honey: Validation by emerging techniques
  publication-title: Food Control
– volume: 107
  start-page: 216
  year: 2018
  end-page: 226
  ident: bib17
  article-title: Chemical characterization complemented with chemometrics for the botanical origin identification of unifloral and multifloral honeys from India
  publication-title: Food Research International
– volume: 253
  year: 2023
  ident: bib10
  article-title: Rapid, reliable and easy-to-perform chemometric-less method for rice syrup adulterated honey detection using FTIR-ATR
  publication-title: Talanta
– volume: 12
  start-page: 1435
  year: 2019
  end-page: 1451
  ident: bib21
  article-title: Online low-field nuclear magnetic resonance (LF-NMR) and magnetic resonance imaging (MRI) for food quality optimization in food processing
  publication-title: Food and Bioprocess Technology
– volume: 27
  start-page: 3080
  year: 2022
  ident: bib20
  article-title: A review on recent progress of stingless bee honey and its hydrogel-based compound for wound care management
  publication-title: Molecules
– volume: 13
  year: 2024
  ident: bib47
  article-title: Application of spatial offset Raman spectroscopy (SORS) and machine learning for sugar syrup adulteration detection in UK honey
  publication-title: Foods
– volume: 203
  start-page: 235
  year: 2019
  end-page: 241
  ident: bib1
  article-title: A screening method based on Visible-NIR spectroscopy for the identification and quantification of different adulterants in high-quality honey
  publication-title: Talanta
– volume: 27
  start-page: 780
  year: 2022
  ident: bib5
  article-title: Revealing the effect of heat treatment on the spectral pattern of unifloral honeys using aquaphotomics
  publication-title: Molecules
– volume: 154
  year: 2023
  ident: bib54
  article-title: Adulteration quantification of cheap honey in high-quality Manuka honey by two-dimensional correlation spectroscopy combined with deep learning
  publication-title: Food Control
– volume: 79
  start-page: 198
  year: 1988
  end-page: 206
  ident: bib6
  article-title: Bestimmung von Honigzucker mit HPLC
  publication-title: Mitt. Geb. Lebensm. Hyg
– volume: 24
  start-page: 4091
  year: 2019
  ident: bib2
  article-title: Raman spectroscopy and chemometric modeling to predict physical-chemical honey properties from campeche, Mexico
  publication-title: Molecules
– volume: 109
  year: 2020
  ident: bib31
  article-title: Palynological, physico-chemical and bioactivity parameters determination, of a less common Greek honeydew honey:“dryomelo”
  publication-title: Food Control
– volume: 33
  year: 2021
  ident: bib48
  article-title: Physicochemical, antioxidant capacity and color analysis of six honeys from different origin
  publication-title: Journal of King Saud University Science
– volume: 141736
  year: 2024
  ident: bib25
  article-title: Development of a zebrafish model for toxicity evaluation of adulterated Apis mellifera honey
  publication-title: Chemosphere
– volume: 343
  year: 2021
  ident: bib33
  article-title: Antimicrobial activity of heat-treated Polish honeys
  publication-title: Food Chemistry
– volume: 4
  start-page: 1817
  year: 2024
  end-page: 1828
  ident: bib38
  article-title: Fourier transform infrared spectroscopy use in honey characterization and authentication: A systematic review
  publication-title: ACS Food Science & Technology
– volume: 6
  year: 2020
  ident: bib44
  article-title: Indonesian wild honey authenticity analysis using attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy combined with multivariate statistical techniques
  publication-title: Heliyon
– volume: 95
  start-page: 57
  year: 2019
  end-page: 62
  ident: bib49
  article-title: Detection of honey adulteration by conventional and real-time PCR
  publication-title: Food Control
– volume: 130
  year: 2021
  ident: bib11
  article-title: Detection of honey adulterated with agave, corn, inverted sugar, maple and rice syrups using FTIR analysis
  publication-title: Food Control
– volume: 5
  start-page: 1
  year: 2002
  end-page: 62
  ident: bib7
  article-title: Harmonised methods of the international honey commission
  publication-title: Swiss Bee Research Centre, FAM, Liebefeld
– volume: 87
  year: 2024
  ident: bib16
  article-title: Impact of different adulterants on honey quality properties and evaluating different analytical approaches for adulteration detection
  publication-title: Journal of Food Protection
– volume: 10
  start-page: 1365
  year: 2021
  ident: bib34
  article-title: Application of heating on the antioxidant and antibacterial properties of Malaysian and Australian stingless bee honey
  publication-title: Antibiotics
– volume: 12
  start-page: 473
  year: 2023
  ident: bib51
  article-title: Insight into the recent application of chemometrics in quality analysis and characterization of bee honey during processing and storage
  publication-title: Foods
– volume: 10
  start-page: 94
  year: 2021
  ident: bib28
  article-title: From the beehives: Identification and comparison of physicochemical properties of Algerian honey
  publication-title: Resources
– volume: 7
  start-page: 1
  year: 2013
  end-page: 12
  ident: bib35
  article-title: Evaluation of physicochemical and antioxidant properties of sourwood and other Malaysian honeys: A comparison with manuka honey
  publication-title: Chemistry Central Journal
– volume: 86
  start-page: 25
  year: 2017
  end-page: 38
  ident: bib53
  article-title: Recent advancements in detecting sugar-based adulterants in honey–A challenge
  publication-title: TrAC, Trends in Analytical Chemistry
– volume: 26
  start-page: 6222
  year: 2021
  ident: bib24
  article-title: In vivo toxicity evaluation of sugar adulterated Heterotrigona itama honey using zebrafish model
  publication-title: Molecules
– year: 2022
  ident: bib56
  article-title: On honey authentication and adulterant detection techniques
  publication-title: Food Control
– volume: 138
  year: 2022
  ident: bib55
  article-title: On honey authentication and adulterant detection techniques
  publication-title: Food Control
– year: 2000
  ident: bib3
  article-title: Official method 969.33.
– volume: 9
  year: 2020
  ident: bib23
  article-title: The toxic impact of honey adulteration: A review
  publication-title: Foods
– volume: 19
  year: 2023
  ident: bib57
  article-title: A comprehensive review of the current trends and recent advancements on the authenticity of honey
  publication-title: Food Chemistry X
– volume: 86
  year: 2020
  ident: bib50
  article-title: Detection of adulteration in Chinese monofloral honey using 1H nuclear magnetic resonance and chemometrics
  publication-title: Journal of Food Composition and Analysis
– volume: 441
  year: 2024
  ident: bib22
  article-title: Application, challenges and future prospects of recent nondestructive techniques based on the electromagnetic spectrum in food quality and safety
  publication-title: Food Chemistry
– volume: 387
  year: 2022
  ident: bib52
  article-title: Recent trends in the analysis of honey constituents
  publication-title: Food Chemistry
– volume: 224
  year: 2022
  ident: bib42
  article-title: Near-infrared spectroscopy with chemometrics for identification and quantification of adulteration in high-quality stingless bee honey
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 250
  start-page: 2255
  year: 2024
  end-page: 2272
  ident: bib29
  article-title: Detection of honey adulteration by characterization of the physico-chemical properties of honey adulterated with the addition of glucose–fructose and maltose corn syrups
  publication-title: European Food Research and Technology
– volume: 7
  year: 2023
  ident: bib15
  article-title: Application of Fourier transform infrared (FT-IR) spectroscopy and multivariate analysis for detection of adulteration in honey markets in Ethiopia
  publication-title: Current Research in Food Science
– volume: 10
  start-page: 119
  year: 2012
  end-page: 122
  ident: bib43
  article-title: Analysis of adulteration in honey with standard sugar solutions and syrups using attenuated total reflectance-Fourier transform infrared spectroscopy and multivariate methods
  publication-title: CyTA – Journal of Food
– volume: 12
  start-page: 3656
  year: 2023
  ident: bib45
  article-title: Assessment of the quality, chemometric and pollen diversity of Apis mellifera honey from different seasonal harvests
  publication-title: Foods
– volume: 9
  year: 2023
  ident: bib13
  article-title: Physicochemical and antioxidant characterization of commercially available honey sample from Addis Ababa market, Ethiopia
  publication-title: Heliyon
– volume: 9
  year: 2023
  ident: bib14
  article-title: Physicochemical properties and microbial qualities of honey produced by a stingless bee (Meliponula beccarii L.) in the Oromia region, Ethiopia
  publication-title: Cogent Food & Agriculture
– volume: 34
  year: 2019
  ident: bib39
  article-title: Sensory analysis of honey using flash profile: A cross‐cultural comparison of Greek and Chinese panels
  publication-title: Journal of Sensory Studies
– volume: 67
  start-page: 11256
  year: 2019
  end-page: 11261
  ident: bib40
  article-title: High-throughput monitoring of multiclass syrup adulterants in honey based on the oligosaccharide and polysaccharide profiles by MALDI mass spectrometry
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 27
  start-page: 2324
  year: 2022
  ident: bib41
  article-title: Identification of stingless bee honey adulteration using visible-near infrared spectroscopy combined with aquaphotomics
  publication-title: Molecules
– volume: 24
  start-page: 4091
  issue: 22
  year: 2019
  ident: 10.1016/j.foodcont.2024.110996_bib2
  article-title: Raman spectroscopy and chemometric modeling to predict physical-chemical honey properties from campeche, Mexico
  publication-title: Molecules
  doi: 10.3390/molecules24224091
– year: 2022
  ident: 10.1016/j.foodcont.2024.110996_bib56
  article-title: On honey authentication and adulterant detection techniques
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2022.108992
– volume: 27
  start-page: 2324
  issue: 7
  year: 2022
  ident: 10.1016/j.foodcont.2024.110996_bib41
  article-title: Identification of stingless bee honey adulteration using visible-near infrared spectroscopy combined with aquaphotomics
  publication-title: Molecules
  doi: 10.3390/molecules27072324
– year: 2000
  ident: 10.1016/j.foodcont.2024.110996_bib3
– volume: 130
  year: 2021
  ident: 10.1016/j.foodcont.2024.110996_bib11
  article-title: Detection of honey adulterated with agave, corn, inverted sugar, maple and rice syrups using FTIR analysis
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2021.108266
– volume: 168
  year: 2022
  ident: 10.1016/j.foodcont.2024.110996_bib18
  article-title: Honey adulteration detection based on composition and differential scanning calorimetry (DSC) parameters
  publication-title: Lebensmittel-Wissenschaft und -Technologie
– volume: 253
  year: 2023
  ident: 10.1016/j.foodcont.2024.110996_bib10
  article-title: Rapid, reliable and easy-to-perform chemometric-less method for rice syrup adulterated honey detection using FTIR-ATR
  publication-title: Talanta
  doi: 10.1016/j.talanta.2022.123961
– volume: 224
  year: 2022
  ident: 10.1016/j.foodcont.2024.110996_bib42
  article-title: Near-infrared spectroscopy with chemometrics for identification and quantification of adulteration in high-quality stingless bee honey
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2022.104540
– volume: 9
  start-page: 710
  issue: 6
  year: 2020
  ident: 10.1016/j.foodcont.2024.110996_bib26
  article-title: Application of ATR-FT-MIR for tracing the geographical origin of honey produced in the Maltese islands
  publication-title: Foods
  doi: 10.3390/foods9060710
– volume: 9
  issue: 10
  year: 2023
  ident: 10.1016/j.foodcont.2024.110996_bib13
  article-title: Physicochemical and antioxidant characterization of commercially available honey sample from Addis Ababa market, Ethiopia
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e20830
– volume: 235
  year: 2020
  ident: 10.1016/j.foodcont.2024.110996_bib30
  article-title: Detection of adulteration in Chinese honey using NIR and ATR-FTIR spectral data fusion
  publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
  doi: 10.1016/j.saa.2020.118297
– volume: 12
  start-page: 1435
  issue: 9
  year: 2019
  ident: 10.1016/j.foodcont.2024.110996_bib21
  article-title: Online low-field nuclear magnetic resonance (LF-NMR) and magnetic resonance imaging (MRI) for food quality optimization in food processing
  publication-title: Food and Bioprocess Technology
  doi: 10.1007/s11947-019-02296-w
– volume: 9
  issue: 1
  year: 2023
  ident: 10.1016/j.foodcont.2024.110996_bib14
  article-title: Physicochemical properties and microbial qualities of honey produced by a stingless bee (Meliponula beccarii L.) in the Oromia region, Ethiopia
  publication-title: Cogent Food & Agriculture
  doi: 10.1080/23311932.2023.2258784
– volume: 5
  start-page: 34
  year: 2017
  ident: 10.1016/j.foodcont.2024.110996_bib27
  article-title: Assessing the effect of adulteration on honey and beeswax quality and designing way of identification in oromia
  publication-title: International Journal Research Studying. Bioscience
– volume: 7
  start-page: 1
  year: 2013
  ident: 10.1016/j.foodcont.2024.110996_bib35
  article-title: Evaluation of physicochemical and antioxidant properties of sourwood and other Malaysian honeys: A comparison with manuka honey
  publication-title: Chemistry Central Journal
  doi: 10.1186/1752-153X-7-138
– volume: 10
  start-page: 94
  issue: 10
  year: 2021
  ident: 10.1016/j.foodcont.2024.110996_bib28
  article-title: From the beehives: Identification and comparison of physicochemical properties of Algerian honey
  publication-title: Resources
  doi: 10.3390/resources10100094
– volume: 12
  start-page: 473
  issue: 3
  year: 2023
  ident: 10.1016/j.foodcont.2024.110996_bib51
  article-title: Insight into the recent application of chemometrics in quality analysis and characterization of bee honey during processing and storage
  publication-title: Foods
  doi: 10.3390/foods12030473
– volume: 27
  start-page: 3080
  issue: 10
  year: 2022
  ident: 10.1016/j.foodcont.2024.110996_bib20
  article-title: A review on recent progress of stingless bee honey and its hydrogel-based compound for wound care management
  publication-title: Molecules
  doi: 10.3390/molecules27103080
– volume: 109
  year: 2020
  ident: 10.1016/j.foodcont.2024.110996_bib31
  article-title: Palynological, physico-chemical and bioactivity parameters determination, of a less common Greek honeydew honey:“dryomelo”
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2019.106940
– volume: 33
  issue: 5
  year: 2021
  ident: 10.1016/j.foodcont.2024.110996_bib48
  article-title: Physicochemical, antioxidant capacity and color analysis of six honeys from different origin
  publication-title: Journal of King Saud University Science
  doi: 10.1016/j.jksus.2021.101447
– ident: 10.1016/j.foodcont.2024.110996_bib36
  doi: 10.5772/intechopen.109484
– volume: 250
  start-page: 2255
  issue: 8
  year: 2024
  ident: 10.1016/j.foodcont.2024.110996_bib29
  article-title: Detection of honey adulteration by characterization of the physico-chemical properties of honey adulterated with the addition of glucose–fructose and maltose corn syrups
  publication-title: European Food Research and Technology
  doi: 10.1007/s00217-024-04535-7
– volume: 154
  year: 2023
  ident: 10.1016/j.foodcont.2024.110996_bib54
  article-title: Adulteration quantification of cheap honey in high-quality Manuka honey by two-dimensional correlation spectroscopy combined with deep learning
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2023.110010
– volume: 12
  start-page: 3656
  issue: 19
  year: 2023
  ident: 10.1016/j.foodcont.2024.110996_bib45
  article-title: Assessment of the quality, chemometric and pollen diversity of Apis mellifera honey from different seasonal harvests
  publication-title: Foods
  doi: 10.3390/foods12193656
– volume: 13
  issue: 15
  year: 2024
  ident: 10.1016/j.foodcont.2024.110996_bib47
  article-title: Application of spatial offset Raman spectroscopy (SORS) and machine learning for sugar syrup adulteration detection in UK honey
  publication-title: Foods
  doi: 10.3390/foods13152425
– volume: 7
  year: 2023
  ident: 10.1016/j.foodcont.2024.110996_bib15
  article-title: Application of Fourier transform infrared (FT-IR) spectroscopy and multivariate analysis for detection of adulteration in honey markets in Ethiopia
  publication-title: Current Research in Food Science
  doi: 10.1016/j.crfs.2023.100565
– volume: 387
  year: 2022
  ident: 10.1016/j.foodcont.2024.110996_bib52
  article-title: Recent trends in the analysis of honey constituents
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2022.132920
– volume: 6
  issue: 4
  year: 2020
  ident: 10.1016/j.foodcont.2024.110996_bib44
  article-title: Indonesian wild honey authenticity analysis using attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy combined with multivariate statistical techniques
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2020.e03662
– volume: 12
  issue: 3
  year: 2023
  ident: 10.1016/j.foodcont.2024.110996_bib4
  article-title: Determination of possible adulteration and quality assessment in commercial honey
  publication-title: Foods
  doi: 10.3390/foods12030523
– volume: 95
  start-page: 57
  year: 2019
  ident: 10.1016/j.foodcont.2024.110996_bib49
  article-title: Detection of honey adulteration by conventional and real-time PCR
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2018.07.037
– volume: 145
  year: 2023
  ident: 10.1016/j.foodcont.2024.110996_bib8
  article-title: A comprehensive review on unethical honey: Validation by emerging techniques
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2022.109482
– volume: 441
  year: 2024
  ident: 10.1016/j.foodcont.2024.110996_bib22
  article-title: Application, challenges and future prospects of recent nondestructive techniques based on the electromagnetic spectrum in food quality and safety
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2024.138402
– volume: 138
  year: 2022
  ident: 10.1016/j.foodcont.2024.110996_bib55
  article-title: On honey authentication and adulterant detection techniques
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2022.108992
– volume: 107
  start-page: 216
  year: 2018
  ident: 10.1016/j.foodcont.2024.110996_bib17
  article-title: Chemical characterization complemented with chemometrics for the botanical origin identification of unifloral and multifloral honeys from India
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2018.02.017
– volume: 34
  issue: 3
  year: 2019
  ident: 10.1016/j.foodcont.2024.110996_bib39
  article-title: Sensory analysis of honey using flash profile: A cross‐cultural comparison of Greek and Chinese panels
  publication-title: Journal of Sensory Studies
  doi: 10.1111/joss.12494
– volume: 5
  start-page: 1
  year: 2002
  ident: 10.1016/j.foodcont.2024.110996_bib7
  article-title: Harmonised methods of the international honey commission
  publication-title: Swiss Bee Research Centre, FAM, Liebefeld
– volume: 10
  issue: 1
  year: 2020
  ident: 10.1016/j.foodcont.2024.110996_bib32
  article-title: Identification of sugars and phenolic compounds in honey powders with the use of GC–MS, FTIR spectroscopy, and X-ray diffraction
  publication-title: Scientific Reports
  doi: 10.1038/s41598-020-73306-7
– volume: 86
  start-page: 25
  year: 2017
  ident: 10.1016/j.foodcont.2024.110996_bib53
  article-title: Recent advancements in detecting sugar-based adulterants in honey–A challenge
  publication-title: TrAC, Trends in Analytical Chemistry
  doi: 10.1016/j.trac.2016.10.013
– volume: 79
  start-page: 198
  year: 1988
  ident: 10.1016/j.foodcont.2024.110996_bib6
  article-title: Bestimmung von Honigzucker mit HPLC
  publication-title: Mitt. Geb. Lebensm. Hyg
– volume: 133
  year: 2022
  ident: 10.1016/j.foodcont.2024.110996_bib9
  article-title: Detection and evaluation of saccharide adulteration in Italian honey by NMR spectroscopy
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2021.108574
– volume: 2020
  year: 2020
  ident: 10.1016/j.foodcont.2024.110996_bib19
  article-title: Development of fast analytical method for the detection and quantification of honey adulteration using vibrational spectroscopy and chemometrics tools
  publication-title: Jounal of Analytical Methods Chemistry
– volume: 10
  start-page: 119
  issue: 2
  year: 2012
  ident: 10.1016/j.foodcont.2024.110996_bib43
  article-title: Analysis of adulteration in honey with standard sugar solutions and syrups using attenuated total reflectance-Fourier transform infrared spectroscopy and multivariate methods
  publication-title: CyTA – Journal of Food
  doi: 10.1080/19476337.2011.596576
– volume: 67
  start-page: 11256
  issue: 40
  year: 2019
  ident: 10.1016/j.foodcont.2024.110996_bib40
  article-title: High-throughput monitoring of multiclass syrup adulterants in honey based on the oligosaccharide and polysaccharide profiles by MALDI mass spectrometry
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/acs.jafc.9b05317
– volume: 87
  issue: 4
  year: 2024
  ident: 10.1016/j.foodcont.2024.110996_bib16
  article-title: Impact of different adulterants on honey quality properties and evaluating different analytical approaches for adulteration detection
  publication-title: Journal of Food Protection
  doi: 10.1016/j.jfp.2024.100241
– volume: 86
  year: 2020
  ident: 10.1016/j.foodcont.2024.110996_bib50
  article-title: Detection of adulteration in Chinese monofloral honey using 1H nuclear magnetic resonance and chemometrics
  publication-title: Journal of Food Composition and Analysis
  doi: 10.1016/j.jfca.2019.103390
– volume: 27
  start-page: 780
  issue: 3
  year: 2022
  ident: 10.1016/j.foodcont.2024.110996_bib5
  article-title: Revealing the effect of heat treatment on the spectral pattern of unifloral honeys using aquaphotomics
  publication-title: Molecules
  doi: 10.3390/molecules27030780
– volume: 26
  start-page: 6222
  issue: 20
  year: 2021
  ident: 10.1016/j.foodcont.2024.110996_bib24
  article-title: In vivo toxicity evaluation of sugar adulterated Heterotrigona itama honey using zebrafish model
  publication-title: Molecules
  doi: 10.3390/molecules26206222
– start-page: 12
  year: 2001
  ident: 10.1016/j.foodcont.2024.110996_bib12
  article-title: Revised Codex standard for honey
– volume: 118
  start-page: 391
  issue: 2
  year: 2010
  ident: 10.1016/j.foodcont.2024.110996_bib46
  article-title: Physical, biochemical and antioxidant properties of some Indian honeys
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2009.05.001
– volume: 141736
  year: 2024
  ident: 10.1016/j.foodcont.2024.110996_bib25
  article-title: Development of a zebrafish model for toxicity evaluation of adulterated Apis mellifera honey
  publication-title: Chemosphere
– volume: 9
  issue: 11
  year: 2020
  ident: 10.1016/j.foodcont.2024.110996_bib23
  article-title: The toxic impact of honey adulteration: A review
  publication-title: Foods
  doi: 10.3390/foods9111538
– volume: 10
  start-page: 1365
  issue: 11
  year: 2021
  ident: 10.1016/j.foodcont.2024.110996_bib34
  article-title: Application of heating on the antioxidant and antibacterial properties of Malaysian and Australian stingless bee honey
  publication-title: Antibiotics
  doi: 10.3390/antibiotics10111365
– volume: 4
  start-page: 1817
  issue: 8
  year: 2024
  ident: 10.1016/j.foodcont.2024.110996_bib38
  article-title: Fourier transform infrared spectroscopy use in honey characterization and authentication: A systematic review
  publication-title: ACS Food Science & Technology
  doi: 10.1021/acsfoodscitech.4c00377
– volume: 203
  start-page: 235
  year: 2019
  ident: 10.1016/j.foodcont.2024.110996_bib1
  article-title: A screening method based on Visible-NIR spectroscopy for the identification and quantification of different adulterants in high-quality honey
  publication-title: Talanta
  doi: 10.1016/j.talanta.2019.05.067
– volume: 19
  year: 2023
  ident: 10.1016/j.foodcont.2024.110996_bib57
  article-title: A comprehensive review of the current trends and recent advancements on the authenticity of honey
  publication-title: Food Chemistry X
  doi: 10.1016/j.fochx.2023.100850
– volume: 343
  year: 2021
  ident: 10.1016/j.foodcont.2024.110996_bib33
  article-title: Antimicrobial activity of heat-treated Polish honeys
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2020.128561
– volume: 164
  year: 2024
  ident: 10.1016/j.foodcont.2024.110996_bib37
  article-title: Differences in the adulteration degree and antimicrobial activity of chilean ulmo honey versus multifloral honey revealed by stable isotope analysis
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2024.110590
SSID ssj0017010
Score 2.5034523
Snippet A Fourier Transform Infrared Spectroscopy and attenuated total reflectance (FTIR-ATR)-based chemometric model was evaluated for the rapid identification and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110996
SubjectTerms Acacia
acetic acid
acidity
adulterated products
Adulteration
Bee honey
brix
cane sugar
chemometrics
citric acid
corn syrup
food safety
Fourier transform infrared spectroscopy
fructose
FTIR-ATR
glucose
honey
liquids
nondestructive methods
reflectance
regression analysis
Stingless bee honey
stingless bees
sucrose
tamarinds
water content
Title Development of FTIR-ATR spectra and PLS regression combination model for discrimination of pure and adulterated acacia honey
URI https://dx.doi.org/10.1016/j.foodcont.2024.110996
https://www.proquest.com/docview/3154258011
Volume 169
WOSCitedRecordID wos001356081800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0956-7135
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017010
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxgEOiE9t40NGQlwiQ74THwtqxVApqGSo4mI5icO6VWno2mlC3Pm3ec9O0hQNbRy4RJVbu01_v9jPz-_9HiEvXLAqCs-2WZo7BfPDwGUyjTjLpbILFBhzdN7al1E0HsfTKf_U6_1qcmHO51FZxhcXvPqvUEMbgI2ps_8AdzsoNMBrAB2uADtcrwV8JwwILcFhcjhh_WRi6ZzKpTTpAaPP1lJ9MzGwOhAdNsiGCro0jg4-xIRdU_SrsSqr5rRBq3agHDOYqzKTgK91vCi3j4iHqJdcR8K3LJGnx3OpdATBRBYz1Tqj38hU5rq9j2kMVh91OTZsRM-SyQyTP2bLdQ4rrvVBtiE705lcpNrp-3Wx7joy3GATydV6JEOGFQO3JueQW5WWReUhu3TKN96Hk1cF3BXeFOz5Xb_usVnkmoP98UcxPBqNRDKYJi-r7wzLj-ExfV2L5QbZdaOAw_S42z8cTN-3B1KRrYUt2t_YSTa__Kv_Zuf8seJrMya5S-7U-w_aN7y5R3qqvE9ud1QpH5CfHQbRRUEbBtGaQRQYQIFBdMMg2mEQ1QyiwCC6zSAcCxmk-3cYRA2DqGbQQ3I0HCRv37G6SAfLPD9YMQ-faiXj0A_i3OcRd1JHciUjN-fKRzUkx0Mj1lHcLtw8yCOJGoypUjIMUy69R2SnhPH3CFVelsLbvhd6tq94KKMM1hM_zPJYgaXu7JOg-UtFVivYYyGVuWhCFU9EA4VAKISBYp-8bvtVRsPlyh68QUzUlqixMAWw7sq-zxuIBUzVeP4mS7VYnwkPtituACahc3CNzzwmtzZPyROys1qu1VNyMztfzc6Wz2p-_gaapLmR
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+FTIR-ATR+spectra+and+PLS+regression+combination+model+for+discrimination+of+pure+and+adulterated+acacia+honey&rft.jtitle=Food+control&rft.au=Fakhlaei%2C+Rafieh&rft.au=Babadi%2C+Arman+Amani&rft.au=Ariffin%2C+Naziruddin+Mat&rft.au=Xiaobo%2C+Zou&rft.date=2025-03-01&rft.issn=0956-7135&rft.volume=169+p.110996-&rft_id=info:doi/10.1016%2Fj.foodcont.2024.110996&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-7135&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-7135&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-7135&client=summon