Enhancing battery management for HEVs and EVs: A hybrid approach for parameter identification and voltage estimation in lithium-ion battery models
In recent years, batteries have evolved increasingly overall in numerous applications. Among batteries, LIBs are the most advantageous technology because of their raised power and energy densities. This study proposes a hybrid method, combining a war strategy optimization (WSO) algorithm and a hiera...
Gespeichert in:
| Veröffentlicht in: | Applied energy Jg. 356; S. 122364 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
15.02.2024
|
| Schlagworte: | |
| ISSN: | 0306-2619, 1872-9118 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In recent years, batteries have evolved increasingly overall in numerous applications. Among batteries, LIBs are the most advantageous technology because of their raised power and energy densities. This study proposes a hybrid method, combining a war strategy optimization (WSO) algorithm and a hierarchical deep learning neural network (HDLNN) named WSO-HDLNN, to identify the parameters of lithium-ion batteries (LIBs) used in hybrid and electric vehicles (HEVs and EVs). The hybrid approach utilizes the WSO technique to generate parameters and predicts the components using the HDLNN approach. The proposed method significantly reduces the estimated voltage and measured voltage error while effectively identifying the battery parameters. The MATLAB/SIMULINK platform is employed for implementation and comparison with other existing methods such as differential evolution (DE), grasshopper optimization algorithm (GOA), and particle swarm optimization (PSO). Simulation results demonstrate the efficiency of the proposed WSO-HDLNN strategy in reducing battery voltage errors by accurately identifying parameters and improving voltage estimation accuracy. Further, notable novelty in this work is the integration of the WSO algorithm with the HDLNN in the WSO-HDLNN protocol for LIB parameter identification. This fusion is distinct as it synergizes the strengths of optimization and deep learning, enhancing efficiency and accuracy in LIB parameter estimation. The WSO algorithm introduces a novel war strategy element, leading to faster convergence to optimal solutions, significantly reducing computational time. Moreover, the WSO-HDLNN approach showcases robustness in handling noisy data, a unique feature ensuring accurate parameter estimates amidst real-world uncertainties, setting it apart from conventional LIB modeling methods.
•Hybrid WSO-HDLNN technique for identifying LIB parameters in electric vehicles.•WSO-HDLNN minimizes voltage errors, surpassing existing methods.•WSO's inclusion facilitates faster convergence and reduced computational time. |
|---|---|
| AbstractList | In recent years, batteries have evolved increasingly overall in numerous applications. Among batteries, LIBs are the most advantageous technology because of their raised power and energy densities. This study proposes a hybrid method, combining a war strategy optimization (WSO) algorithm and a hierarchical deep learning neural network (HDLNN) named WSO-HDLNN, to identify the parameters of lithium-ion batteries (LIBs) used in hybrid and electric vehicles (HEVs and EVs). The hybrid approach utilizes the WSO technique to generate parameters and predicts the components using the HDLNN approach. The proposed method significantly reduces the estimated voltage and measured voltage error while effectively identifying the battery parameters. The MATLAB/SIMULINK platform is employed for implementation and comparison with other existing methods such as differential evolution (DE), grasshopper optimization algorithm (GOA), and particle swarm optimization (PSO). Simulation results demonstrate the efficiency of the proposed WSO-HDLNN strategy in reducing battery voltage errors by accurately identifying parameters and improving voltage estimation accuracy. Further, notable novelty in this work is the integration of the WSO algorithm with the HDLNN in the WSO-HDLNN protocol for LIB parameter identification. This fusion is distinct as it synergizes the strengths of optimization and deep learning, enhancing efficiency and accuracy in LIB parameter estimation. The WSO algorithm introduces a novel war strategy element, leading to faster convergence to optimal solutions, significantly reducing computational time. Moreover, the WSO-HDLNN approach showcases robustness in handling noisy data, a unique feature ensuring accurate parameter estimates amidst real-world uncertainties, setting it apart from conventional LIB modeling methods. In recent years, batteries have evolved increasingly overall in numerous applications. Among batteries, LIBs are the most advantageous technology because of their raised power and energy densities. This study proposes a hybrid method, combining a war strategy optimization (WSO) algorithm and a hierarchical deep learning neural network (HDLNN) named WSO-HDLNN, to identify the parameters of lithium-ion batteries (LIBs) used in hybrid and electric vehicles (HEVs and EVs). The hybrid approach utilizes the WSO technique to generate parameters and predicts the components using the HDLNN approach. The proposed method significantly reduces the estimated voltage and measured voltage error while effectively identifying the battery parameters. The MATLAB/SIMULINK platform is employed for implementation and comparison with other existing methods such as differential evolution (DE), grasshopper optimization algorithm (GOA), and particle swarm optimization (PSO). Simulation results demonstrate the efficiency of the proposed WSO-HDLNN strategy in reducing battery voltage errors by accurately identifying parameters and improving voltage estimation accuracy. Further, notable novelty in this work is the integration of the WSO algorithm with the HDLNN in the WSO-HDLNN protocol for LIB parameter identification. This fusion is distinct as it synergizes the strengths of optimization and deep learning, enhancing efficiency and accuracy in LIB parameter estimation. The WSO algorithm introduces a novel war strategy element, leading to faster convergence to optimal solutions, significantly reducing computational time. Moreover, the WSO-HDLNN approach showcases robustness in handling noisy data, a unique feature ensuring accurate parameter estimates amidst real-world uncertainties, setting it apart from conventional LIB modeling methods. •Hybrid WSO-HDLNN technique for identifying LIB parameters in electric vehicles.•WSO-HDLNN minimizes voltage errors, surpassing existing methods.•WSO's inclusion facilitates faster convergence and reduced computational time. |
| ArticleNumber | 122364 |
| Author | Abdelghany, Muhammad Bakr Jurado, Francisco Tostado-Véliz, Marcos Dowlatabadi, Masrour Khosravi, Nima |
| Author_xml | – sequence: 1 givenname: Nima surname: Khosravi fullname: Khosravi, Nima email: Nimakhosravi64@gmail.com organization: Department of Electrical and Instrumentation Engineering, R&D Management of NPC, Tehran, Iran – sequence: 2 givenname: Masrour surname: Dowlatabadi fullname: Dowlatabadi, Masrour organization: Department of Electrical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran – sequence: 3 givenname: Muhammad Bakr surname: Abdelghany fullname: Abdelghany, Muhammad Bakr organization: Department of Electrical and Computer Engineering, Khalifa University of Science and Technology, Sas Al-Nakhl Campus, Abu Dhabi, United Arab Emirates – sequence: 4 givenname: Marcos surname: Tostado-Véliz fullname: Tostado-Véliz, Marcos organization: Department of Electrical Engineering, University of Jaén, Linares 23700, Spain – sequence: 5 givenname: Francisco surname: Jurado fullname: Jurado, Francisco organization: Department of Electrical Engineering, University of Jaén, Linares 23700, Spain |
| BookMark | eNqFkc9u1DAQxi3USmxbXgH5yCWL_yROjDhQVQtFqsSl5Wo59mTXq8QOtrfSvkafGO8GOHDpaeTR9_vGM98VuvDBA0LvKVlTQsXH_VrP4CFuj2tGGF9Txrio36AV7VpWSUq7C7QinIiKCSrfoquU9oQQRhlZoZeN32lvnN_iXucM8Ygn7fUWJvAZDyHi-83PhLW3uNRP-Bbvjn10Fut5jkGb3Vkz66gnKDR2tnBucEZnF_yZew5jLoYYUnbT0nYejy7v3GGqTs9_k4OFMd2gy0GPCd79qdfo6evm8e6-evjx7fvd7UNleN3kirfSEEKZ5L0YhBR93WhZM2jsUPfSNq3tjOnkwAXj0LemJQMQDtKaoTYNbfk1-rD4lkV-Hcrv1OSSgXHUHsIhKU5qUnecS1GknxepiSGlCIMyLp9XyVG7UVGiTlGovfobhTpFoZYoCi7-w-dYThGPr4NfFrCcBZ4dRJWMA2_AuggmKxvcaxa_AQkWrKQ |
| CitedBy_id | crossref_primary_10_1016_j_est_2024_113807 crossref_primary_10_1016_j_energy_2024_130859 crossref_primary_10_1016_j_energy_2025_138516 crossref_primary_10_1109_TIA_2024_3510214 crossref_primary_10_1016_j_rineng_2024_103814 crossref_primary_10_1051_e3sconf_202456402002 crossref_primary_10_1038_s41598_024_77579_0 crossref_primary_10_1109_ACCESS_2024_3378527 crossref_primary_10_3389_fenrg_2025_1529608 crossref_primary_10_1016_j_jechem_2024_06_024 crossref_primary_10_1109_TPEL_2025_3588296 crossref_primary_10_1007_s11581_024_05698_9 crossref_primary_10_1016_j_energy_2024_132204 crossref_primary_10_1016_j_enconman_2025_119595 crossref_primary_10_1016_j_energy_2024_131575 crossref_primary_10_3390_en17225753 crossref_primary_10_1016_j_jpowsour_2024_235762 crossref_primary_10_1016_j_fraope_2025_100293 crossref_primary_10_1049_tje2_12352 crossref_primary_10_1038_s41598_025_90374_9 crossref_primary_10_1016_j_apenergy_2024_124313 crossref_primary_10_1109_ACCESS_2025_3606573 crossref_primary_10_1016_j_apenergy_2025_125305 crossref_primary_10_1016_j_enconman_2024_119393 crossref_primary_10_26634_jps_12_4_21892 |
| Cites_doi | 10.1016/j.ensm.2021.12.044 10.1016/j.est.2022.104492 10.1109/TII.2020.3014599 10.1016/j.est.2021.102655 10.1016/j.jpowsour.2020.228863 10.1049/rpg2.12317 10.1016/j.apenergy.2023.121261 10.1016/j.apenergy.2022.120289 10.1038/s41598-023-44332-y 10.1016/j.est.2023.107677 10.1038/s41598-022-26001-8 10.1016/j.isatra.2023.07.029 10.1016/j.est.2023.108552 10.1016/j.apenergy.2021.116977 10.1016/j.apenergy.2023.120751 10.1109/TIE.2019.2962429 10.1016/j.energy.2022.123252 10.1016/j.est.2022.106478 10.1109/TVT.2017.2709326 10.1016/j.jclepro.2020.125700 10.1016/j.energy.2022.124224 10.1016/j.rser.2021.110898 10.1016/j.est.2021.103244 10.1016/j.est.2022.106462 10.1016/j.est.2020.101973 10.1016/j.apenergy.2022.119502 10.1016/j.est.2021.103484 10.1016/j.etran.2022.100164 10.1016/j.jpowsour.2023.233537 10.1016/j.apenergy.2020.115104 10.1016/j.energy.2021.121794 10.1002/ente.202200123 10.1016/j.est.2023.107650 10.1016/j.apenergy.2021.117034 10.1016/j.apenergy.2023.120992 10.1016/j.jpowsour.2009.11.044 10.1109/TPEL.2022.3217964 10.1016/j.est.2022.106273 10.1016/j.apenergy.2022.120333 10.1016/j.jpowsour.2018.06.036 10.1016/j.eswa.2022.118834 10.1016/j.jpowsour.2021.230024 10.1016/j.apenergy.2020.114789 10.1016/j.est.2023.107676 10.1016/j.jpowsour.2020.228450 10.1049/rpg2.12476 10.1109/ACCESS.2022.3153493 10.1016/j.jocs.2022.101900 10.1016/j.electacta.2022.141404 10.1016/j.cma.2020.113452 10.1016/j.apenergy.2023.120866 10.3390/mi14020413 10.1016/j.ress.2022.108920 10.1002/oca.2815 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2023.122364 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| ExternalDocumentID | 10_1016_j_apenergy_2023_122364 S0306261923017282 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c345t-379c001293b6f696b45a942e5df4b9d57d8cc89f3623eb7c70fe03e9dcf4c5173 |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001129908600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Sat Sep 27 21:12:36 EDT 2025 Tue Nov 18 21:52:41 EST 2025 Sat Nov 29 07:20:31 EST 2025 Sat Mar 02 16:00:57 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Lithium-ion battery Electric vehicle Parameter identification State of charge Equivalent circuit |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c345t-379c001293b6f696b45a942e5df4b9d57d8cc89f3623eb7c70fe03e9dcf4c5173 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 3040483396 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3040483396 crossref_citationtrail_10_1016_j_apenergy_2023_122364 crossref_primary_10_1016_j_apenergy_2023_122364 elsevier_sciencedirect_doi_10_1016_j_apenergy_2023_122364 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-15 |
| PublicationDateYYYYMMDD | 2024-02-15 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied energy |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Du, Meng, Liu, Zhang, Wang, Peng (bb0135) 2023; 36 Hu, Zhang (bb0070) 2022; 10 Fei, Zhang, Tsui (bb0025) 2023 Tu, Moura, Wang, Fang (bb0030) 2023; 329 Yu, Xiong, Lin, Shen, Deng (bb0050) 2017; 66 Lopes (bb0170) 2023; 68 Li, Sengupta, Dechent, Howey, Annaswamy, Sauer (bb0075) 2021; 482 Varatharajalu, Manoharan, Palanichamy, Subramani (bb0240) 2023; 142 Şefkat, Özel (bb0110) 2022; 238 Rezaei, Moghaddam, Papari (bb0250) 2022; 45 Lai, Ahn, Kim, Kim, Lin (bb0005) 2021; 295 Rizk-Allah (bb0180) 2022; 15 Abou Houran, Sabzevari, Hassan, Oubelaid, Tostado-Véliz, Khosravi (bb0295) 2023; 72 Ren, Wang, Chen, Zhou, Fernandez, Stroe (bb0140) 2022; 435 Wu, Wei, Li, Wang, Li, Sauer (bb0055) 2021; 17 Khosravi N., Barati H., Beiranvand M. Improvement of starting transient state in a fixed speed wind turbine using STATCOM. Eur Online J Nat Social Sciences. 2015;4 (3):476. Xie, Wang, Zhang, Fan, Fernandez, Blaabjerg (bb0020) 2023; 336 Wang, Takyi-Aninakwa, Jin, Yu, Fernandez, Stroe (bb0125) 2022; 254 Zhang (bb0160) 2023; 14 Liu, Zhang, Jiang, Zhang, Zhang (bb0190) 2022; 12 Liu, Li, Wu, He, Liu (bb0220) 2021; 40 Belkhier (bb0205) 2023 Wei, Dong, Zhang, Pou, Quan, He (bb0225) 2021; 68 Khosravi (bb0065) 2023; 344 Wang, Fan, Jin, Takyi-Aninakwa, Fernandez (bb0120) 2023; 230 Kar, Kumar, Singh, Panigrahi (bb0285) 2023; 44 Sgura, Mainetti, Negro, Quarta, Bozzini (bb0185) 2023; 66 Xu, Lin, Xie, Hu (bb0175) 2022; 45 Hu (bb0165) 2023; 68 Song (bb0290) 2023; 213 Khosravi, Beiranvand, Barati (bib301) 2016; 5 Khosravi, Echalih, Baghbanzadeh, Hekss, Hassani, Messaoudi (bb0090) 2022; 16 Li, Sengupta, Dechent, Howey, Annaswamy, Sauer (bb0265) 2021; 506 Tian, Lai, Li, Xiang, Tian (bb0230) 2020; 265 Ruan, Wei, Shang, Wang, He (bb0035) 2023; 336 Li (bb0085) 2020; 269 Khosravi, Abdolmohammadi, Bagheri, Miveh (bb0300) 2021; 15 Hao, Wang, Fan, Xie, Fernandez (bb0130) 2023; 59 Chen, Wang, Zhang, Sastry (bb0095) 2010; 195 Khosravi, Abdolmohammadi, Bagheri, Miveh (bb0080) 2021; 143 Ayyarao (bb0245) 2022; 10 Tang (bb0235) 2018; 396 Yang, Wang (bb0150) 2023; 59 Saha (bb0260) 2021; 373 Khosravi (bb0100) 2022; 12 Li (bb0060) 2021; 293 Tang, Zhang, Zhang, Lai, Zhang (bb0015) 2023; 339 Liu (bb0195) 2023; 583 Wang (bb0210) 2021; 44 Yu, Wang, Yu, Shi, Li (bb0145) 2022; 51 Jiang, Zhu, Wang, Wei, Shang, Dai (bb0010) 2022; 322 Wang, Zhang, Qin, Guo (bb0275) 2023; 72 Wang, Fernandez, Yu, Fan, Cao, Stroe (bb0040) 2020; 471 Mao (bb0155) 2023; 57 Snoussi, Ben Elghali, Zerrougui, Bensoam, Benbouzid, Mimouni (bb0045) 2020; 32 Khosravi, Echalih, Hekss, Baghbanzadeh, Messaoudi, Shahideipour (bb0200) 2022; 38 Sabzevari (bb0280) 2023; 13 Oubelaid (bb0105) 2023; 68 Alkhulaifi, Qasem, Zubair (bb0115) 2022; 245 Vilsen, Stroe (bb0255) 2021; 290 Zhang, Hu, Ji, Liu, Xia, Nazir (bb0270) 2023; 330 Ruan (10.1016/j.apenergy.2023.122364_bb0035) 2023; 336 Wang (10.1016/j.apenergy.2023.122364_bb0040) 2020; 471 Li (10.1016/j.apenergy.2023.122364_bb0085) 2020; 269 Şefkat (10.1016/j.apenergy.2023.122364_bb0110) 2022; 238 Wang (10.1016/j.apenergy.2023.122364_bb0120) 2023; 230 Yu (10.1016/j.apenergy.2023.122364_bb0050) 2017; 66 Oubelaid (10.1016/j.apenergy.2023.122364_bb0105) 2023; 68 Liu (10.1016/j.apenergy.2023.122364_bb0190) 2022; 12 Snoussi (10.1016/j.apenergy.2023.122364_bb0045) 2020; 32 Sgura (10.1016/j.apenergy.2023.122364_bb0185) 2023; 66 Varatharajalu (10.1016/j.apenergy.2023.122364_bb0240) 2023; 142 Zhang (10.1016/j.apenergy.2023.122364_bb0270) 2023; 330 Ren (10.1016/j.apenergy.2023.122364_bb0140) 2022; 435 Tang (10.1016/j.apenergy.2023.122364_bb0015) 2023; 339 Belkhier (10.1016/j.apenergy.2023.122364_bb0205) 2023 10.1016/j.apenergy.2023.122364_bb0215 Zhang (10.1016/j.apenergy.2023.122364_bb0160) 2023; 14 Tu (10.1016/j.apenergy.2023.122364_bb0030) 2023; 329 Rezaei (10.1016/j.apenergy.2023.122364_bb0250) 2022; 45 Hao (10.1016/j.apenergy.2023.122364_bb0130) 2023; 59 Hu (10.1016/j.apenergy.2023.122364_bb0070) 2022; 10 Khosravi (10.1016/j.apenergy.2023.122364_bb0080) 2021; 143 Li (10.1016/j.apenergy.2023.122364_bb0060) 2021; 293 Sabzevari (10.1016/j.apenergy.2023.122364_bb0280) 2023; 13 Kar (10.1016/j.apenergy.2023.122364_bb0285) 2023; 44 Wang (10.1016/j.apenergy.2023.122364_bb0210) 2021; 44 Yu (10.1016/j.apenergy.2023.122364_bb0145) 2022; 51 Du (10.1016/j.apenergy.2023.122364_bb0135) 2023; 36 Rizk-Allah (10.1016/j.apenergy.2023.122364_bb0180) 2022; 15 Khosravi (10.1016/j.apenergy.2023.122364_bb0200) 2022; 38 Wu (10.1016/j.apenergy.2023.122364_bb0055) 2021; 17 Yang (10.1016/j.apenergy.2023.122364_bb0150) 2023; 59 Li (10.1016/j.apenergy.2023.122364_bb0265) 2021; 506 Tian (10.1016/j.apenergy.2023.122364_bb0230) 2020; 265 Wang (10.1016/j.apenergy.2023.122364_bb0125) 2022; 254 Wang (10.1016/j.apenergy.2023.122364_bb0275) 2023; 72 Abou Houran (10.1016/j.apenergy.2023.122364_bb0295) 2023; 72 Lai (10.1016/j.apenergy.2023.122364_bb0005) 2021; 295 Mao (10.1016/j.apenergy.2023.122364_bb0155) 2023; 57 Wei (10.1016/j.apenergy.2023.122364_bb0225) 2021; 68 Saha (10.1016/j.apenergy.2023.122364_bb0260) 2021; 373 Khosravi (10.1016/j.apenergy.2023.122364_bb0090) 2022; 16 Khosravi (10.1016/j.apenergy.2023.122364_bib301) 2016; 5 Vilsen (10.1016/j.apenergy.2023.122364_bb0255) 2021; 290 Song (10.1016/j.apenergy.2023.122364_bb0290) 2023; 213 Khosravi (10.1016/j.apenergy.2023.122364_bb0065) 2023; 344 Chen (10.1016/j.apenergy.2023.122364_bb0095) 2010; 195 Alkhulaifi (10.1016/j.apenergy.2023.122364_bb0115) 2022; 245 Liu (10.1016/j.apenergy.2023.122364_bb0195) 2023; 583 Xu (10.1016/j.apenergy.2023.122364_bb0175) 2022; 45 Xie (10.1016/j.apenergy.2023.122364_bb0020) 2023; 336 Tang (10.1016/j.apenergy.2023.122364_bb0235) 2018; 396 Hu (10.1016/j.apenergy.2023.122364_bb0165) 2023; 68 Khosravi (10.1016/j.apenergy.2023.122364_bb0100) 2022; 12 Liu (10.1016/j.apenergy.2023.122364_bb0220) 2021; 40 Li (10.1016/j.apenergy.2023.122364_bb0075) 2021; 482 Fei (10.1016/j.apenergy.2023.122364_bb0025) 2023 Jiang (10.1016/j.apenergy.2023.122364_bb0010) 2022; 322 Lopes (10.1016/j.apenergy.2023.122364_bb0170) 2023; 68 Ayyarao (10.1016/j.apenergy.2023.122364_bb0245) 2022; 10 Khosravi (10.1016/j.apenergy.2023.122364_bb0300) 2021; 15 |
| References_xml | – volume: 12 start-page: 21675 year: 2022 ident: bb0100 article-title: Improvement of power quality parameters using modulated-unified power quality conditioner and switched-inductor boost converter by the optimization techniques for a hybrid AC/DC microgrid publication-title: Sci Rep – volume: 68 year: 2023 ident: bb0165 article-title: A parameter identification and state of charge estimation method of lithium-ion battery considering temperature bias publication-title: J Energy Storage – volume: 339 year: 2023 ident: bb0015 article-title: Semi-online parameter identification methodology for maritime power lithium batteries publication-title: Appl Energy – volume: 44 start-page: 967 year: 2023 end-page: 986 ident: bb0285 article-title: Reactive power management by using a modified differential evolution algorithm publication-title: Optim Control Appl Methods – volume: 40 year: 2021 ident: bb0220 article-title: An extended Kalman filter-based data-driven method for state of charge estimation of Li-ion batteries publication-title: J Energy Storage – volume: 435 year: 2022 ident: bb0140 article-title: A novel multiple training-scale dynamic adaptive cuckoo search optimized long short-term memory neural network and multi-dimensional health indicators acquisition strategy for whole life cycle health evaluation of lithium-ion batteries publication-title: Electrochim Acta – volume: 265 year: 2020 ident: bb0230 article-title: A combined method for state-of-charge estimation for lithium-ion batteries using a long short-term memory network and an adaptive cubature Kalman filter publication-title: Appl Energy – volume: 142 start-page: 347 year: 2023 end-page: 359 ident: bb0240 article-title: Electric vehicle parameter identification and state of charge estimation of Li-ion batteries: hybrid WSO-HDLNN method publication-title: ISA Trans – volume: 72 start-page: 108552 year: 2023 ident: bb0295 article-title: Active power filter module function to improve power quality conditions using GWO and PSO techniques for solar photovoltaic arrays and battery energy storage systems publication-title: J Energy Storage – volume: 238 year: 2022 ident: bb0110 article-title: Experimental and numerical study of energy and thermal management system for a hydrogen fuel cell-battery hybrid electric vehicle publication-title: Energy – volume: 213 year: 2023 ident: bb0290 article-title: Dynamic hybrid mechanism-based differential evolution algorithm and its application publication-title: Exp Syst Appl – volume: 254 year: 2022 ident: bb0125 article-title: An improved feedforward-long short-term memory modeling method for the whole-life-cycle state of charge prediction of lithium-ion batteries considering current-voltage-temperature variation publication-title: Energy – volume: 72 year: 2023 ident: bb0275 article-title: Improved multi-objective grasshopper optimization algorithm and application in capacity configuration of urban rail hybrid energy storage systems publication-title: J Energy Storage – volume: 51 year: 2022 ident: bb0145 article-title: Study of hysteresis voltage state dependence in lithium-ion battery and a novel asymmetric hysteresis modeling publication-title: J Energy Storage – volume: 245 year: 2022 ident: bb0115 article-title: Exergoeconomic assessment of the ejector- based battery thermal management system for electric and hybrid-electric vehicles publication-title: Energy – volume: 45 year: 2022 ident: bb0250 article-title: A fast sliding-mode-based estimation of state-of-charge for Lithium-ion batteries for electric vehicle applications publication-title: J Energy Storage – volume: 13 start-page: 17534 year: 2023 ident: bb0280 article-title: Low-voltage ride-through capability in a DFIG using FO-PID and RCO techniques under symmetrical and asymmetrical faults publication-title: Sci Rep – volume: 36 year: 2023 ident: bb0135 article-title: Online identification of lithium-ion battery model parameters with initial value uncertainty and measurement noise publication-title: Chin J Mechan Eng – volume: 15 year: 2022 ident: bb0180 article-title: On a novel hybrid manta ray foraging optimizer and its application on parameters estimation of lithium-ion battery publication-title: Int J Comp Intellig Syst – volume: 336 year: 2023 ident: bb0020 article-title: Optimized multi-hidden layer long short-term memory modeling and suboptimal fading extended Kalman filtering strategies for the synthetic state of charge estimation of lithium-ion batteries publication-title: Appl Energy – volume: 59 year: 2023 ident: bb0130 article-title: An improved forgetting factor recursive least square and unscented particle filtering algorithm for accurate lithium-ion battery state of charge estimation publication-title: J Energy Storage – volume: 17 start-page: 3751 year: 2021 end-page: 3761 ident: bb0055 article-title: Battery thermal- and health- constrained energy management for hybrid electric bus based on soft actor-critic DRL algorithm publication-title: IEEE Trans Industr Inform – start-page: 1 year: 2023 end-page: 16 ident: bb0205 article-title: Experimental analysis of passivity-based control theory for permanent magnet synchronous motor drive fed by grid power publication-title: IET Control Theory Appl – volume: 12 year: 2022 ident: bb0190 article-title: Deduction of the transformation regulation on voltage curve for lithium-ion batteries and its application in parameters estimation publication-title: Etransportation – volume: 5 start-page: 864 year: 2016 ident: bib301 article-title: Distribution of optimum reactive power in the presence of wind power plant and considering voltage stability margin using genetic algorithm and Monte Carlo methods publication-title: Eur Online J Nat Social Sciences – volume: 10 start-page: 25073 year: 2022 end-page: 25105 ident: bb0245 article-title: War strategy optimization algorithm: a new effective metaheuristic algorithm for global optimization publication-title: IEEE Access – volume: 344 year: 2023 ident: bb0065 article-title: A novel control approach to improve the stability of hybrid AC/DC microgrids publication-title: Appl Energy – volume: 10 start-page: 2200123 year: 2022 ident: bb0070 article-title: Deep reinforcement learning based on driver experience embedding for energy management strategies in hybrid electric vehicles publication-title: Energ Technol – volume: 330 year: 2023 ident: bb0270 article-title: An evolutionary stacked generalization model based on deep learning and improved grasshopper optimization algorithm for predicting the remaining useful life of PEMFC publication-title: Appl Energy – volume: 269 year: 2020 ident: bb0085 article-title: Parameter sensitivity analysis of electrochemical model-based battery management systems for lithium-ion batteries publication-title: Appl Energy – volume: 66 start-page: 8693 year: 2017 end-page: 8701 ident: bb0050 article-title: Lithium-ion battery parameters and state-of-charge joint estimation based on H-infinity and unscented Kalman filters publication-title: IEEE Trans Vehicul Technol – volume: 68 year: 2023 ident: bb0105 article-title: Health-conscious energy management strategy for battery/fuel cell electric vehicles considering power sources dynamics publication-title: J Energy Storage – volume: 14 year: 2023 ident: bb0160 article-title: Improved parameter identification for lithium-ion batteries based on complex-order beetle swarm optimization algorithm publication-title: Micromachines – volume: 15 start-page: 3989 year: 2021 end-page: 4005 ident: bb0300 article-title: A novel control approach for harmonic compensation using switched power filter compensators in micro-grids publication-title: IET Renew Power Gener – volume: 396 start-page: 453 year: 2018 end-page: 458 ident: bb0235 article-title: A fast estimation algorithm for lithium-ion battery state of health publication-title: J Power Sources – volume: 44 year: 2021 ident: bb0210 article-title: Parameters identification of Thevenin model for lithium-ion batteries using self-adaptive particle swarm optimization differential evolution algorithm to estimate state of charge publication-title: J Energy Storage – volume: 32 year: 2020 ident: bb0045 article-title: Unknown input observer design for lithium-ion batteries SOC estimation based on a differential-algebraic model publication-title: J Energy Storage – volume: 482 year: 2021 ident: bb0075 article-title: Online capacity estimation of lithium-ion batteries with deep long short-term memory networks publication-title: J Power Sources – volume: 195 start-page: 2851 year: 2010 end-page: 2862 ident: bb0095 article-title: Porous cathode optimization for lithium cells: ionic and electronic conductivity, capacity, and selection of materials publication-title: J Power Sources – volume: 38 start-page: 3765 year: 2022 end-page: 3774 ident: bb0200 article-title: A new approach to enhance the operation of M-UPQC proportional-integral multiresonant controller based on the optimization methods for a stand-alone AC microgrid publication-title: IEEE Trans Power Electron – volume: 16 start-page: 1773 year: 2022 end-page: 1791 ident: bb0090 article-title: Enhancement of power quality issues for a hybrid AC/DC microgrid based on optimization methods publication-title: IET Renew Power Generat – volume: 506 year: 2021 ident: bb0265 article-title: One-shot battery degradation trajectory prediction with deep learning publication-title: J Power Sources – volume: 59 year: 2023 ident: bb0150 article-title: An improved parameter identification method considering multi-timescale characteristics of lithium-ion batteries publication-title: J Energy Storage – volume: 373 year: 2021 ident: bb0260 article-title: Hierarchical deep learning neural network (HiDeNN): an artificial intelligence (AI) framework for computational science and engineering publication-title: Comput Methods Appl Mech Eng – volume: 329 year: 2023 ident: bb0030 article-title: Integrating physics-based modeling with machine learning for lithium-ion batteries publication-title: Appl Energy – volume: 68 year: 2023 ident: bb0170 article-title: Nonlinear receding-horizon filter approximation with neural networks for fast state of charge estimation of lithium-ion batteries publication-title: J Energy Storage – reference: Khosravi N., Barati H., Beiranvand M. Improvement of starting transient state in a fixed speed wind turbine using STATCOM. Eur Online J Nat Social Sciences. 2015;4 (3):476. – volume: 66 year: 2023 ident: bb0185 article-title: Deep-learning based parameter identification enables rationalization of battery material evolution in complex electrochemical systems publication-title: J Comput Sci – volume: 230 year: 2023 ident: bb0120 article-title: Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries publication-title: Reliab Eng Syst Safety – volume: 336 year: 2023 ident: bb0035 article-title: Artificial intelligence-based health diagnostic of Lithium-ion battery leveraging transient stage of constant current and constant voltage charging publication-title: Appl Energy – volume: 143 year: 2021 ident: bb0080 article-title: Improvement of harmonic conditions in the AC/DC microgrids with the presence of filter compensation modules publication-title: Renew Sustain Energy Rev – volume: 68 start-page: 312 year: 2021 end-page: 323 ident: bb0225 article-title: Noise-immune model identification and state-of-charge estimation for Lithium-ion battery using bilinear parameterization publication-title: IEEE Trans Industrial Electron – volume: 293 year: 2021 ident: bb0060 article-title: Cloud-based health-conscious energy management of hybrid battery systems in electric vehicles with deep reinforcement learning publication-title: Appl Energy – volume: 290 year: 2021 ident: bb0255 article-title: Battery state-of-health modelling by multiple linear regression publication-title: J Clean Prod – volume: 322 year: 2022 ident: bb0010 article-title: A comparative study of different features extracted from electrochemical impedance spectroscopy in state of health estimation for lithium-ion batteries publication-title: Appl Energy – year: 2023 ident: bb0025 article-title: Deep learning powered online battery health estimation considering multi-timescale ageing dynamics and partial charging information publication-title: IEEE Trans Transport Electrific – volume: 583 year: 2023 ident: bb0195 article-title: A novel learning-based data-driven H∞ control strategy for vanadium redox flow battery in DC microgrids publication-title: J Power Sources – volume: 295 year: 2021 ident: bb0005 article-title: New data optimization framework for parameter estimation under uncertainties with application to lithium-ion battery publication-title: Appl Energy – volume: 57 year: 2023 ident: bb0155 article-title: Parameter identification method for the variable order fractional-order equivalent model of lithium-ion battery publication-title: J Energy Storage – volume: 45 start-page: 952 year: 2022 end-page: 968 ident: bb0175 article-title: Enabling high-fidelity electrochemical P2D modeling of lithium-ion batteries via fast and non-destructive parameter identification publication-title: Energy Storage Mater – volume: 471 year: 2020 ident: bb0040 article-title: A novel charged state prediction method of the lithium ion battery packs based on the composite equivalent modeling and improved splice Kalman filtering algorithm publication-title: J Power Sources – volume: 45 start-page: 952 year: 2022 ident: 10.1016/j.apenergy.2023.122364_bb0175 article-title: Enabling high-fidelity electrochemical P2D modeling of lithium-ion batteries via fast and non-destructive parameter identification publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2021.12.044 – volume: 51 year: 2022 ident: 10.1016/j.apenergy.2023.122364_bb0145 article-title: Study of hysteresis voltage state dependence in lithium-ion battery and a novel asymmetric hysteresis modeling publication-title: J Energy Storage doi: 10.1016/j.est.2022.104492 – volume: 17 start-page: 3751 issue: 6 year: 2021 ident: 10.1016/j.apenergy.2023.122364_bb0055 article-title: Battery thermal- and health- constrained energy management for hybrid electric bus based on soft actor-critic DRL algorithm publication-title: IEEE Trans Industr Inform doi: 10.1109/TII.2020.3014599 – volume: 40 year: 2021 ident: 10.1016/j.apenergy.2023.122364_bb0220 article-title: An extended Kalman filter-based data-driven method for state of charge estimation of Li-ion batteries publication-title: J Energy Storage doi: 10.1016/j.est.2021.102655 – volume: 482 year: 2021 ident: 10.1016/j.apenergy.2023.122364_bb0075 article-title: Online capacity estimation of lithium-ion batteries with deep long short-term memory networks publication-title: J Power Sources doi: 10.1016/j.jpowsour.2020.228863 – volume: 15 start-page: 3989 issue: 16 year: 2021 ident: 10.1016/j.apenergy.2023.122364_bb0300 article-title: A novel control approach for harmonic compensation using switched power filter compensators in micro-grids publication-title: IET Renew Power Gener doi: 10.1049/rpg2.12317 – volume: 344 year: 2023 ident: 10.1016/j.apenergy.2023.122364_bb0065 article-title: A novel control approach to improve the stability of hybrid AC/DC microgrids publication-title: Appl Energy doi: 10.1016/j.apenergy.2023.121261 – volume: 329 year: 2023 ident: 10.1016/j.apenergy.2023.122364_bb0030 article-title: Integrating physics-based modeling with machine learning for lithium-ion batteries publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.120289 – volume: 13 start-page: 17534 issue: 1 year: 2023 ident: 10.1016/j.apenergy.2023.122364_bb0280 article-title: Low-voltage ride-through capability in a DFIG using FO-PID and RCO techniques under symmetrical and asymmetrical faults publication-title: Sci Rep doi: 10.1038/s41598-023-44332-y – volume: 15 issue: 1 year: 2022 ident: 10.1016/j.apenergy.2023.122364_bb0180 article-title: On a novel hybrid manta ray foraging optimizer and its application on parameters estimation of lithium-ion battery publication-title: Int J Comp Intellig Syst – volume: 68 year: 2023 ident: 10.1016/j.apenergy.2023.122364_bb0170 article-title: Nonlinear receding-horizon filter approximation with neural networks for fast state of charge estimation of lithium-ion batteries publication-title: J Energy Storage doi: 10.1016/j.est.2023.107677 – volume: 12 start-page: 21675 issue: 1 year: 2022 ident: 10.1016/j.apenergy.2023.122364_bb0100 article-title: Improvement of power quality parameters using modulated-unified power quality conditioner and switched-inductor boost converter by the optimization techniques for a hybrid AC/DC microgrid publication-title: Sci Rep doi: 10.1038/s41598-022-26001-8 – volume: 142 start-page: 347 year: 2023 ident: 10.1016/j.apenergy.2023.122364_bb0240 article-title: Electric vehicle parameter identification and state of charge estimation of Li-ion batteries: hybrid WSO-HDLNN method publication-title: ISA Trans doi: 10.1016/j.isatra.2023.07.029 – volume: 72 start-page: 108552 year: 2023 ident: 10.1016/j.apenergy.2023.122364_bb0295 article-title: Active power filter module function to improve power quality conditions using GWO and PSO techniques for solar photovoltaic arrays and battery energy storage systems publication-title: J Energy Storage doi: 10.1016/j.est.2023.108552 – volume: 293 year: 2021 ident: 10.1016/j.apenergy.2023.122364_bb0060 article-title: Cloud-based health-conscious energy management of hybrid battery systems in electric vehicles with deep reinforcement learning publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.116977 – volume: 336 year: 2023 ident: 10.1016/j.apenergy.2023.122364_bb0035 article-title: Artificial intelligence-based health diagnostic of Lithium-ion battery leveraging transient stage of constant current and constant voltage charging publication-title: Appl Energy doi: 10.1016/j.apenergy.2023.120751 – start-page: 1 year: 2023 ident: 10.1016/j.apenergy.2023.122364_bb0205 article-title: Experimental analysis of passivity-based control theory for permanent magnet synchronous motor drive fed by grid power publication-title: IET Control Theory Appl – volume: 68 start-page: 312 issue: 1 year: 2021 ident: 10.1016/j.apenergy.2023.122364_bb0225 article-title: Noise-immune model identification and state-of-charge estimation for Lithium-ion battery using bilinear parameterization publication-title: IEEE Trans Industrial Electron doi: 10.1109/TIE.2019.2962429 – volume: 245 year: 2022 ident: 10.1016/j.apenergy.2023.122364_bb0115 article-title: Exergoeconomic assessment of the ejector- based battery thermal management system for electric and hybrid-electric vehicles publication-title: Energy doi: 10.1016/j.energy.2022.123252 – volume: 59 year: 2023 ident: 10.1016/j.apenergy.2023.122364_bb0130 article-title: An improved forgetting factor recursive least square and unscented particle filtering algorithm for accurate lithium-ion battery state of charge estimation publication-title: J Energy Storage doi: 10.1016/j.est.2022.106478 – volume: 66 start-page: 8693 issue: 10 year: 2017 ident: 10.1016/j.apenergy.2023.122364_bb0050 article-title: Lithium-ion battery parameters and state-of-charge joint estimation based on H-infinity and unscented Kalman filters publication-title: IEEE Trans Vehicul Technol doi: 10.1109/TVT.2017.2709326 – volume: 290 year: 2021 ident: 10.1016/j.apenergy.2023.122364_bb0255 article-title: Battery state-of-health modelling by multiple linear regression publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.125700 – volume: 5 start-page: 864 issue: 3 year: 2016 ident: 10.1016/j.apenergy.2023.122364_bib301 article-title: Distribution of optimum reactive power in the presence of wind power plant and considering voltage stability margin using genetic algorithm and Monte Carlo methods publication-title: Eur Online J Nat Social Sciences – volume: 254 year: 2022 ident: 10.1016/j.apenergy.2023.122364_bb0125 article-title: An improved feedforward-long short-term memory modeling method for the whole-life-cycle state of charge prediction of lithium-ion batteries considering current-voltage-temperature variation publication-title: Energy doi: 10.1016/j.energy.2022.124224 – volume: 143 year: 2021 ident: 10.1016/j.apenergy.2023.122364_bb0080 article-title: Improvement of harmonic conditions in the AC/DC microgrids with the presence of filter compensation modules publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2021.110898 – volume: 44 year: 2021 ident: 10.1016/j.apenergy.2023.122364_bb0210 article-title: Parameters identification of Thevenin model for lithium-ion batteries using self-adaptive particle swarm optimization differential evolution algorithm to estimate state of charge publication-title: J Energy Storage doi: 10.1016/j.est.2021.103244 – year: 2023 ident: 10.1016/j.apenergy.2023.122364_bb0025 article-title: Deep learning powered online battery health estimation considering multi-timescale ageing dynamics and partial charging information publication-title: IEEE Trans Transport Electrific – volume: 59 year: 2023 ident: 10.1016/j.apenergy.2023.122364_bb0150 article-title: An improved parameter identification method considering multi-timescale characteristics of lithium-ion batteries publication-title: J Energy Storage doi: 10.1016/j.est.2022.106462 – volume: 32 year: 2020 ident: 10.1016/j.apenergy.2023.122364_bb0045 article-title: Unknown input observer design for lithium-ion batteries SOC estimation based on a differential-algebraic model publication-title: J Energy Storage doi: 10.1016/j.est.2020.101973 – volume: 36 issue: 1 year: 2023 ident: 10.1016/j.apenergy.2023.122364_bb0135 article-title: Online identification of lithium-ion battery model parameters with initial value uncertainty and measurement noise publication-title: Chin J Mechan Eng – volume: 322 year: 2022 ident: 10.1016/j.apenergy.2023.122364_bb0010 article-title: A comparative study of different features extracted from electrochemical impedance spectroscopy in state of health estimation for lithium-ion batteries publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.119502 – volume: 45 year: 2022 ident: 10.1016/j.apenergy.2023.122364_bb0250 article-title: A fast sliding-mode-based estimation of state-of-charge for Lithium-ion batteries for electric vehicle applications publication-title: J Energy Storage doi: 10.1016/j.est.2021.103484 – volume: 12 year: 2022 ident: 10.1016/j.apenergy.2023.122364_bb0190 article-title: Deduction of the transformation regulation on voltage curve for lithium-ion batteries and its application in parameters estimation publication-title: Etransportation doi: 10.1016/j.etran.2022.100164 – volume: 583 year: 2023 ident: 10.1016/j.apenergy.2023.122364_bb0195 article-title: A novel learning-based data-driven H∞ control strategy for vanadium redox flow battery in DC microgrids publication-title: J Power Sources doi: 10.1016/j.jpowsour.2023.233537 – volume: 269 year: 2020 ident: 10.1016/j.apenergy.2023.122364_bb0085 article-title: Parameter sensitivity analysis of electrochemical model-based battery management systems for lithium-ion batteries publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115104 – volume: 238 year: 2022 ident: 10.1016/j.apenergy.2023.122364_bb0110 article-title: Experimental and numerical study of energy and thermal management system for a hydrogen fuel cell-battery hybrid electric vehicle publication-title: Energy doi: 10.1016/j.energy.2021.121794 – volume: 72 year: 2023 ident: 10.1016/j.apenergy.2023.122364_bb0275 article-title: Improved multi-objective grasshopper optimization algorithm and application in capacity configuration of urban rail hybrid energy storage systems publication-title: J Energy Storage – volume: 10 start-page: 2200123 issue: 6 year: 2022 ident: 10.1016/j.apenergy.2023.122364_bb0070 article-title: Deep reinforcement learning based on driver experience embedding for energy management strategies in hybrid electric vehicles publication-title: Energ Technol doi: 10.1002/ente.202200123 – volume: 68 year: 2023 ident: 10.1016/j.apenergy.2023.122364_bb0165 article-title: A parameter identification and state of charge estimation method of lithium-ion battery considering temperature bias publication-title: J Energy Storage doi: 10.1016/j.est.2023.107650 – volume: 295 year: 2021 ident: 10.1016/j.apenergy.2023.122364_bb0005 article-title: New data optimization framework for parameter estimation under uncertainties with application to lithium-ion battery publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.117034 – volume: 339 year: 2023 ident: 10.1016/j.apenergy.2023.122364_bb0015 article-title: Semi-online parameter identification methodology for maritime power lithium batteries publication-title: Appl Energy doi: 10.1016/j.apenergy.2023.120992 – volume: 195 start-page: 2851 issue: 9 year: 2010 ident: 10.1016/j.apenergy.2023.122364_bb0095 article-title: Porous cathode optimization for lithium cells: ionic and electronic conductivity, capacity, and selection of materials publication-title: J Power Sources doi: 10.1016/j.jpowsour.2009.11.044 – volume: 38 start-page: 3765 issue: 3 year: 2022 ident: 10.1016/j.apenergy.2023.122364_bb0200 article-title: A new approach to enhance the operation of M-UPQC proportional-integral multiresonant controller based on the optimization methods for a stand-alone AC microgrid publication-title: IEEE Trans Power Electron doi: 10.1109/TPEL.2022.3217964 – volume: 57 year: 2023 ident: 10.1016/j.apenergy.2023.122364_bb0155 article-title: Parameter identification method for the variable order fractional-order equivalent model of lithium-ion battery publication-title: J Energy Storage doi: 10.1016/j.est.2022.106273 – volume: 330 year: 2023 ident: 10.1016/j.apenergy.2023.122364_bb0270 article-title: An evolutionary stacked generalization model based on deep learning and improved grasshopper optimization algorithm for predicting the remaining useful life of PEMFC publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.120333 – volume: 396 start-page: 453 year: 2018 ident: 10.1016/j.apenergy.2023.122364_bb0235 article-title: A fast estimation algorithm for lithium-ion battery state of health publication-title: J Power Sources doi: 10.1016/j.jpowsour.2018.06.036 – volume: 213 year: 2023 ident: 10.1016/j.apenergy.2023.122364_bb0290 article-title: Dynamic hybrid mechanism-based differential evolution algorithm and its application publication-title: Exp Syst Appl doi: 10.1016/j.eswa.2022.118834 – volume: 506 year: 2021 ident: 10.1016/j.apenergy.2023.122364_bb0265 article-title: One-shot battery degradation trajectory prediction with deep learning publication-title: J Power Sources doi: 10.1016/j.jpowsour.2021.230024 – volume: 265 year: 2020 ident: 10.1016/j.apenergy.2023.122364_bb0230 article-title: A combined method for state-of-charge estimation for lithium-ion batteries using a long short-term memory network and an adaptive cubature Kalman filter publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.114789 – volume: 68 year: 2023 ident: 10.1016/j.apenergy.2023.122364_bb0105 article-title: Health-conscious energy management strategy for battery/fuel cell electric vehicles considering power sources dynamics publication-title: J Energy Storage doi: 10.1016/j.est.2023.107676 – volume: 471 year: 2020 ident: 10.1016/j.apenergy.2023.122364_bb0040 article-title: A novel charged state prediction method of the lithium ion battery packs based on the composite equivalent modeling and improved splice Kalman filtering algorithm publication-title: J Power Sources doi: 10.1016/j.jpowsour.2020.228450 – volume: 16 start-page: 1773 issue: 8 year: 2022 ident: 10.1016/j.apenergy.2023.122364_bb0090 article-title: Enhancement of power quality issues for a hybrid AC/DC microgrid based on optimization methods publication-title: IET Renew Power Generat doi: 10.1049/rpg2.12476 – volume: 10 start-page: 25073 year: 2022 ident: 10.1016/j.apenergy.2023.122364_bb0245 article-title: War strategy optimization algorithm: a new effective metaheuristic algorithm for global optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3153493 – volume: 66 year: 2023 ident: 10.1016/j.apenergy.2023.122364_bb0185 article-title: Deep-learning based parameter identification enables rationalization of battery material evolution in complex electrochemical systems publication-title: J Comput Sci doi: 10.1016/j.jocs.2022.101900 – volume: 435 year: 2022 ident: 10.1016/j.apenergy.2023.122364_bb0140 article-title: A novel multiple training-scale dynamic adaptive cuckoo search optimized long short-term memory neural network and multi-dimensional health indicators acquisition strategy for whole life cycle health evaluation of lithium-ion batteries publication-title: Electrochim Acta doi: 10.1016/j.electacta.2022.141404 – volume: 373 year: 2021 ident: 10.1016/j.apenergy.2023.122364_bb0260 article-title: Hierarchical deep learning neural network (HiDeNN): an artificial intelligence (AI) framework for computational science and engineering publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2020.113452 – volume: 336 year: 2023 ident: 10.1016/j.apenergy.2023.122364_bb0020 article-title: Optimized multi-hidden layer long short-term memory modeling and suboptimal fading extended Kalman filtering strategies for the synthetic state of charge estimation of lithium-ion batteries publication-title: Appl Energy doi: 10.1016/j.apenergy.2023.120866 – ident: 10.1016/j.apenergy.2023.122364_bb0215 – volume: 14 issue: 2 year: 2023 ident: 10.1016/j.apenergy.2023.122364_bb0160 article-title: Improved parameter identification for lithium-ion batteries based on complex-order beetle swarm optimization algorithm publication-title: Micromachines doi: 10.3390/mi14020413 – volume: 230 year: 2023 ident: 10.1016/j.apenergy.2023.122364_bb0120 article-title: Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries publication-title: Reliab Eng Syst Safety doi: 10.1016/j.ress.2022.108920 – volume: 44 start-page: 967 issue: 2 year: 2023 ident: 10.1016/j.apenergy.2023.122364_bb0285 article-title: Reactive power management by using a modified differential evolution algorithm publication-title: Optim Control Appl Methods doi: 10.1002/oca.2815 |
| SSID | ssj0002120 |
| Score | 2.534019 |
| Snippet | In recent years, batteries have evolved increasingly overall in numerous applications. Among batteries, LIBs are the most advantageous technology because of... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 122364 |
| SubjectTerms | algorithms electric potential difference Electric vehicle Equivalent circuit grasshoppers lithium batteries Lithium-ion battery Parameter identification protocols State of charge |
| Title | Enhancing battery management for HEVs and EVs: A hybrid approach for parameter identification and voltage estimation in lithium-ion battery models |
| URI | https://dx.doi.org/10.1016/j.apenergy.2023.122364 https://www.proquest.com/docview/3040483396 |
| Volume | 356 |
| WOSCitedRecordID | wos001129908600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqLgc4IFhYsbxkJG5VShvHTcytQNGCxAqJsuotchxnm6VNqr7Y5Wfwl_hjzNhO0uWhBSEuSRN57LbzZWbszDcm5KkMBRj9UHpo_L2A-4GXMB14PaUCeLYidIFms4nw-DiaTMT7VutbxYXZzsKiiM7PxeK_qhrugbKROvsX6q47hRvwGZQOR1A7HP9I8aNiijU0itNOYmpnXrgMVfPWH5MKj0YntjAznC0xfXqBvK26vrhphTXB55gr08lTl1FksYKSYNPWmOyDJTos9xHXTSCin-abuYeX9di4085qNwSu4l5tWIe1wZ-Wq6Xc5hadjbN4VX6eybVMZJpbahGE-ps6oXiYQO-n8HsNVN5tpnI-l2nnhfxUNxmXEP-mpXdiUwJm-RdHUVLlpSUPgA9uwMKbdbiKi9MkPhn-V2_g4XzQejZrzqPQR3Me7dp7ZiuZ_-Q77DLGWVcu7B_QxZ3lu30fS-w33rLOYfyAA9r5J86jI4gD9vyQi6hN9oZvRpO3dUDgu-qg1RfcIar_erTfxUg_RAsmBBrfIjfd3IUOLeZuk5Yu9smNnYqW--Rg1BAnoanzHKs75GsNS-qgQRtYUgAcRVhSABeF83M6pBaUtAKlaVODkl4GpZFzoKQNKGle0B1QNiMbUN4lH1-Pxi-PPLcfiKdYwNfgC4UyC6csGWQDMUgCLkXga55mQSJSHqaRUpHIICZjOglV2Mt0j2mRqixQvB-yA9IuykLfI5T3s4RDH4FSGmR5lPR8bXjejMt-kh0SXmkgVq5YPu7ZMourrMizuNJcjJqLreYOybNabmHLxVwpISoFxy7otcFsDLi8UvZJhYgYvAK-6pOFLjermIFvDiLGxOD-P_T_gFxvHr-HpL1ebvQjck1t1_lq-djB_DvjHubn |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+battery+management+for+HEVs+and+EVs%3A+A+hybrid+approach+for+parameter+identification+and+voltage+estimation+in+lithium-ion+battery+models&rft.jtitle=Applied+energy&rft.au=Khosravi%2C+Nima&rft.au=Dowlatabadi%2C+Masrour&rft.au=Abdelghany%2C+Muhammad+Bakr&rft.au=Tostado-V%C3%A9liz%2C+Marcos&rft.date=2024-02-15&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=356&rft_id=info:doi/10.1016%2Fj.apenergy.2023.122364&rft.externalDocID=S0306261923017282 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |