Enhancing battery management for HEVs and EVs: A hybrid approach for parameter identification and voltage estimation in lithium-ion battery models

In recent years, batteries have evolved increasingly overall in numerous applications. Among batteries, LIBs are the most advantageous technology because of their raised power and energy densities. This study proposes a hybrid method, combining a war strategy optimization (WSO) algorithm and a hiera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied energy Jg. 356; S. 122364
Hauptverfasser: Khosravi, Nima, Dowlatabadi, Masrour, Abdelghany, Muhammad Bakr, Tostado-Véliz, Marcos, Jurado, Francisco
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 15.02.2024
Schlagworte:
ISSN:0306-2619, 1872-9118
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In recent years, batteries have evolved increasingly overall in numerous applications. Among batteries, LIBs are the most advantageous technology because of their raised power and energy densities. This study proposes a hybrid method, combining a war strategy optimization (WSO) algorithm and a hierarchical deep learning neural network (HDLNN) named WSO-HDLNN, to identify the parameters of lithium-ion batteries (LIBs) used in hybrid and electric vehicles (HEVs and EVs). The hybrid approach utilizes the WSO technique to generate parameters and predicts the components using the HDLNN approach. The proposed method significantly reduces the estimated voltage and measured voltage error while effectively identifying the battery parameters. The MATLAB/SIMULINK platform is employed for implementation and comparison with other existing methods such as differential evolution (DE), grasshopper optimization algorithm (GOA), and particle swarm optimization (PSO). Simulation results demonstrate the efficiency of the proposed WSO-HDLNN strategy in reducing battery voltage errors by accurately identifying parameters and improving voltage estimation accuracy. Further, notable novelty in this work is the integration of the WSO algorithm with the HDLNN in the WSO-HDLNN protocol for LIB parameter identification. This fusion is distinct as it synergizes the strengths of optimization and deep learning, enhancing efficiency and accuracy in LIB parameter estimation. The WSO algorithm introduces a novel war strategy element, leading to faster convergence to optimal solutions, significantly reducing computational time. Moreover, the WSO-HDLNN approach showcases robustness in handling noisy data, a unique feature ensuring accurate parameter estimates amidst real-world uncertainties, setting it apart from conventional LIB modeling methods. •Hybrid WSO-HDLNN technique for identifying LIB parameters in electric vehicles.•WSO-HDLNN minimizes voltage errors, surpassing existing methods.•WSO's inclusion facilitates faster convergence and reduced computational time.
AbstractList In recent years, batteries have evolved increasingly overall in numerous applications. Among batteries, LIBs are the most advantageous technology because of their raised power and energy densities. This study proposes a hybrid method, combining a war strategy optimization (WSO) algorithm and a hierarchical deep learning neural network (HDLNN) named WSO-HDLNN, to identify the parameters of lithium-ion batteries (LIBs) used in hybrid and electric vehicles (HEVs and EVs). The hybrid approach utilizes the WSO technique to generate parameters and predicts the components using the HDLNN approach. The proposed method significantly reduces the estimated voltage and measured voltage error while effectively identifying the battery parameters. The MATLAB/SIMULINK platform is employed for implementation and comparison with other existing methods such as differential evolution (DE), grasshopper optimization algorithm (GOA), and particle swarm optimization (PSO). Simulation results demonstrate the efficiency of the proposed WSO-HDLNN strategy in reducing battery voltage errors by accurately identifying parameters and improving voltage estimation accuracy. Further, notable novelty in this work is the integration of the WSO algorithm with the HDLNN in the WSO-HDLNN protocol for LIB parameter identification. This fusion is distinct as it synergizes the strengths of optimization and deep learning, enhancing efficiency and accuracy in LIB parameter estimation. The WSO algorithm introduces a novel war strategy element, leading to faster convergence to optimal solutions, significantly reducing computational time. Moreover, the WSO-HDLNN approach showcases robustness in handling noisy data, a unique feature ensuring accurate parameter estimates amidst real-world uncertainties, setting it apart from conventional LIB modeling methods.
In recent years, batteries have evolved increasingly overall in numerous applications. Among batteries, LIBs are the most advantageous technology because of their raised power and energy densities. This study proposes a hybrid method, combining a war strategy optimization (WSO) algorithm and a hierarchical deep learning neural network (HDLNN) named WSO-HDLNN, to identify the parameters of lithium-ion batteries (LIBs) used in hybrid and electric vehicles (HEVs and EVs). The hybrid approach utilizes the WSO technique to generate parameters and predicts the components using the HDLNN approach. The proposed method significantly reduces the estimated voltage and measured voltage error while effectively identifying the battery parameters. The MATLAB/SIMULINK platform is employed for implementation and comparison with other existing methods such as differential evolution (DE), grasshopper optimization algorithm (GOA), and particle swarm optimization (PSO). Simulation results demonstrate the efficiency of the proposed WSO-HDLNN strategy in reducing battery voltage errors by accurately identifying parameters and improving voltage estimation accuracy. Further, notable novelty in this work is the integration of the WSO algorithm with the HDLNN in the WSO-HDLNN protocol for LIB parameter identification. This fusion is distinct as it synergizes the strengths of optimization and deep learning, enhancing efficiency and accuracy in LIB parameter estimation. The WSO algorithm introduces a novel war strategy element, leading to faster convergence to optimal solutions, significantly reducing computational time. Moreover, the WSO-HDLNN approach showcases robustness in handling noisy data, a unique feature ensuring accurate parameter estimates amidst real-world uncertainties, setting it apart from conventional LIB modeling methods. •Hybrid WSO-HDLNN technique for identifying LIB parameters in electric vehicles.•WSO-HDLNN minimizes voltage errors, surpassing existing methods.•WSO's inclusion facilitates faster convergence and reduced computational time.
ArticleNumber 122364
Author Abdelghany, Muhammad Bakr
Jurado, Francisco
Tostado-Véliz, Marcos
Dowlatabadi, Masrour
Khosravi, Nima
Author_xml – sequence: 1
  givenname: Nima
  surname: Khosravi
  fullname: Khosravi, Nima
  email: Nimakhosravi64@gmail.com
  organization: Department of Electrical and Instrumentation Engineering, R&D Management of NPC, Tehran, Iran
– sequence: 2
  givenname: Masrour
  surname: Dowlatabadi
  fullname: Dowlatabadi, Masrour
  organization: Department of Electrical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
– sequence: 3
  givenname: Muhammad Bakr
  surname: Abdelghany
  fullname: Abdelghany, Muhammad Bakr
  organization: Department of Electrical and Computer Engineering, Khalifa University of Science and Technology, Sas Al-Nakhl Campus, Abu Dhabi, United Arab Emirates
– sequence: 4
  givenname: Marcos
  surname: Tostado-Véliz
  fullname: Tostado-Véliz, Marcos
  organization: Department of Electrical Engineering, University of Jaén, Linares 23700, Spain
– sequence: 5
  givenname: Francisco
  surname: Jurado
  fullname: Jurado, Francisco
  organization: Department of Electrical Engineering, University of Jaén, Linares 23700, Spain
BookMark eNqFkc9u1DAQxi3USmxbXgH5yCWL_yROjDhQVQtFqsSl5Wo59mTXq8QOtrfSvkafGO8GOHDpaeTR9_vGM98VuvDBA0LvKVlTQsXH_VrP4CFuj2tGGF9Txrio36AV7VpWSUq7C7QinIiKCSrfoquU9oQQRhlZoZeN32lvnN_iXucM8Ygn7fUWJvAZDyHi-83PhLW3uNRP-Bbvjn10Fut5jkGb3Vkz66gnKDR2tnBucEZnF_yZew5jLoYYUnbT0nYejy7v3GGqTs9_k4OFMd2gy0GPCd79qdfo6evm8e6-evjx7fvd7UNleN3kirfSEEKZ5L0YhBR93WhZM2jsUPfSNq3tjOnkwAXj0LemJQMQDtKaoTYNbfk1-rD4lkV-Hcrv1OSSgXHUHsIhKU5qUnecS1GknxepiSGlCIMyLp9XyVG7UVGiTlGovfobhTpFoZYoCi7-w-dYThGPr4NfFrCcBZ4dRJWMA2_AuggmKxvcaxa_AQkWrKQ
CitedBy_id crossref_primary_10_1016_j_est_2024_113807
crossref_primary_10_1016_j_energy_2024_130859
crossref_primary_10_1016_j_energy_2025_138516
crossref_primary_10_1109_TIA_2024_3510214
crossref_primary_10_1016_j_rineng_2024_103814
crossref_primary_10_1051_e3sconf_202456402002
crossref_primary_10_1038_s41598_024_77579_0
crossref_primary_10_1109_ACCESS_2024_3378527
crossref_primary_10_3389_fenrg_2025_1529608
crossref_primary_10_1016_j_jechem_2024_06_024
crossref_primary_10_1109_TPEL_2025_3588296
crossref_primary_10_1007_s11581_024_05698_9
crossref_primary_10_1016_j_energy_2024_132204
crossref_primary_10_1016_j_enconman_2025_119595
crossref_primary_10_1016_j_energy_2024_131575
crossref_primary_10_3390_en17225753
crossref_primary_10_1016_j_jpowsour_2024_235762
crossref_primary_10_1016_j_fraope_2025_100293
crossref_primary_10_1049_tje2_12352
crossref_primary_10_1038_s41598_025_90374_9
crossref_primary_10_1016_j_apenergy_2024_124313
crossref_primary_10_1109_ACCESS_2025_3606573
crossref_primary_10_1016_j_apenergy_2025_125305
crossref_primary_10_1016_j_enconman_2024_119393
crossref_primary_10_26634_jps_12_4_21892
Cites_doi 10.1016/j.ensm.2021.12.044
10.1016/j.est.2022.104492
10.1109/TII.2020.3014599
10.1016/j.est.2021.102655
10.1016/j.jpowsour.2020.228863
10.1049/rpg2.12317
10.1016/j.apenergy.2023.121261
10.1016/j.apenergy.2022.120289
10.1038/s41598-023-44332-y
10.1016/j.est.2023.107677
10.1038/s41598-022-26001-8
10.1016/j.isatra.2023.07.029
10.1016/j.est.2023.108552
10.1016/j.apenergy.2021.116977
10.1016/j.apenergy.2023.120751
10.1109/TIE.2019.2962429
10.1016/j.energy.2022.123252
10.1016/j.est.2022.106478
10.1109/TVT.2017.2709326
10.1016/j.jclepro.2020.125700
10.1016/j.energy.2022.124224
10.1016/j.rser.2021.110898
10.1016/j.est.2021.103244
10.1016/j.est.2022.106462
10.1016/j.est.2020.101973
10.1016/j.apenergy.2022.119502
10.1016/j.est.2021.103484
10.1016/j.etran.2022.100164
10.1016/j.jpowsour.2023.233537
10.1016/j.apenergy.2020.115104
10.1016/j.energy.2021.121794
10.1002/ente.202200123
10.1016/j.est.2023.107650
10.1016/j.apenergy.2021.117034
10.1016/j.apenergy.2023.120992
10.1016/j.jpowsour.2009.11.044
10.1109/TPEL.2022.3217964
10.1016/j.est.2022.106273
10.1016/j.apenergy.2022.120333
10.1016/j.jpowsour.2018.06.036
10.1016/j.eswa.2022.118834
10.1016/j.jpowsour.2021.230024
10.1016/j.apenergy.2020.114789
10.1016/j.est.2023.107676
10.1016/j.jpowsour.2020.228450
10.1049/rpg2.12476
10.1109/ACCESS.2022.3153493
10.1016/j.jocs.2022.101900
10.1016/j.electacta.2022.141404
10.1016/j.cma.2020.113452
10.1016/j.apenergy.2023.120866
10.3390/mi14020413
10.1016/j.ress.2022.108920
10.1002/oca.2815
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2023.122364
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2023_122364
S0306261923017282
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-379c001293b6f696b45a942e5df4b9d57d8cc89f3623eb7c70fe03e9dcf4c5173
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001129908600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Sat Sep 27 21:12:36 EDT 2025
Tue Nov 18 21:52:41 EST 2025
Sat Nov 29 07:20:31 EST 2025
Sat Mar 02 16:00:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion battery
Electric vehicle
Parameter identification
State of charge
Equivalent circuit
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-379c001293b6f696b45a942e5df4b9d57d8cc89f3623eb7c70fe03e9dcf4c5173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3040483396
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3040483396
crossref_citationtrail_10_1016_j_apenergy_2023_122364
crossref_primary_10_1016_j_apenergy_2023_122364
elsevier_sciencedirect_doi_10_1016_j_apenergy_2023_122364
PublicationCentury 2000
PublicationDate 2024-02-15
PublicationDateYYYYMMDD 2024-02-15
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Du, Meng, Liu, Zhang, Wang, Peng (bb0135) 2023; 36
Hu, Zhang (bb0070) 2022; 10
Fei, Zhang, Tsui (bb0025) 2023
Tu, Moura, Wang, Fang (bb0030) 2023; 329
Yu, Xiong, Lin, Shen, Deng (bb0050) 2017; 66
Lopes (bb0170) 2023; 68
Li, Sengupta, Dechent, Howey, Annaswamy, Sauer (bb0075) 2021; 482
Varatharajalu, Manoharan, Palanichamy, Subramani (bb0240) 2023; 142
Şefkat, Özel (bb0110) 2022; 238
Rezaei, Moghaddam, Papari (bb0250) 2022; 45
Lai, Ahn, Kim, Kim, Lin (bb0005) 2021; 295
Rizk-Allah (bb0180) 2022; 15
Abou Houran, Sabzevari, Hassan, Oubelaid, Tostado-Véliz, Khosravi (bb0295) 2023; 72
Ren, Wang, Chen, Zhou, Fernandez, Stroe (bb0140) 2022; 435
Wu, Wei, Li, Wang, Li, Sauer (bb0055) 2021; 17
Khosravi N., Barati H., Beiranvand M. Improvement of starting transient state in a fixed speed wind turbine using STATCOM. Eur Online J Nat Social Sciences. 2015;4 (3):476.
Xie, Wang, Zhang, Fan, Fernandez, Blaabjerg (bb0020) 2023; 336
Wang, Takyi-Aninakwa, Jin, Yu, Fernandez, Stroe (bb0125) 2022; 254
Zhang (bb0160) 2023; 14
Liu, Zhang, Jiang, Zhang, Zhang (bb0190) 2022; 12
Liu, Li, Wu, He, Liu (bb0220) 2021; 40
Belkhier (bb0205) 2023
Wei, Dong, Zhang, Pou, Quan, He (bb0225) 2021; 68
Khosravi (bb0065) 2023; 344
Wang, Fan, Jin, Takyi-Aninakwa, Fernandez (bb0120) 2023; 230
Kar, Kumar, Singh, Panigrahi (bb0285) 2023; 44
Sgura, Mainetti, Negro, Quarta, Bozzini (bb0185) 2023; 66
Xu, Lin, Xie, Hu (bb0175) 2022; 45
Hu (bb0165) 2023; 68
Song (bb0290) 2023; 213
Khosravi, Beiranvand, Barati (bib301) 2016; 5
Khosravi, Echalih, Baghbanzadeh, Hekss, Hassani, Messaoudi (bb0090) 2022; 16
Li, Sengupta, Dechent, Howey, Annaswamy, Sauer (bb0265) 2021; 506
Tian, Lai, Li, Xiang, Tian (bb0230) 2020; 265
Ruan, Wei, Shang, Wang, He (bb0035) 2023; 336
Li (bb0085) 2020; 269
Khosravi, Abdolmohammadi, Bagheri, Miveh (bb0300) 2021; 15
Hao, Wang, Fan, Xie, Fernandez (bb0130) 2023; 59
Chen, Wang, Zhang, Sastry (bb0095) 2010; 195
Khosravi, Abdolmohammadi, Bagheri, Miveh (bb0080) 2021; 143
Ayyarao (bb0245) 2022; 10
Tang (bb0235) 2018; 396
Yang, Wang (bb0150) 2023; 59
Saha (bb0260) 2021; 373
Khosravi (bb0100) 2022; 12
Li (bb0060) 2021; 293
Tang, Zhang, Zhang, Lai, Zhang (bb0015) 2023; 339
Liu (bb0195) 2023; 583
Wang (bb0210) 2021; 44
Yu, Wang, Yu, Shi, Li (bb0145) 2022; 51
Jiang, Zhu, Wang, Wei, Shang, Dai (bb0010) 2022; 322
Wang, Zhang, Qin, Guo (bb0275) 2023; 72
Wang, Fernandez, Yu, Fan, Cao, Stroe (bb0040) 2020; 471
Mao (bb0155) 2023; 57
Snoussi, Ben Elghali, Zerrougui, Bensoam, Benbouzid, Mimouni (bb0045) 2020; 32
Khosravi, Echalih, Hekss, Baghbanzadeh, Messaoudi, Shahideipour (bb0200) 2022; 38
Sabzevari (bb0280) 2023; 13
Oubelaid (bb0105) 2023; 68
Alkhulaifi, Qasem, Zubair (bb0115) 2022; 245
Vilsen, Stroe (bb0255) 2021; 290
Zhang, Hu, Ji, Liu, Xia, Nazir (bb0270) 2023; 330
Ruan (10.1016/j.apenergy.2023.122364_bb0035) 2023; 336
Wang (10.1016/j.apenergy.2023.122364_bb0040) 2020; 471
Li (10.1016/j.apenergy.2023.122364_bb0085) 2020; 269
Şefkat (10.1016/j.apenergy.2023.122364_bb0110) 2022; 238
Wang (10.1016/j.apenergy.2023.122364_bb0120) 2023; 230
Yu (10.1016/j.apenergy.2023.122364_bb0050) 2017; 66
Oubelaid (10.1016/j.apenergy.2023.122364_bb0105) 2023; 68
Liu (10.1016/j.apenergy.2023.122364_bb0190) 2022; 12
Snoussi (10.1016/j.apenergy.2023.122364_bb0045) 2020; 32
Sgura (10.1016/j.apenergy.2023.122364_bb0185) 2023; 66
Varatharajalu (10.1016/j.apenergy.2023.122364_bb0240) 2023; 142
Zhang (10.1016/j.apenergy.2023.122364_bb0270) 2023; 330
Ren (10.1016/j.apenergy.2023.122364_bb0140) 2022; 435
Tang (10.1016/j.apenergy.2023.122364_bb0015) 2023; 339
Belkhier (10.1016/j.apenergy.2023.122364_bb0205) 2023
10.1016/j.apenergy.2023.122364_bb0215
Zhang (10.1016/j.apenergy.2023.122364_bb0160) 2023; 14
Tu (10.1016/j.apenergy.2023.122364_bb0030) 2023; 329
Rezaei (10.1016/j.apenergy.2023.122364_bb0250) 2022; 45
Hao (10.1016/j.apenergy.2023.122364_bb0130) 2023; 59
Hu (10.1016/j.apenergy.2023.122364_bb0070) 2022; 10
Khosravi (10.1016/j.apenergy.2023.122364_bb0080) 2021; 143
Li (10.1016/j.apenergy.2023.122364_bb0060) 2021; 293
Sabzevari (10.1016/j.apenergy.2023.122364_bb0280) 2023; 13
Kar (10.1016/j.apenergy.2023.122364_bb0285) 2023; 44
Wang (10.1016/j.apenergy.2023.122364_bb0210) 2021; 44
Yu (10.1016/j.apenergy.2023.122364_bb0145) 2022; 51
Du (10.1016/j.apenergy.2023.122364_bb0135) 2023; 36
Rizk-Allah (10.1016/j.apenergy.2023.122364_bb0180) 2022; 15
Khosravi (10.1016/j.apenergy.2023.122364_bb0200) 2022; 38
Wu (10.1016/j.apenergy.2023.122364_bb0055) 2021; 17
Yang (10.1016/j.apenergy.2023.122364_bb0150) 2023; 59
Li (10.1016/j.apenergy.2023.122364_bb0265) 2021; 506
Tian (10.1016/j.apenergy.2023.122364_bb0230) 2020; 265
Wang (10.1016/j.apenergy.2023.122364_bb0125) 2022; 254
Wang (10.1016/j.apenergy.2023.122364_bb0275) 2023; 72
Abou Houran (10.1016/j.apenergy.2023.122364_bb0295) 2023; 72
Lai (10.1016/j.apenergy.2023.122364_bb0005) 2021; 295
Mao (10.1016/j.apenergy.2023.122364_bb0155) 2023; 57
Wei (10.1016/j.apenergy.2023.122364_bb0225) 2021; 68
Saha (10.1016/j.apenergy.2023.122364_bb0260) 2021; 373
Khosravi (10.1016/j.apenergy.2023.122364_bb0090) 2022; 16
Khosravi (10.1016/j.apenergy.2023.122364_bib301) 2016; 5
Vilsen (10.1016/j.apenergy.2023.122364_bb0255) 2021; 290
Song (10.1016/j.apenergy.2023.122364_bb0290) 2023; 213
Khosravi (10.1016/j.apenergy.2023.122364_bb0065) 2023; 344
Chen (10.1016/j.apenergy.2023.122364_bb0095) 2010; 195
Alkhulaifi (10.1016/j.apenergy.2023.122364_bb0115) 2022; 245
Liu (10.1016/j.apenergy.2023.122364_bb0195) 2023; 583
Xu (10.1016/j.apenergy.2023.122364_bb0175) 2022; 45
Xie (10.1016/j.apenergy.2023.122364_bb0020) 2023; 336
Tang (10.1016/j.apenergy.2023.122364_bb0235) 2018; 396
Hu (10.1016/j.apenergy.2023.122364_bb0165) 2023; 68
Khosravi (10.1016/j.apenergy.2023.122364_bb0100) 2022; 12
Liu (10.1016/j.apenergy.2023.122364_bb0220) 2021; 40
Li (10.1016/j.apenergy.2023.122364_bb0075) 2021; 482
Fei (10.1016/j.apenergy.2023.122364_bb0025) 2023
Jiang (10.1016/j.apenergy.2023.122364_bb0010) 2022; 322
Lopes (10.1016/j.apenergy.2023.122364_bb0170) 2023; 68
Ayyarao (10.1016/j.apenergy.2023.122364_bb0245) 2022; 10
Khosravi (10.1016/j.apenergy.2023.122364_bb0300) 2021; 15
References_xml – volume: 12
  start-page: 21675
  year: 2022
  ident: bb0100
  article-title: Improvement of power quality parameters using modulated-unified power quality conditioner and switched-inductor boost converter by the optimization techniques for a hybrid AC/DC microgrid
  publication-title: Sci Rep
– volume: 68
  year: 2023
  ident: bb0165
  article-title: A parameter identification and state of charge estimation method of lithium-ion battery considering temperature bias
  publication-title: J Energy Storage
– volume: 339
  year: 2023
  ident: bb0015
  article-title: Semi-online parameter identification methodology for maritime power lithium batteries
  publication-title: Appl Energy
– volume: 44
  start-page: 967
  year: 2023
  end-page: 986
  ident: bb0285
  article-title: Reactive power management by using a modified differential evolution algorithm
  publication-title: Optim Control Appl Methods
– volume: 40
  year: 2021
  ident: bb0220
  article-title: An extended Kalman filter-based data-driven method for state of charge estimation of Li-ion batteries
  publication-title: J Energy Storage
– volume: 435
  year: 2022
  ident: bb0140
  article-title: A novel multiple training-scale dynamic adaptive cuckoo search optimized long short-term memory neural network and multi-dimensional health indicators acquisition strategy for whole life cycle health evaluation of lithium-ion batteries
  publication-title: Electrochim Acta
– volume: 265
  year: 2020
  ident: bb0230
  article-title: A combined method for state-of-charge estimation for lithium-ion batteries using a long short-term memory network and an adaptive cubature Kalman filter
  publication-title: Appl Energy
– volume: 142
  start-page: 347
  year: 2023
  end-page: 359
  ident: bb0240
  article-title: Electric vehicle parameter identification and state of charge estimation of Li-ion batteries: hybrid WSO-HDLNN method
  publication-title: ISA Trans
– volume: 72
  start-page: 108552
  year: 2023
  ident: bb0295
  article-title: Active power filter module function to improve power quality conditions using GWO and PSO techniques for solar photovoltaic arrays and battery energy storage systems
  publication-title: J Energy Storage
– volume: 238
  year: 2022
  ident: bb0110
  article-title: Experimental and numerical study of energy and thermal management system for a hydrogen fuel cell-battery hybrid electric vehicle
  publication-title: Energy
– volume: 213
  year: 2023
  ident: bb0290
  article-title: Dynamic hybrid mechanism-based differential evolution algorithm and its application
  publication-title: Exp Syst Appl
– volume: 254
  year: 2022
  ident: bb0125
  article-title: An improved feedforward-long short-term memory modeling method for the whole-life-cycle state of charge prediction of lithium-ion batteries considering current-voltage-temperature variation
  publication-title: Energy
– volume: 72
  year: 2023
  ident: bb0275
  article-title: Improved multi-objective grasshopper optimization algorithm and application in capacity configuration of urban rail hybrid energy storage systems
  publication-title: J Energy Storage
– volume: 51
  year: 2022
  ident: bb0145
  article-title: Study of hysteresis voltage state dependence in lithium-ion battery and a novel asymmetric hysteresis modeling
  publication-title: J Energy Storage
– volume: 245
  year: 2022
  ident: bb0115
  article-title: Exergoeconomic assessment of the ejector- based battery thermal management system for electric and hybrid-electric vehicles
  publication-title: Energy
– volume: 45
  year: 2022
  ident: bb0250
  article-title: A fast sliding-mode-based estimation of state-of-charge for Lithium-ion batteries for electric vehicle applications
  publication-title: J Energy Storage
– volume: 13
  start-page: 17534
  year: 2023
  ident: bb0280
  article-title: Low-voltage ride-through capability in a DFIG using FO-PID and RCO techniques under symmetrical and asymmetrical faults
  publication-title: Sci Rep
– volume: 36
  year: 2023
  ident: bb0135
  article-title: Online identification of lithium-ion battery model parameters with initial value uncertainty and measurement noise
  publication-title: Chin J Mechan Eng
– volume: 15
  year: 2022
  ident: bb0180
  article-title: On a novel hybrid manta ray foraging optimizer and its application on parameters estimation of lithium-ion battery
  publication-title: Int J Comp Intellig Syst
– volume: 336
  year: 2023
  ident: bb0020
  article-title: Optimized multi-hidden layer long short-term memory modeling and suboptimal fading extended Kalman filtering strategies for the synthetic state of charge estimation of lithium-ion batteries
  publication-title: Appl Energy
– volume: 59
  year: 2023
  ident: bb0130
  article-title: An improved forgetting factor recursive least square and unscented particle filtering algorithm for accurate lithium-ion battery state of charge estimation
  publication-title: J Energy Storage
– volume: 17
  start-page: 3751
  year: 2021
  end-page: 3761
  ident: bb0055
  article-title: Battery thermal- and health- constrained energy management for hybrid electric bus based on soft actor-critic DRL algorithm
  publication-title: IEEE Trans Industr Inform
– start-page: 1
  year: 2023
  end-page: 16
  ident: bb0205
  article-title: Experimental analysis of passivity-based control theory for permanent magnet synchronous motor drive fed by grid power
  publication-title: IET Control Theory Appl
– volume: 12
  year: 2022
  ident: bb0190
  article-title: Deduction of the transformation regulation on voltage curve for lithium-ion batteries and its application in parameters estimation
  publication-title: Etransportation
– volume: 5
  start-page: 864
  year: 2016
  ident: bib301
  article-title: Distribution of optimum reactive power in the presence of wind power plant and considering voltage stability margin using genetic algorithm and Monte Carlo methods
  publication-title: Eur Online J Nat Social Sciences
– volume: 10
  start-page: 25073
  year: 2022
  end-page: 25105
  ident: bb0245
  article-title: War strategy optimization algorithm: a new effective metaheuristic algorithm for global optimization
  publication-title: IEEE Access
– volume: 344
  year: 2023
  ident: bb0065
  article-title: A novel control approach to improve the stability of hybrid AC/DC microgrids
  publication-title: Appl Energy
– volume: 10
  start-page: 2200123
  year: 2022
  ident: bb0070
  article-title: Deep reinforcement learning based on driver experience embedding for energy management strategies in hybrid electric vehicles
  publication-title: Energ Technol
– volume: 330
  year: 2023
  ident: bb0270
  article-title: An evolutionary stacked generalization model based on deep learning and improved grasshopper optimization algorithm for predicting the remaining useful life of PEMFC
  publication-title: Appl Energy
– volume: 269
  year: 2020
  ident: bb0085
  article-title: Parameter sensitivity analysis of electrochemical model-based battery management systems for lithium-ion batteries
  publication-title: Appl Energy
– volume: 66
  start-page: 8693
  year: 2017
  end-page: 8701
  ident: bb0050
  article-title: Lithium-ion battery parameters and state-of-charge joint estimation based on H-infinity and unscented Kalman filters
  publication-title: IEEE Trans Vehicul Technol
– volume: 68
  year: 2023
  ident: bb0105
  article-title: Health-conscious energy management strategy for battery/fuel cell electric vehicles considering power sources dynamics
  publication-title: J Energy Storage
– volume: 14
  year: 2023
  ident: bb0160
  article-title: Improved parameter identification for lithium-ion batteries based on complex-order beetle swarm optimization algorithm
  publication-title: Micromachines
– volume: 15
  start-page: 3989
  year: 2021
  end-page: 4005
  ident: bb0300
  article-title: A novel control approach for harmonic compensation using switched power filter compensators in micro-grids
  publication-title: IET Renew Power Gener
– volume: 396
  start-page: 453
  year: 2018
  end-page: 458
  ident: bb0235
  article-title: A fast estimation algorithm for lithium-ion battery state of health
  publication-title: J Power Sources
– volume: 44
  year: 2021
  ident: bb0210
  article-title: Parameters identification of Thevenin model for lithium-ion batteries using self-adaptive particle swarm optimization differential evolution algorithm to estimate state of charge
  publication-title: J Energy Storage
– volume: 32
  year: 2020
  ident: bb0045
  article-title: Unknown input observer design for lithium-ion batteries SOC estimation based on a differential-algebraic model
  publication-title: J Energy Storage
– volume: 482
  year: 2021
  ident: bb0075
  article-title: Online capacity estimation of lithium-ion batteries with deep long short-term memory networks
  publication-title: J Power Sources
– volume: 195
  start-page: 2851
  year: 2010
  end-page: 2862
  ident: bb0095
  article-title: Porous cathode optimization for lithium cells: ionic and electronic conductivity, capacity, and selection of materials
  publication-title: J Power Sources
– volume: 38
  start-page: 3765
  year: 2022
  end-page: 3774
  ident: bb0200
  article-title: A new approach to enhance the operation of M-UPQC proportional-integral multiresonant controller based on the optimization methods for a stand-alone AC microgrid
  publication-title: IEEE Trans Power Electron
– volume: 16
  start-page: 1773
  year: 2022
  end-page: 1791
  ident: bb0090
  article-title: Enhancement of power quality issues for a hybrid AC/DC microgrid based on optimization methods
  publication-title: IET Renew Power Generat
– volume: 506
  year: 2021
  ident: bb0265
  article-title: One-shot battery degradation trajectory prediction with deep learning
  publication-title: J Power Sources
– volume: 59
  year: 2023
  ident: bb0150
  article-title: An improved parameter identification method considering multi-timescale characteristics of lithium-ion batteries
  publication-title: J Energy Storage
– volume: 373
  year: 2021
  ident: bb0260
  article-title: Hierarchical deep learning neural network (HiDeNN): an artificial intelligence (AI) framework for computational science and engineering
  publication-title: Comput Methods Appl Mech Eng
– volume: 329
  year: 2023
  ident: bb0030
  article-title: Integrating physics-based modeling with machine learning for lithium-ion batteries
  publication-title: Appl Energy
– volume: 68
  year: 2023
  ident: bb0170
  article-title: Nonlinear receding-horizon filter approximation with neural networks for fast state of charge estimation of lithium-ion batteries
  publication-title: J Energy Storage
– reference: Khosravi N., Barati H., Beiranvand M. Improvement of starting transient state in a fixed speed wind turbine using STATCOM. Eur Online J Nat Social Sciences. 2015;4 (3):476.
– volume: 66
  year: 2023
  ident: bb0185
  article-title: Deep-learning based parameter identification enables rationalization of battery material evolution in complex electrochemical systems
  publication-title: J Comput Sci
– volume: 230
  year: 2023
  ident: bb0120
  article-title: Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries
  publication-title: Reliab Eng Syst Safety
– volume: 336
  year: 2023
  ident: bb0035
  article-title: Artificial intelligence-based health diagnostic of Lithium-ion battery leveraging transient stage of constant current and constant voltage charging
  publication-title: Appl Energy
– volume: 143
  year: 2021
  ident: bb0080
  article-title: Improvement of harmonic conditions in the AC/DC microgrids with the presence of filter compensation modules
  publication-title: Renew Sustain Energy Rev
– volume: 68
  start-page: 312
  year: 2021
  end-page: 323
  ident: bb0225
  article-title: Noise-immune model identification and state-of-charge estimation for Lithium-ion battery using bilinear parameterization
  publication-title: IEEE Trans Industrial Electron
– volume: 293
  year: 2021
  ident: bb0060
  article-title: Cloud-based health-conscious energy management of hybrid battery systems in electric vehicles with deep reinforcement learning
  publication-title: Appl Energy
– volume: 290
  year: 2021
  ident: bb0255
  article-title: Battery state-of-health modelling by multiple linear regression
  publication-title: J Clean Prod
– volume: 322
  year: 2022
  ident: bb0010
  article-title: A comparative study of different features extracted from electrochemical impedance spectroscopy in state of health estimation for lithium-ion batteries
  publication-title: Appl Energy
– year: 2023
  ident: bb0025
  article-title: Deep learning powered online battery health estimation considering multi-timescale ageing dynamics and partial charging information
  publication-title: IEEE Trans Transport Electrific
– volume: 583
  year: 2023
  ident: bb0195
  article-title: A novel learning-based data-driven H∞ control strategy for vanadium redox flow battery in DC microgrids
  publication-title: J Power Sources
– volume: 295
  year: 2021
  ident: bb0005
  article-title: New data optimization framework for parameter estimation under uncertainties with application to lithium-ion battery
  publication-title: Appl Energy
– volume: 57
  year: 2023
  ident: bb0155
  article-title: Parameter identification method for the variable order fractional-order equivalent model of lithium-ion battery
  publication-title: J Energy Storage
– volume: 45
  start-page: 952
  year: 2022
  end-page: 968
  ident: bb0175
  article-title: Enabling high-fidelity electrochemical P2D modeling of lithium-ion batteries via fast and non-destructive parameter identification
  publication-title: Energy Storage Mater
– volume: 471
  year: 2020
  ident: bb0040
  article-title: A novel charged state prediction method of the lithium ion battery packs based on the composite equivalent modeling and improved splice Kalman filtering algorithm
  publication-title: J Power Sources
– volume: 45
  start-page: 952
  year: 2022
  ident: 10.1016/j.apenergy.2023.122364_bb0175
  article-title: Enabling high-fidelity electrochemical P2D modeling of lithium-ion batteries via fast and non-destructive parameter identification
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2021.12.044
– volume: 51
  year: 2022
  ident: 10.1016/j.apenergy.2023.122364_bb0145
  article-title: Study of hysteresis voltage state dependence in lithium-ion battery and a novel asymmetric hysteresis modeling
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.104492
– volume: 17
  start-page: 3751
  issue: 6
  year: 2021
  ident: 10.1016/j.apenergy.2023.122364_bb0055
  article-title: Battery thermal- and health- constrained energy management for hybrid electric bus based on soft actor-critic DRL algorithm
  publication-title: IEEE Trans Industr Inform
  doi: 10.1109/TII.2020.3014599
– volume: 40
  year: 2021
  ident: 10.1016/j.apenergy.2023.122364_bb0220
  article-title: An extended Kalman filter-based data-driven method for state of charge estimation of Li-ion batteries
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2021.102655
– volume: 482
  year: 2021
  ident: 10.1016/j.apenergy.2023.122364_bb0075
  article-title: Online capacity estimation of lithium-ion batteries with deep long short-term memory networks
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2020.228863
– volume: 15
  start-page: 3989
  issue: 16
  year: 2021
  ident: 10.1016/j.apenergy.2023.122364_bb0300
  article-title: A novel control approach for harmonic compensation using switched power filter compensators in micro-grids
  publication-title: IET Renew Power Gener
  doi: 10.1049/rpg2.12317
– volume: 344
  year: 2023
  ident: 10.1016/j.apenergy.2023.122364_bb0065
  article-title: A novel control approach to improve the stability of hybrid AC/DC microgrids
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.121261
– volume: 329
  year: 2023
  ident: 10.1016/j.apenergy.2023.122364_bb0030
  article-title: Integrating physics-based modeling with machine learning for lithium-ion batteries
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.120289
– volume: 13
  start-page: 17534
  issue: 1
  year: 2023
  ident: 10.1016/j.apenergy.2023.122364_bb0280
  article-title: Low-voltage ride-through capability in a DFIG using FO-PID and RCO techniques under symmetrical and asymmetrical faults
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-44332-y
– volume: 15
  issue: 1
  year: 2022
  ident: 10.1016/j.apenergy.2023.122364_bb0180
  article-title: On a novel hybrid manta ray foraging optimizer and its application on parameters estimation of lithium-ion battery
  publication-title: Int J Comp Intellig Syst
– volume: 68
  year: 2023
  ident: 10.1016/j.apenergy.2023.122364_bb0170
  article-title: Nonlinear receding-horizon filter approximation with neural networks for fast state of charge estimation of lithium-ion batteries
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.107677
– volume: 12
  start-page: 21675
  issue: 1
  year: 2022
  ident: 10.1016/j.apenergy.2023.122364_bb0100
  article-title: Improvement of power quality parameters using modulated-unified power quality conditioner and switched-inductor boost converter by the optimization techniques for a hybrid AC/DC microgrid
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-26001-8
– volume: 142
  start-page: 347
  year: 2023
  ident: 10.1016/j.apenergy.2023.122364_bb0240
  article-title: Electric vehicle parameter identification and state of charge estimation of Li-ion batteries: hybrid WSO-HDLNN method
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2023.07.029
– volume: 72
  start-page: 108552
  year: 2023
  ident: 10.1016/j.apenergy.2023.122364_bb0295
  article-title: Active power filter module function to improve power quality conditions using GWO and PSO techniques for solar photovoltaic arrays and battery energy storage systems
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.108552
– volume: 293
  year: 2021
  ident: 10.1016/j.apenergy.2023.122364_bb0060
  article-title: Cloud-based health-conscious energy management of hybrid battery systems in electric vehicles with deep reinforcement learning
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.116977
– volume: 336
  year: 2023
  ident: 10.1016/j.apenergy.2023.122364_bb0035
  article-title: Artificial intelligence-based health diagnostic of Lithium-ion battery leveraging transient stage of constant current and constant voltage charging
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.120751
– start-page: 1
  year: 2023
  ident: 10.1016/j.apenergy.2023.122364_bb0205
  article-title: Experimental analysis of passivity-based control theory for permanent magnet synchronous motor drive fed by grid power
  publication-title: IET Control Theory Appl
– volume: 68
  start-page: 312
  issue: 1
  year: 2021
  ident: 10.1016/j.apenergy.2023.122364_bb0225
  article-title: Noise-immune model identification and state-of-charge estimation for Lithium-ion battery using bilinear parameterization
  publication-title: IEEE Trans Industrial Electron
  doi: 10.1109/TIE.2019.2962429
– volume: 245
  year: 2022
  ident: 10.1016/j.apenergy.2023.122364_bb0115
  article-title: Exergoeconomic assessment of the ejector- based battery thermal management system for electric and hybrid-electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123252
– volume: 59
  year: 2023
  ident: 10.1016/j.apenergy.2023.122364_bb0130
  article-title: An improved forgetting factor recursive least square and unscented particle filtering algorithm for accurate lithium-ion battery state of charge estimation
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.106478
– volume: 66
  start-page: 8693
  issue: 10
  year: 2017
  ident: 10.1016/j.apenergy.2023.122364_bb0050
  article-title: Lithium-ion battery parameters and state-of-charge joint estimation based on H-infinity and unscented Kalman filters
  publication-title: IEEE Trans Vehicul Technol
  doi: 10.1109/TVT.2017.2709326
– volume: 290
  year: 2021
  ident: 10.1016/j.apenergy.2023.122364_bb0255
  article-title: Battery state-of-health modelling by multiple linear regression
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.125700
– volume: 5
  start-page: 864
  issue: 3
  year: 2016
  ident: 10.1016/j.apenergy.2023.122364_bib301
  article-title: Distribution of optimum reactive power in the presence of wind power plant and considering voltage stability margin using genetic algorithm and Monte Carlo methods
  publication-title: Eur Online J Nat Social Sciences
– volume: 254
  year: 2022
  ident: 10.1016/j.apenergy.2023.122364_bb0125
  article-title: An improved feedforward-long short-term memory modeling method for the whole-life-cycle state of charge prediction of lithium-ion batteries considering current-voltage-temperature variation
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124224
– volume: 143
  year: 2021
  ident: 10.1016/j.apenergy.2023.122364_bb0080
  article-title: Improvement of harmonic conditions in the AC/DC microgrids with the presence of filter compensation modules
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2021.110898
– volume: 44
  year: 2021
  ident: 10.1016/j.apenergy.2023.122364_bb0210
  article-title: Parameters identification of Thevenin model for lithium-ion batteries using self-adaptive particle swarm optimization differential evolution algorithm to estimate state of charge
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2021.103244
– year: 2023
  ident: 10.1016/j.apenergy.2023.122364_bb0025
  article-title: Deep learning powered online battery health estimation considering multi-timescale ageing dynamics and partial charging information
  publication-title: IEEE Trans Transport Electrific
– volume: 59
  year: 2023
  ident: 10.1016/j.apenergy.2023.122364_bb0150
  article-title: An improved parameter identification method considering multi-timescale characteristics of lithium-ion batteries
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.106462
– volume: 32
  year: 2020
  ident: 10.1016/j.apenergy.2023.122364_bb0045
  article-title: Unknown input observer design for lithium-ion batteries SOC estimation based on a differential-algebraic model
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2020.101973
– volume: 36
  issue: 1
  year: 2023
  ident: 10.1016/j.apenergy.2023.122364_bb0135
  article-title: Online identification of lithium-ion battery model parameters with initial value uncertainty and measurement noise
  publication-title: Chin J Mechan Eng
– volume: 322
  year: 2022
  ident: 10.1016/j.apenergy.2023.122364_bb0010
  article-title: A comparative study of different features extracted from electrochemical impedance spectroscopy in state of health estimation for lithium-ion batteries
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.119502
– volume: 45
  year: 2022
  ident: 10.1016/j.apenergy.2023.122364_bb0250
  article-title: A fast sliding-mode-based estimation of state-of-charge for Lithium-ion batteries for electric vehicle applications
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2021.103484
– volume: 12
  year: 2022
  ident: 10.1016/j.apenergy.2023.122364_bb0190
  article-title: Deduction of the transformation regulation on voltage curve for lithium-ion batteries and its application in parameters estimation
  publication-title: Etransportation
  doi: 10.1016/j.etran.2022.100164
– volume: 583
  year: 2023
  ident: 10.1016/j.apenergy.2023.122364_bb0195
  article-title: A novel learning-based data-driven H∞ control strategy for vanadium redox flow battery in DC microgrids
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2023.233537
– volume: 269
  year: 2020
  ident: 10.1016/j.apenergy.2023.122364_bb0085
  article-title: Parameter sensitivity analysis of electrochemical model-based battery management systems for lithium-ion batteries
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115104
– volume: 238
  year: 2022
  ident: 10.1016/j.apenergy.2023.122364_bb0110
  article-title: Experimental and numerical study of energy and thermal management system for a hydrogen fuel cell-battery hybrid electric vehicle
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121794
– volume: 72
  year: 2023
  ident: 10.1016/j.apenergy.2023.122364_bb0275
  article-title: Improved multi-objective grasshopper optimization algorithm and application in capacity configuration of urban rail hybrid energy storage systems
  publication-title: J Energy Storage
– volume: 10
  start-page: 2200123
  issue: 6
  year: 2022
  ident: 10.1016/j.apenergy.2023.122364_bb0070
  article-title: Deep reinforcement learning based on driver experience embedding for energy management strategies in hybrid electric vehicles
  publication-title: Energ Technol
  doi: 10.1002/ente.202200123
– volume: 68
  year: 2023
  ident: 10.1016/j.apenergy.2023.122364_bb0165
  article-title: A parameter identification and state of charge estimation method of lithium-ion battery considering temperature bias
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.107650
– volume: 295
  year: 2021
  ident: 10.1016/j.apenergy.2023.122364_bb0005
  article-title: New data optimization framework for parameter estimation under uncertainties with application to lithium-ion battery
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.117034
– volume: 339
  year: 2023
  ident: 10.1016/j.apenergy.2023.122364_bb0015
  article-title: Semi-online parameter identification methodology for maritime power lithium batteries
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.120992
– volume: 195
  start-page: 2851
  issue: 9
  year: 2010
  ident: 10.1016/j.apenergy.2023.122364_bb0095
  article-title: Porous cathode optimization for lithium cells: ionic and electronic conductivity, capacity, and selection of materials
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2009.11.044
– volume: 38
  start-page: 3765
  issue: 3
  year: 2022
  ident: 10.1016/j.apenergy.2023.122364_bb0200
  article-title: A new approach to enhance the operation of M-UPQC proportional-integral multiresonant controller based on the optimization methods for a stand-alone AC microgrid
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2022.3217964
– volume: 57
  year: 2023
  ident: 10.1016/j.apenergy.2023.122364_bb0155
  article-title: Parameter identification method for the variable order fractional-order equivalent model of lithium-ion battery
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.106273
– volume: 330
  year: 2023
  ident: 10.1016/j.apenergy.2023.122364_bb0270
  article-title: An evolutionary stacked generalization model based on deep learning and improved grasshopper optimization algorithm for predicting the remaining useful life of PEMFC
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.120333
– volume: 396
  start-page: 453
  year: 2018
  ident: 10.1016/j.apenergy.2023.122364_bb0235
  article-title: A fast estimation algorithm for lithium-ion battery state of health
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2018.06.036
– volume: 213
  year: 2023
  ident: 10.1016/j.apenergy.2023.122364_bb0290
  article-title: Dynamic hybrid mechanism-based differential evolution algorithm and its application
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2022.118834
– volume: 506
  year: 2021
  ident: 10.1016/j.apenergy.2023.122364_bb0265
  article-title: One-shot battery degradation trajectory prediction with deep learning
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2021.230024
– volume: 265
  year: 2020
  ident: 10.1016/j.apenergy.2023.122364_bb0230
  article-title: A combined method for state-of-charge estimation for lithium-ion batteries using a long short-term memory network and an adaptive cubature Kalman filter
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.114789
– volume: 68
  year: 2023
  ident: 10.1016/j.apenergy.2023.122364_bb0105
  article-title: Health-conscious energy management strategy for battery/fuel cell electric vehicles considering power sources dynamics
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.107676
– volume: 471
  year: 2020
  ident: 10.1016/j.apenergy.2023.122364_bb0040
  article-title: A novel charged state prediction method of the lithium ion battery packs based on the composite equivalent modeling and improved splice Kalman filtering algorithm
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2020.228450
– volume: 16
  start-page: 1773
  issue: 8
  year: 2022
  ident: 10.1016/j.apenergy.2023.122364_bb0090
  article-title: Enhancement of power quality issues for a hybrid AC/DC microgrid based on optimization methods
  publication-title: IET Renew Power Generat
  doi: 10.1049/rpg2.12476
– volume: 10
  start-page: 25073
  year: 2022
  ident: 10.1016/j.apenergy.2023.122364_bb0245
  article-title: War strategy optimization algorithm: a new effective metaheuristic algorithm for global optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3153493
– volume: 66
  year: 2023
  ident: 10.1016/j.apenergy.2023.122364_bb0185
  article-title: Deep-learning based parameter identification enables rationalization of battery material evolution in complex electrochemical systems
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2022.101900
– volume: 435
  year: 2022
  ident: 10.1016/j.apenergy.2023.122364_bb0140
  article-title: A novel multiple training-scale dynamic adaptive cuckoo search optimized long short-term memory neural network and multi-dimensional health indicators acquisition strategy for whole life cycle health evaluation of lithium-ion batteries
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2022.141404
– volume: 373
  year: 2021
  ident: 10.1016/j.apenergy.2023.122364_bb0260
  article-title: Hierarchical deep learning neural network (HiDeNN): an artificial intelligence (AI) framework for computational science and engineering
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113452
– volume: 336
  year: 2023
  ident: 10.1016/j.apenergy.2023.122364_bb0020
  article-title: Optimized multi-hidden layer long short-term memory modeling and suboptimal fading extended Kalman filtering strategies for the synthetic state of charge estimation of lithium-ion batteries
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.120866
– ident: 10.1016/j.apenergy.2023.122364_bb0215
– volume: 14
  issue: 2
  year: 2023
  ident: 10.1016/j.apenergy.2023.122364_bb0160
  article-title: Improved parameter identification for lithium-ion batteries based on complex-order beetle swarm optimization algorithm
  publication-title: Micromachines
  doi: 10.3390/mi14020413
– volume: 230
  year: 2023
  ident: 10.1016/j.apenergy.2023.122364_bb0120
  article-title: Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries
  publication-title: Reliab Eng Syst Safety
  doi: 10.1016/j.ress.2022.108920
– volume: 44
  start-page: 967
  issue: 2
  year: 2023
  ident: 10.1016/j.apenergy.2023.122364_bb0285
  article-title: Reactive power management by using a modified differential evolution algorithm
  publication-title: Optim Control Appl Methods
  doi: 10.1002/oca.2815
SSID ssj0002120
Score 2.534019
Snippet In recent years, batteries have evolved increasingly overall in numerous applications. Among batteries, LIBs are the most advantageous technology because of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 122364
SubjectTerms algorithms
electric potential difference
Electric vehicle
Equivalent circuit
grasshoppers
lithium batteries
Lithium-ion battery
Parameter identification
protocols
State of charge
Title Enhancing battery management for HEVs and EVs: A hybrid approach for parameter identification and voltage estimation in lithium-ion battery models
URI https://dx.doi.org/10.1016/j.apenergy.2023.122364
https://www.proquest.com/docview/3040483396
Volume 356
WOSCitedRecordID wos001129908600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqLgc4IFhYsbxkJG5VShvHTcytQNGCxAqJsuotchxnm6VNqr7Y5Wfwl_hjzNhO0uWhBSEuSRN57LbzZWbszDcm5KkMBRj9UHpo_L2A-4GXMB14PaUCeLYidIFms4nw-DiaTMT7VutbxYXZzsKiiM7PxeK_qhrugbKROvsX6q47hRvwGZQOR1A7HP9I8aNiijU0itNOYmpnXrgMVfPWH5MKj0YntjAznC0xfXqBvK26vrhphTXB55gr08lTl1FksYKSYNPWmOyDJTos9xHXTSCin-abuYeX9di4085qNwSu4l5tWIe1wZ-Wq6Xc5hadjbN4VX6eybVMZJpbahGE-ps6oXiYQO-n8HsNVN5tpnI-l2nnhfxUNxmXEP-mpXdiUwJm-RdHUVLlpSUPgA9uwMKbdbiKi9MkPhn-V2_g4XzQejZrzqPQR3Me7dp7ZiuZ_-Q77DLGWVcu7B_QxZ3lu30fS-w33rLOYfyAA9r5J86jI4gD9vyQi6hN9oZvRpO3dUDgu-qg1RfcIar_erTfxUg_RAsmBBrfIjfd3IUOLeZuk5Yu9smNnYqW--Rg1BAnoanzHKs75GsNS-qgQRtYUgAcRVhSABeF83M6pBaUtAKlaVODkl4GpZFzoKQNKGle0B1QNiMbUN4lH1-Pxi-PPLcfiKdYwNfgC4UyC6csGWQDMUgCLkXga55mQSJSHqaRUpHIICZjOglV2Mt0j2mRqixQvB-yA9IuykLfI5T3s4RDH4FSGmR5lPR8bXjejMt-kh0SXmkgVq5YPu7ZMourrMizuNJcjJqLreYOybNabmHLxVwpISoFxy7otcFsDLi8UvZJhYgYvAK-6pOFLjermIFvDiLGxOD-P_T_gFxvHr-HpL1ebvQjck1t1_lq-djB_DvjHubn
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+battery+management+for+HEVs+and+EVs%3A+A+hybrid+approach+for+parameter+identification+and+voltage+estimation+in+lithium-ion+battery+models&rft.jtitle=Applied+energy&rft.au=Khosravi%2C+Nima&rft.au=Dowlatabadi%2C+Masrour&rft.au=Abdelghany%2C+Muhammad+Bakr&rft.au=Tostado-V%C3%A9liz%2C+Marcos&rft.date=2024-02-15&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=356&rft_id=info:doi/10.1016%2Fj.apenergy.2023.122364&rft.externalDocID=S0306261923017282
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon