Waste-to-bioethanol supply chain network: A deterministic model
•A decision-making strategy for organic waste to bioethanol SCN is developed.•Techno-Economic Assessment of bioethanol SCN is considered.•A deterministic programming model for bioethanol SCN is developed.•A case study of bioethanol SCN in South Korea in 2030 is presented. Bioethanol (bio-EtOH) is co...
Uloženo v:
| Vydáno v: | Applied energy Ročník 300; s. 117381 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
15.10.2021
|
| Témata: | |
| ISSN: | 0306-2619, 1872-9118 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A decision-making strategy for organic waste to bioethanol SCN is developed.•Techno-Economic Assessment of bioethanol SCN is considered.•A deterministic programming model for bioethanol SCN is developed.•A case study of bioethanol SCN in South Korea in 2030 is presented.
Bioethanol (bio-EtOH) is commonly used as a renewable biofuel additive for gasoline. A novel technology producing bio-EtOH from anaerobic digestion of organic waste (OW) has recently attracted attention. This work presents a deterministic mixed integer linear programming model for the optimal location of OW-based bio-EtOH biorefineries. The proposed model considers OW treatment location, bio-EtOH biorefineries, and truck transport links as a supply chain network (SCN) approach. The objective function of the developed model is to minimize the total bio-EtOH levelized cost (ELC) while satisfying the model constraints consisting of equalities (e.g., mass and energy balances for the bio-EtOH biorefinery) and inequalities (e.g., capacity of the bio-EtOH refinery, truck transport) to meet the regional demands of bio-EtOH. To validate the optimization model, a case study based on a real scenario for South Korea in 2030 was conducted for different bio-EtOH blending rates (E10, E20, E85, E100). The case study results indicate that ELC of E10 containing 10% bio-EtOH from OW products combined with gasoline is USD 3.65/gallon. As the blending rate of bio-EtOH increases, ELC increases to USD 4.36/gallon for E20, USD 8.99/gallon for E85, and USD 10.05/gallon for E100. The optimization results can help determine SCN strategies for an OW-based biofuel economy. |
|---|---|
| AbstractList | Bioethanol (bio-EtOH) is commonly used as a renewable biofuel additive for gasoline. A novel technology producing bio-EtOH from anaerobic digestion of organic waste (OW) has recently attracted attention. This work presents a deterministic mixed integer linear programming model for the optimal location of OW-based bio-EtOH biorefineries. The proposed model considers OW treatment location, bio-EtOH biorefineries, and truck transport links as a supply chain network (SCN) approach. The objective function of the developed model is to minimize the total bio-EtOH levelized cost (ELC) while satisfying the model constraints consisting of equalities (e.g., mass and energy balances for the bio-EtOH biorefinery) and inequalities (e.g., capacity of the bio-EtOH refinery, truck transport) to meet the regional demands of bio-EtOH. To validate the optimization model, a case study based on a real scenario for South Korea in 2030 was conducted for different bio-EtOH blending rates (E10, E20, E85, E100). The case study results indicate that ELC of E10 containing 10% bio-EtOH from OW products combined with gasoline is USD 3.65/gallon. As the blending rate of bio-EtOH increases, ELC increases to USD 4.36/gallon for E20, USD 8.99/gallon for E85, and USD 10.05/gallon for E100. The optimization results can help determine SCN strategies for an OW-based biofuel economy. •A decision-making strategy for organic waste to bioethanol SCN is developed.•Techno-Economic Assessment of bioethanol SCN is considered.•A deterministic programming model for bioethanol SCN is developed.•A case study of bioethanol SCN in South Korea in 2030 is presented. Bioethanol (bio-EtOH) is commonly used as a renewable biofuel additive for gasoline. A novel technology producing bio-EtOH from anaerobic digestion of organic waste (OW) has recently attracted attention. This work presents a deterministic mixed integer linear programming model for the optimal location of OW-based bio-EtOH biorefineries. The proposed model considers OW treatment location, bio-EtOH biorefineries, and truck transport links as a supply chain network (SCN) approach. The objective function of the developed model is to minimize the total bio-EtOH levelized cost (ELC) while satisfying the model constraints consisting of equalities (e.g., mass and energy balances for the bio-EtOH biorefinery) and inequalities (e.g., capacity of the bio-EtOH refinery, truck transport) to meet the regional demands of bio-EtOH. To validate the optimization model, a case study based on a real scenario for South Korea in 2030 was conducted for different bio-EtOH blending rates (E10, E20, E85, E100). The case study results indicate that ELC of E10 containing 10% bio-EtOH from OW products combined with gasoline is USD 3.65/gallon. As the blending rate of bio-EtOH increases, ELC increases to USD 4.36/gallon for E20, USD 8.99/gallon for E85, and USD 10.05/gallon for E100. The optimization results can help determine SCN strategies for an OW-based biofuel economy. |
| ArticleNumber | 117381 |
| Author | Kwon, Oseok Han, Jeehoon |
| Author_xml | – sequence: 1 givenname: Oseok surname: Kwon fullname: Kwon, Oseok organization: School of Chemical Engineering, Jeonbuk National University, 54896, Republic of Korea – sequence: 2 givenname: Jeehoon surname: Han fullname: Han, Jeehoon email: jhhan@jbnu.ac.kr organization: School of Chemical Engineering, Jeonbuk National University, 54896, Republic of Korea |
| BookMark | eNqFkDtPwzAURi1UJNrCX0AZWVL8SJ0YIUFV8ZIqsYAYLce-oS6pHWwX1H9PqsLC0uHqLud8wxmhgfMOEDoneEIw4ZerierAQXjfTiimZEJIySpyhIakKmkuCKkGaIgZ5jnlRJygUYwrjHuS4iG6eVMxQZ58XlsPaamcb7O46bp2m-mlsi5zkL59-LjKZpmBBGFtnY3J6mztDbSn6LhRbYSz3z9Gr_d3L_PHfPH88DSfLXLNimnKKeNGGI5Fo0tc1IoA1RgLaEhFxdQU_WEjyoJPWc1Uw0ozVbXQSkBFippoNkYX-90u-M8NxCTXNmpoW-XAb6KknPFClIKVPXq9R3XwMQZopLZJJetdCsq2kmC56yZX8q-b3HWT-269zv_pXbBrFbaHxdu9CH2HLwtBRm3BaTA2gE7SeHto4gdGeo4I |
| CitedBy_id | crossref_primary_10_1016_j_jenvman_2023_118279 crossref_primary_10_3390_en18081958 crossref_primary_10_1051_e3sconf_202346502022 crossref_primary_10_1002_bse_4219 crossref_primary_10_1016_j_cej_2025_161171 crossref_primary_10_1016_j_dajour_2023_100236 crossref_primary_10_1016_j_jclepro_2025_144712 crossref_primary_10_1016_j_jclepro_2024_142047 crossref_primary_10_1016_j_enconman_2022_115833 crossref_primary_10_1016_j_jclepro_2025_145231 crossref_primary_10_1016_j_scitotenv_2022_157069 crossref_primary_10_1007_s11356_025_36271_0 crossref_primary_10_3390_en15145001 crossref_primary_10_1016_j_enconman_2024_119063 crossref_primary_10_1016_j_fuel_2021_122928 |
| Cites_doi | 10.1039/C6RA10003A 10.1016/j.biortech.2013.01.007 10.1016/j.apenergy.2019.113482 10.1016/j.apenergy.2019.114235 10.1627/jpi.63.196 10.1016/j.jclepro.2018.08.061 10.1126/science.1246748 10.1016/j.apenergy.2020.115653 10.1039/D1EE00850A 10.1016/j.apenergy.2016.12.091 10.1039/C3GC41511B 10.1016/j.ijhydene.2011.04.001 10.1021/ie200344t 10.1039/c4nj00134f 10.1016/j.apenergy.2020.115884 10.1016/j.apenergy.2015.05.047 10.1016/j.biortech.2015.01.135 10.1016/j.mcat.2018.01.030 10.1016/j.wasman.2014.11.019 10.3390/en11061551 10.1039/D0EE00812E 10.1039/C7GC02368E |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2021.117381 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| ExternalDocumentID | 10_1016_j_apenergy_2021_117381 S0306261921007844 |
| GeographicLocations | South Korea |
| GeographicLocations_xml | – name: South Korea |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c345t-236d9d609fc704ba1e2c009ef18295d495d0d974653b3af37d5ab9ca9e814b1c3 |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000684833800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Sun Sep 28 00:26:20 EDT 2025 Tue Nov 18 22:30:43 EST 2025 Sat Nov 29 07:20:36 EST 2025 Fri Feb 23 02:41:00 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Facility location Organic waste Supply chain management Biofuel Ethanol |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c345t-236d9d609fc704ba1e2c009ef18295d495d0d974653b3af37d5ab9ca9e814b1c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2636497937 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2636497937 crossref_citationtrail_10_1016_j_apenergy_2021_117381 crossref_primary_10_1016_j_apenergy_2021_117381 elsevier_sciencedirect_doi_10_1016_j_apenergy_2021_117381 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-15 |
| PublicationDateYYYYMMDD | 2021-10-15 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied energy |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Cho, Kim, Baek, Lee, Kwon (b0090) 2018; 201 Luterbacher, Rand, Alonso, Han, Youngquist, Maravelias (b0030) 2014; 343 Rakshit, Voolapalli, Upadhyayula (b0065) 2018; 448 Han, Sen, Alonso, Dumesic, Maravelias (b0040) 2014; 16 Phaiboonsilpa, Kawamoto, Minami, Masuda, Wakagi, Sunayama (b0070) 2020; 63 Ahn, Lee, Lee, Han (b0110) 2015; 154 Han, Lee (b0050) 2011; 50 Byun, Han (b0100) 2017; 19 Bello, Galán-Martín, Feijoo, Moreira, Guillén-Gosálbez (b0015) 2020; 279 Li, Kesharwani, Sun, Qin, Dagli, Zhang (b0010) 2020; 259 Han, Ryu, Lee (b0075) 2012; 37 Gilani, Sahebi, Oliveira (b0085) 2020; 278 Cho, Kim, Han, Lee, Kim, Kim (b0105) 2019; 252 Khuong, Zulkifli, Masjuki, Mohamad, Arslan, Mosarof (b0005) 2016; 6 Byun, Kwon, Park, Han (b0080) 2021 Bastidas-Oyanedel, Schmidt (b0060) 2018; 11 Ghosh, Chowdhury, Bhattacharya (b0020) 2017; 198 Lee, Kim, Seong, Lee, Jung, Lee (b0045) 2013; 132 Wang, Guo, Wang, Zhu, Yin, Qiu (b0095) 2014; 38 Alibardi, Cossu (b0055) 2015; 36 Byun, Han (b0025) 2020; 13 Han, Luterbacher, Alonso, Dumesic, Maravelias (b0035) 2015; 182 Gilani (10.1016/j.apenergy.2021.117381_b0085) 2020; 278 Li (10.1016/j.apenergy.2021.117381_b0010) 2020; 259 Luterbacher (10.1016/j.apenergy.2021.117381_b0030) 2014; 343 Wang (10.1016/j.apenergy.2021.117381_b0095) 2014; 38 Ahn (10.1016/j.apenergy.2021.117381_b0110) 2015; 154 Han (10.1016/j.apenergy.2021.117381_b0035) 2015; 182 Lee (10.1016/j.apenergy.2021.117381_b0045) 2013; 132 Byun (10.1016/j.apenergy.2021.117381_b0025) 2020; 13 Han (10.1016/j.apenergy.2021.117381_b0040) 2014; 16 Khuong (10.1016/j.apenergy.2021.117381_b0005) 2016; 6 Phaiboonsilpa (10.1016/j.apenergy.2021.117381_b0070) 2020; 63 Alibardi (10.1016/j.apenergy.2021.117381_b0055) 2015; 36 Byun (10.1016/j.apenergy.2021.117381_b0100) 2017; 19 Bastidas-Oyanedel (10.1016/j.apenergy.2021.117381_b0060) 2018; 11 Bello (10.1016/j.apenergy.2021.117381_b0015) 2020; 279 Han (10.1016/j.apenergy.2021.117381_b0050) 2011; 50 Cho (10.1016/j.apenergy.2021.117381_b0105) 2019; 252 Rakshit (10.1016/j.apenergy.2021.117381_b0065) 2018; 448 Ghosh (10.1016/j.apenergy.2021.117381_b0020) 2017; 198 Han (10.1016/j.apenergy.2021.117381_b0075) 2012; 37 Byun (10.1016/j.apenergy.2021.117381_b0080) 2021 Cho (10.1016/j.apenergy.2021.117381_b0090) 2018; 201 |
| References_xml | – volume: 37 start-page: 5328 year: 2012 end-page: 5346 ident: b0075 article-title: Modeling the operation of hydrogen supply networks considering facility location publication-title: Int J Hydrogen Energy – volume: 343 start-page: 277 year: 2014 end-page: 280 ident: b0030 article-title: Nonenzymatic Sugar Production from Biomass Using Biomass-Derived γ-Valerolactone publication-title: Science – year: 2021 ident: b0080 article-title: Food Waste Valorization to Green Energy Vehicles: Sustainability Assessment publication-title: Energy Environ Sci – volume: 36 start-page: 147 year: 2015 end-page: 155 ident: b0055 article-title: Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials publication-title: Waste Manage – volume: 50 start-page: 6297 year: 2011 end-page: 6315 ident: b0050 article-title: Development of a Scalable and Comprehensive Infrastructure Model for Carbon Dioxide Utilization and Disposal publication-title: Ind Eng Chem Res – volume: 16 start-page: 653 year: 2014 end-page: 661 ident: b0040 article-title: A strategy for the simultaneous catalytic conversion of hemicellulose and cellulose from lignocellulosic biomass to liquid transportation fuels publication-title: Green Chem – volume: 11 start-page: 1551 year: 2018 ident: b0060 article-title: Increasing Profits in Food Waste Biorefinery—A Techno-Economic Analysis publication-title: Energies. – volume: 63 start-page: 196 year: 2020 end-page: 203 ident: b0070 article-title: Two-step Conversion of Acetic Acid to Bioethanol by Ethyl Esterification and Catalytic Hydrogenolysis publication-title: J Jpn Pet Inst – volume: 154 start-page: 528 year: 2015 end-page: 542 ident: b0110 article-title: Strategic planning design of microalgae biomass-to-biodiesel supply chain network: Multi-period deterministic model publication-title: Appl Energy – volume: 198 start-page: 284 year: 2017 end-page: 298 ident: b0020 article-title: Sustainability of cereal straws for the fermentative production of second generation biofuels: A review of the efficiency and economics of biochemical pretreatment processes publication-title: Appl Energy – volume: 13 start-page: 2233 year: 2020 end-page: 2242 ident: b0025 article-title: Sustainable development of biorefineries: integrated assessment method for co-production pathways publication-title: Energy Environ Sci – volume: 448 start-page: 78 year: 2018 end-page: 90 ident: b0065 article-title: Acetic acid hydrogenation to ethanol over supported Pt-Sn catalyst: Effect of Bronsted acidity on product selectivity publication-title: Molecular Catalysis. – volume: 279 year: 2020 ident: b0015 article-title: BECCS based on bioethanol from wood residues: Potential towards a carbon-negative transport and side-effects publication-title: Appl Energy – volume: 201 start-page: 14 year: 2018 end-page: 21 ident: b0090 article-title: The use of organic waste-derived volatile fatty acids as raw materials of C publication-title: J Clean Prod. – volume: 259 year: 2020 ident: b0010 article-title: Economic viability and environmental impact investigation for the biofuel supply chain using co-fermentation technology publication-title: Appl Energy – volume: 132 start-page: 197 year: 2013 end-page: 201 ident: b0045 article-title: Chemo-enzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga publication-title: Dunaliella tertiolecta. Bioresource technology. – volume: 252 year: 2019 ident: b0105 article-title: Bioalcohol production from acidogenic products via a two-step process: A case study of butyric acid to butanol publication-title: Appl Energy – volume: 6 start-page: 66847 year: 2016 end-page: 66869 ident: b0005 article-title: A review on the effect of bioethanol dilution on the properties and performance of automotive lubricants in gasoline engines publication-title: RSC Adv – volume: 278 year: 2020 ident: b0085 article-title: Sustainable sugarcane-to-bioethanol supply chain network design: A robust possibilistic programming model publication-title: Appl Energy – volume: 182 start-page: 258 year: 2015 end-page: 266 ident: b0035 article-title: A lignocellulosic ethanol strategy via nonenzymatic sugar production: Process synthesis and analysis publication-title: Bioresour Technol – volume: 19 start-page: 5214 year: 2017 end-page: 5229 ident: b0100 article-title: An integrated strategy for catalytic co-production of jet fuel range alkenes, tetrahydrofurfuryl alcohol, and 1,2-pentanediol from lignocellulosic biomass publication-title: Green Chem – volume: 38 start-page: 2792 year: 2014 end-page: 2800 ident: b0095 article-title: Effect of the Cu/SBA-15 catalyst preparation method on methyl acetate hydrogenation for ethanol production publication-title: New J Chem. – volume: 6 start-page: 66847 year: 2016 ident: 10.1016/j.apenergy.2021.117381_b0005 article-title: A review on the effect of bioethanol dilution on the properties and performance of automotive lubricants in gasoline engines publication-title: RSC Adv doi: 10.1039/C6RA10003A – volume: 132 start-page: 197 year: 2013 ident: 10.1016/j.apenergy.2021.117381_b0045 article-title: Chemo-enzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga publication-title: Dunaliella tertiolecta. Bioresource technology. doi: 10.1016/j.biortech.2013.01.007 – volume: 252 year: 2019 ident: 10.1016/j.apenergy.2021.117381_b0105 article-title: Bioalcohol production from acidogenic products via a two-step process: A case study of butyric acid to butanol publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.113482 – volume: 259 year: 2020 ident: 10.1016/j.apenergy.2021.117381_b0010 article-title: Economic viability and environmental impact investigation for the biofuel supply chain using co-fermentation technology publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.114235 – volume: 63 start-page: 196 year: 2020 ident: 10.1016/j.apenergy.2021.117381_b0070 article-title: Two-step Conversion of Acetic Acid to Bioethanol by Ethyl Esterification and Catalytic Hydrogenolysis publication-title: J Jpn Pet Inst doi: 10.1627/jpi.63.196 – volume: 201 start-page: 14 year: 2018 ident: 10.1016/j.apenergy.2021.117381_b0090 article-title: The use of organic waste-derived volatile fatty acids as raw materials of C4–C5 bioalcohols publication-title: J Clean Prod. doi: 10.1016/j.jclepro.2018.08.061 – volume: 343 start-page: 277 year: 2014 ident: 10.1016/j.apenergy.2021.117381_b0030 article-title: Nonenzymatic Sugar Production from Biomass Using Biomass-Derived γ-Valerolactone publication-title: Science doi: 10.1126/science.1246748 – volume: 278 year: 2020 ident: 10.1016/j.apenergy.2021.117381_b0085 article-title: Sustainable sugarcane-to-bioethanol supply chain network design: A robust possibilistic programming model publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115653 – year: 2021 ident: 10.1016/j.apenergy.2021.117381_b0080 article-title: Food Waste Valorization to Green Energy Vehicles: Sustainability Assessment publication-title: Energy Environ Sci doi: 10.1039/D1EE00850A – volume: 198 start-page: 284 year: 2017 ident: 10.1016/j.apenergy.2021.117381_b0020 article-title: Sustainability of cereal straws for the fermentative production of second generation biofuels: A review of the efficiency and economics of biochemical pretreatment processes publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.12.091 – volume: 16 start-page: 653 year: 2014 ident: 10.1016/j.apenergy.2021.117381_b0040 article-title: A strategy for the simultaneous catalytic conversion of hemicellulose and cellulose from lignocellulosic biomass to liquid transportation fuels publication-title: Green Chem doi: 10.1039/C3GC41511B – volume: 37 start-page: 5328 year: 2012 ident: 10.1016/j.apenergy.2021.117381_b0075 article-title: Modeling the operation of hydrogen supply networks considering facility location publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2011.04.001 – volume: 50 start-page: 6297 year: 2011 ident: 10.1016/j.apenergy.2021.117381_b0050 article-title: Development of a Scalable and Comprehensive Infrastructure Model for Carbon Dioxide Utilization and Disposal publication-title: Ind Eng Chem Res doi: 10.1021/ie200344t – volume: 38 start-page: 2792 year: 2014 ident: 10.1016/j.apenergy.2021.117381_b0095 article-title: Effect of the Cu/SBA-15 catalyst preparation method on methyl acetate hydrogenation for ethanol production publication-title: New J Chem. doi: 10.1039/c4nj00134f – volume: 279 year: 2020 ident: 10.1016/j.apenergy.2021.117381_b0015 article-title: BECCS based on bioethanol from wood residues: Potential towards a carbon-negative transport and side-effects publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115884 – volume: 154 start-page: 528 year: 2015 ident: 10.1016/j.apenergy.2021.117381_b0110 article-title: Strategic planning design of microalgae biomass-to-biodiesel supply chain network: Multi-period deterministic model publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.05.047 – volume: 182 start-page: 258 year: 2015 ident: 10.1016/j.apenergy.2021.117381_b0035 article-title: A lignocellulosic ethanol strategy via nonenzymatic sugar production: Process synthesis and analysis publication-title: Bioresour Technol doi: 10.1016/j.biortech.2015.01.135 – volume: 448 start-page: 78 year: 2018 ident: 10.1016/j.apenergy.2021.117381_b0065 article-title: Acetic acid hydrogenation to ethanol over supported Pt-Sn catalyst: Effect of Bronsted acidity on product selectivity publication-title: Molecular Catalysis. doi: 10.1016/j.mcat.2018.01.030 – volume: 36 start-page: 147 year: 2015 ident: 10.1016/j.apenergy.2021.117381_b0055 article-title: Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials publication-title: Waste Manage doi: 10.1016/j.wasman.2014.11.019 – volume: 11 start-page: 1551 year: 2018 ident: 10.1016/j.apenergy.2021.117381_b0060 article-title: Increasing Profits in Food Waste Biorefinery—A Techno-Economic Analysis publication-title: Energies. doi: 10.3390/en11061551 – volume: 13 start-page: 2233 year: 2020 ident: 10.1016/j.apenergy.2021.117381_b0025 article-title: Sustainable development of biorefineries: integrated assessment method for co-production pathways publication-title: Energy Environ Sci doi: 10.1039/D0EE00812E – volume: 19 start-page: 5214 year: 2017 ident: 10.1016/j.apenergy.2021.117381_b0100 article-title: An integrated strategy for catalytic co-production of jet fuel range alkenes, tetrahydrofurfuryl alcohol, and 1,2-pentanediol from lignocellulosic biomass publication-title: Green Chem doi: 10.1039/C7GC02368E |
| SSID | ssj0002120 |
| Score | 2.4725688 |
| Snippet | •A decision-making strategy for organic waste to bioethanol SCN is developed.•Techno-Economic Assessment of bioethanol SCN is considered.•A deterministic... Bioethanol (bio-EtOH) is commonly used as a renewable biofuel additive for gasoline. A novel technology producing bio-EtOH from anaerobic digestion of organic... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 117381 |
| SubjectTerms | anaerobic digestion bioethanol Biofuel biorefining case studies deterministic models energy Ethanol Facility location gasoline Organic waste organic wastes South Korea supply chain Supply chain management |
| Title | Waste-to-bioethanol supply chain network: A deterministic model |
| URI | https://dx.doi.org/10.1016/j.apenergy.2021.117381 https://www.proquest.com/docview/2636497937 |
| Volume | 300 |
| WOSCitedRecordID | wos000684833800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgywEOCAoV5aUgcatSsrYT21zQCi0ChAoSBfZmOfZEtFTJqtlC-feMH9ldSlFBiEsUWfFD_pzxjD3fDCGPRekMLp1xTv3FIWcV5NJClTsBAqCWNQ25AT--EXt7cjZT71JKvz6kExBtK09P1fy_Qo1lCLanzv4F3MtGsQDfEXR8Iuz4_CPgPxkELl90aPN24A_Gu6Od3ufu_O5ZvgftThs9vyMn3SV3mBCvOebFWddXByUVAkVwKZ2_xbv6tz10X1YyLNI8AD53Cet0mkCDO1vkU8YjroHmsvIpCtSqosq9qRU3jSgppaBeUsp1UcpC1NFfxXI8ITjcNfM43F3ftb8vZjFfy5mQ1-99h8G08z4ckvPLZIOKUskR2Zi8ms5eL_damgJvDgNc44Cf39vv1I8zG3HQLvZvkOvJLMgmEc6b5BK0m-TaWrDITbI1XXES8dMklPtb5Nk5iGcR8SwgniXEn2aT7Ce8s4D3bfLhxXT_-cs85cXILePlIqescspVhWqsKHhtxkAtqsrQoK2oSocmrysc2olVyWpmGiZcaWpljQI55vXYsi0yarsW7hDslBpbKGGbpuZofEvPGFXcgJJGqkJsk3KYLm1T0Hifu-RID96Bh3qYZu2nWcdp3iZPlvXmMWzKhTXUgIZOyl9U6jQuogvrPhrg0ygd_ZWXaaE76TWtWMWVjwF59x_av0eurv6V-2S0OD6BB-SK_bo46I8fpjX5A9O7jQQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Waste-to-bioethanol+supply+chain+network%3A+A+deterministic+model&rft.jtitle=Applied+energy&rft.au=Kwon%2C+Oseok&rft.au=Han%2C+Jeehoon&rft.date=2021-10-15&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=300&rft_id=info:doi/10.1016%2Fj.apenergy.2021.117381&rft.externalDocID=S0306261921007844 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |