Waste-to-bioethanol supply chain network: A deterministic model

•A decision-making strategy for organic waste to bioethanol SCN is developed.•Techno-Economic Assessment of bioethanol SCN is considered.•A deterministic programming model for bioethanol SCN is developed.•A case study of bioethanol SCN in South Korea in 2030 is presented. Bioethanol (bio-EtOH) is co...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied energy Ročník 300; s. 117381
Hlavní autoři: Kwon, Oseok, Han, Jeehoon
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 15.10.2021
Témata:
ISSN:0306-2619, 1872-9118
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A decision-making strategy for organic waste to bioethanol SCN is developed.•Techno-Economic Assessment of bioethanol SCN is considered.•A deterministic programming model for bioethanol SCN is developed.•A case study of bioethanol SCN in South Korea in 2030 is presented. Bioethanol (bio-EtOH) is commonly used as a renewable biofuel additive for gasoline. A novel technology producing bio-EtOH from anaerobic digestion of organic waste (OW) has recently attracted attention. This work presents a deterministic mixed integer linear programming model for the optimal location of OW-based bio-EtOH biorefineries. The proposed model considers OW treatment location, bio-EtOH biorefineries, and truck transport links as a supply chain network (SCN) approach. The objective function of the developed model is to minimize the total bio-EtOH levelized cost (ELC) while satisfying the model constraints consisting of equalities (e.g., mass and energy balances for the bio-EtOH biorefinery) and inequalities (e.g., capacity of the bio-EtOH refinery, truck transport) to meet the regional demands of bio-EtOH. To validate the optimization model, a case study based on a real scenario for South Korea in 2030 was conducted for different bio-EtOH blending rates (E10, E20, E85, E100). The case study results indicate that ELC of E10 containing 10% bio-EtOH from OW products combined with gasoline is USD 3.65/gallon. As the blending rate of bio-EtOH increases, ELC increases to USD 4.36/gallon for E20, USD 8.99/gallon for E85, and USD 10.05/gallon for E100. The optimization results can help determine SCN strategies for an OW-based biofuel economy.
AbstractList Bioethanol (bio-EtOH) is commonly used as a renewable biofuel additive for gasoline. A novel technology producing bio-EtOH from anaerobic digestion of organic waste (OW) has recently attracted attention. This work presents a deterministic mixed integer linear programming model for the optimal location of OW-based bio-EtOH biorefineries. The proposed model considers OW treatment location, bio-EtOH biorefineries, and truck transport links as a supply chain network (SCN) approach. The objective function of the developed model is to minimize the total bio-EtOH levelized cost (ELC) while satisfying the model constraints consisting of equalities (e.g., mass and energy balances for the bio-EtOH biorefinery) and inequalities (e.g., capacity of the bio-EtOH refinery, truck transport) to meet the regional demands of bio-EtOH. To validate the optimization model, a case study based on a real scenario for South Korea in 2030 was conducted for different bio-EtOH blending rates (E10, E20, E85, E100). The case study results indicate that ELC of E10 containing 10% bio-EtOH from OW products combined with gasoline is USD 3.65/gallon. As the blending rate of bio-EtOH increases, ELC increases to USD 4.36/gallon for E20, USD 8.99/gallon for E85, and USD 10.05/gallon for E100. The optimization results can help determine SCN strategies for an OW-based biofuel economy.
•A decision-making strategy for organic waste to bioethanol SCN is developed.•Techno-Economic Assessment of bioethanol SCN is considered.•A deterministic programming model for bioethanol SCN is developed.•A case study of bioethanol SCN in South Korea in 2030 is presented. Bioethanol (bio-EtOH) is commonly used as a renewable biofuel additive for gasoline. A novel technology producing bio-EtOH from anaerobic digestion of organic waste (OW) has recently attracted attention. This work presents a deterministic mixed integer linear programming model for the optimal location of OW-based bio-EtOH biorefineries. The proposed model considers OW treatment location, bio-EtOH biorefineries, and truck transport links as a supply chain network (SCN) approach. The objective function of the developed model is to minimize the total bio-EtOH levelized cost (ELC) while satisfying the model constraints consisting of equalities (e.g., mass and energy balances for the bio-EtOH biorefinery) and inequalities (e.g., capacity of the bio-EtOH refinery, truck transport) to meet the regional demands of bio-EtOH. To validate the optimization model, a case study based on a real scenario for South Korea in 2030 was conducted for different bio-EtOH blending rates (E10, E20, E85, E100). The case study results indicate that ELC of E10 containing 10% bio-EtOH from OW products combined with gasoline is USD 3.65/gallon. As the blending rate of bio-EtOH increases, ELC increases to USD 4.36/gallon for E20, USD 8.99/gallon for E85, and USD 10.05/gallon for E100. The optimization results can help determine SCN strategies for an OW-based biofuel economy.
ArticleNumber 117381
Author Kwon, Oseok
Han, Jeehoon
Author_xml – sequence: 1
  givenname: Oseok
  surname: Kwon
  fullname: Kwon, Oseok
  organization: School of Chemical Engineering, Jeonbuk National University, 54896, Republic of Korea
– sequence: 2
  givenname: Jeehoon
  surname: Han
  fullname: Han, Jeehoon
  email: jhhan@jbnu.ac.kr
  organization: School of Chemical Engineering, Jeonbuk National University, 54896, Republic of Korea
BookMark eNqFkDtPwzAURi1UJNrCX0AZWVL8SJ0YIUFV8ZIqsYAYLce-oS6pHWwX1H9PqsLC0uHqLud8wxmhgfMOEDoneEIw4ZerierAQXjfTiimZEJIySpyhIakKmkuCKkGaIgZ5jnlRJygUYwrjHuS4iG6eVMxQZ58XlsPaamcb7O46bp2m-mlsi5zkL59-LjKZpmBBGFtnY3J6mztDbSn6LhRbYSz3z9Gr_d3L_PHfPH88DSfLXLNimnKKeNGGI5Fo0tc1IoA1RgLaEhFxdQU_WEjyoJPWc1Uw0ozVbXQSkBFippoNkYX-90u-M8NxCTXNmpoW-XAb6KknPFClIKVPXq9R3XwMQZopLZJJetdCsq2kmC56yZX8q-b3HWT-269zv_pXbBrFbaHxdu9CH2HLwtBRm3BaTA2gE7SeHto4gdGeo4I
CitedBy_id crossref_primary_10_1016_j_jenvman_2023_118279
crossref_primary_10_3390_en18081958
crossref_primary_10_1051_e3sconf_202346502022
crossref_primary_10_1002_bse_4219
crossref_primary_10_1016_j_cej_2025_161171
crossref_primary_10_1016_j_dajour_2023_100236
crossref_primary_10_1016_j_jclepro_2025_144712
crossref_primary_10_1016_j_jclepro_2024_142047
crossref_primary_10_1016_j_enconman_2022_115833
crossref_primary_10_1016_j_jclepro_2025_145231
crossref_primary_10_1016_j_scitotenv_2022_157069
crossref_primary_10_1007_s11356_025_36271_0
crossref_primary_10_3390_en15145001
crossref_primary_10_1016_j_enconman_2024_119063
crossref_primary_10_1016_j_fuel_2021_122928
Cites_doi 10.1039/C6RA10003A
10.1016/j.biortech.2013.01.007
10.1016/j.apenergy.2019.113482
10.1016/j.apenergy.2019.114235
10.1627/jpi.63.196
10.1016/j.jclepro.2018.08.061
10.1126/science.1246748
10.1016/j.apenergy.2020.115653
10.1039/D1EE00850A
10.1016/j.apenergy.2016.12.091
10.1039/C3GC41511B
10.1016/j.ijhydene.2011.04.001
10.1021/ie200344t
10.1039/c4nj00134f
10.1016/j.apenergy.2020.115884
10.1016/j.apenergy.2015.05.047
10.1016/j.biortech.2015.01.135
10.1016/j.mcat.2018.01.030
10.1016/j.wasman.2014.11.019
10.3390/en11061551
10.1039/D0EE00812E
10.1039/C7GC02368E
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2021.117381
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2021_117381
S0306261921007844
GeographicLocations South Korea
GeographicLocations_xml – name: South Korea
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-236d9d609fc704ba1e2c009ef18295d495d0d974653b3af37d5ab9ca9e814b1c3
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000684833800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Sun Sep 28 00:26:20 EDT 2025
Tue Nov 18 22:30:43 EST 2025
Sat Nov 29 07:20:36 EST 2025
Fri Feb 23 02:41:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Facility location
Organic waste
Supply chain management
Biofuel
Ethanol
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-236d9d609fc704ba1e2c009ef18295d495d0d974653b3af37d5ab9ca9e814b1c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2636497937
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2636497937
crossref_citationtrail_10_1016_j_apenergy_2021_117381
crossref_primary_10_1016_j_apenergy_2021_117381
elsevier_sciencedirect_doi_10_1016_j_apenergy_2021_117381
PublicationCentury 2000
PublicationDate 2021-10-15
PublicationDateYYYYMMDD 2021-10-15
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cho, Kim, Baek, Lee, Kwon (b0090) 2018; 201
Luterbacher, Rand, Alonso, Han, Youngquist, Maravelias (b0030) 2014; 343
Rakshit, Voolapalli, Upadhyayula (b0065) 2018; 448
Han, Sen, Alonso, Dumesic, Maravelias (b0040) 2014; 16
Phaiboonsilpa, Kawamoto, Minami, Masuda, Wakagi, Sunayama (b0070) 2020; 63
Ahn, Lee, Lee, Han (b0110) 2015; 154
Han, Lee (b0050) 2011; 50
Byun, Han (b0100) 2017; 19
Bello, Galán-Martín, Feijoo, Moreira, Guillén-Gosálbez (b0015) 2020; 279
Li, Kesharwani, Sun, Qin, Dagli, Zhang (b0010) 2020; 259
Han, Ryu, Lee (b0075) 2012; 37
Gilani, Sahebi, Oliveira (b0085) 2020; 278
Cho, Kim, Han, Lee, Kim, Kim (b0105) 2019; 252
Khuong, Zulkifli, Masjuki, Mohamad, Arslan, Mosarof (b0005) 2016; 6
Byun, Kwon, Park, Han (b0080) 2021
Bastidas-Oyanedel, Schmidt (b0060) 2018; 11
Ghosh, Chowdhury, Bhattacharya (b0020) 2017; 198
Lee, Kim, Seong, Lee, Jung, Lee (b0045) 2013; 132
Wang, Guo, Wang, Zhu, Yin, Qiu (b0095) 2014; 38
Alibardi, Cossu (b0055) 2015; 36
Byun, Han (b0025) 2020; 13
Han, Luterbacher, Alonso, Dumesic, Maravelias (b0035) 2015; 182
Gilani (10.1016/j.apenergy.2021.117381_b0085) 2020; 278
Li (10.1016/j.apenergy.2021.117381_b0010) 2020; 259
Luterbacher (10.1016/j.apenergy.2021.117381_b0030) 2014; 343
Wang (10.1016/j.apenergy.2021.117381_b0095) 2014; 38
Ahn (10.1016/j.apenergy.2021.117381_b0110) 2015; 154
Han (10.1016/j.apenergy.2021.117381_b0035) 2015; 182
Lee (10.1016/j.apenergy.2021.117381_b0045) 2013; 132
Byun (10.1016/j.apenergy.2021.117381_b0025) 2020; 13
Han (10.1016/j.apenergy.2021.117381_b0040) 2014; 16
Khuong (10.1016/j.apenergy.2021.117381_b0005) 2016; 6
Phaiboonsilpa (10.1016/j.apenergy.2021.117381_b0070) 2020; 63
Alibardi (10.1016/j.apenergy.2021.117381_b0055) 2015; 36
Byun (10.1016/j.apenergy.2021.117381_b0100) 2017; 19
Bastidas-Oyanedel (10.1016/j.apenergy.2021.117381_b0060) 2018; 11
Bello (10.1016/j.apenergy.2021.117381_b0015) 2020; 279
Han (10.1016/j.apenergy.2021.117381_b0050) 2011; 50
Cho (10.1016/j.apenergy.2021.117381_b0105) 2019; 252
Rakshit (10.1016/j.apenergy.2021.117381_b0065) 2018; 448
Ghosh (10.1016/j.apenergy.2021.117381_b0020) 2017; 198
Han (10.1016/j.apenergy.2021.117381_b0075) 2012; 37
Byun (10.1016/j.apenergy.2021.117381_b0080) 2021
Cho (10.1016/j.apenergy.2021.117381_b0090) 2018; 201
References_xml – volume: 37
  start-page: 5328
  year: 2012
  end-page: 5346
  ident: b0075
  article-title: Modeling the operation of hydrogen supply networks considering facility location
  publication-title: Int J Hydrogen Energy
– volume: 343
  start-page: 277
  year: 2014
  end-page: 280
  ident: b0030
  article-title: Nonenzymatic Sugar Production from Biomass Using Biomass-Derived γ-Valerolactone
  publication-title: Science
– year: 2021
  ident: b0080
  article-title: Food Waste Valorization to Green Energy Vehicles: Sustainability Assessment
  publication-title: Energy Environ Sci
– volume: 36
  start-page: 147
  year: 2015
  end-page: 155
  ident: b0055
  article-title: Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials
  publication-title: Waste Manage
– volume: 50
  start-page: 6297
  year: 2011
  end-page: 6315
  ident: b0050
  article-title: Development of a Scalable and Comprehensive Infrastructure Model for Carbon Dioxide Utilization and Disposal
  publication-title: Ind Eng Chem Res
– volume: 16
  start-page: 653
  year: 2014
  end-page: 661
  ident: b0040
  article-title: A strategy for the simultaneous catalytic conversion of hemicellulose and cellulose from lignocellulosic biomass to liquid transportation fuels
  publication-title: Green Chem
– volume: 11
  start-page: 1551
  year: 2018
  ident: b0060
  article-title: Increasing Profits in Food Waste Biorefinery—A Techno-Economic Analysis
  publication-title: Energies.
– volume: 63
  start-page: 196
  year: 2020
  end-page: 203
  ident: b0070
  article-title: Two-step Conversion of Acetic Acid to Bioethanol by Ethyl Esterification and Catalytic Hydrogenolysis
  publication-title: J Jpn Pet Inst
– volume: 154
  start-page: 528
  year: 2015
  end-page: 542
  ident: b0110
  article-title: Strategic planning design of microalgae biomass-to-biodiesel supply chain network: Multi-period deterministic model
  publication-title: Appl Energy
– volume: 198
  start-page: 284
  year: 2017
  end-page: 298
  ident: b0020
  article-title: Sustainability of cereal straws for the fermentative production of second generation biofuels: A review of the efficiency and economics of biochemical pretreatment processes
  publication-title: Appl Energy
– volume: 13
  start-page: 2233
  year: 2020
  end-page: 2242
  ident: b0025
  article-title: Sustainable development of biorefineries: integrated assessment method for co-production pathways
  publication-title: Energy Environ Sci
– volume: 448
  start-page: 78
  year: 2018
  end-page: 90
  ident: b0065
  article-title: Acetic acid hydrogenation to ethanol over supported Pt-Sn catalyst: Effect of Bronsted acidity on product selectivity
  publication-title: Molecular Catalysis.
– volume: 279
  year: 2020
  ident: b0015
  article-title: BECCS based on bioethanol from wood residues: Potential towards a carbon-negative transport and side-effects
  publication-title: Appl Energy
– volume: 201
  start-page: 14
  year: 2018
  end-page: 21
  ident: b0090
  article-title: The use of organic waste-derived volatile fatty acids as raw materials of C
  publication-title: J Clean Prod.
– volume: 259
  year: 2020
  ident: b0010
  article-title: Economic viability and environmental impact investigation for the biofuel supply chain using co-fermentation technology
  publication-title: Appl Energy
– volume: 132
  start-page: 197
  year: 2013
  end-page: 201
  ident: b0045
  article-title: Chemo-enzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga
  publication-title: Dunaliella tertiolecta. Bioresource technology.
– volume: 252
  year: 2019
  ident: b0105
  article-title: Bioalcohol production from acidogenic products via a two-step process: A case study of butyric acid to butanol
  publication-title: Appl Energy
– volume: 6
  start-page: 66847
  year: 2016
  end-page: 66869
  ident: b0005
  article-title: A review on the effect of bioethanol dilution on the properties and performance of automotive lubricants in gasoline engines
  publication-title: RSC Adv
– volume: 278
  year: 2020
  ident: b0085
  article-title: Sustainable sugarcane-to-bioethanol supply chain network design: A robust possibilistic programming model
  publication-title: Appl Energy
– volume: 182
  start-page: 258
  year: 2015
  end-page: 266
  ident: b0035
  article-title: A lignocellulosic ethanol strategy via nonenzymatic sugar production: Process synthesis and analysis
  publication-title: Bioresour Technol
– volume: 19
  start-page: 5214
  year: 2017
  end-page: 5229
  ident: b0100
  article-title: An integrated strategy for catalytic co-production of jet fuel range alkenes, tetrahydrofurfuryl alcohol, and 1,2-pentanediol from lignocellulosic biomass
  publication-title: Green Chem
– volume: 38
  start-page: 2792
  year: 2014
  end-page: 2800
  ident: b0095
  article-title: Effect of the Cu/SBA-15 catalyst preparation method on methyl acetate hydrogenation for ethanol production
  publication-title: New J Chem.
– volume: 6
  start-page: 66847
  year: 2016
  ident: 10.1016/j.apenergy.2021.117381_b0005
  article-title: A review on the effect of bioethanol dilution on the properties and performance of automotive lubricants in gasoline engines
  publication-title: RSC Adv
  doi: 10.1039/C6RA10003A
– volume: 132
  start-page: 197
  year: 2013
  ident: 10.1016/j.apenergy.2021.117381_b0045
  article-title: Chemo-enzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga
  publication-title: Dunaliella tertiolecta. Bioresource technology.
  doi: 10.1016/j.biortech.2013.01.007
– volume: 252
  year: 2019
  ident: 10.1016/j.apenergy.2021.117381_b0105
  article-title: Bioalcohol production from acidogenic products via a two-step process: A case study of butyric acid to butanol
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113482
– volume: 259
  year: 2020
  ident: 10.1016/j.apenergy.2021.117381_b0010
  article-title: Economic viability and environmental impact investigation for the biofuel supply chain using co-fermentation technology
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114235
– volume: 63
  start-page: 196
  year: 2020
  ident: 10.1016/j.apenergy.2021.117381_b0070
  article-title: Two-step Conversion of Acetic Acid to Bioethanol by Ethyl Esterification and Catalytic Hydrogenolysis
  publication-title: J Jpn Pet Inst
  doi: 10.1627/jpi.63.196
– volume: 201
  start-page: 14
  year: 2018
  ident: 10.1016/j.apenergy.2021.117381_b0090
  article-title: The use of organic waste-derived volatile fatty acids as raw materials of C4–C5 bioalcohols
  publication-title: J Clean Prod.
  doi: 10.1016/j.jclepro.2018.08.061
– volume: 343
  start-page: 277
  year: 2014
  ident: 10.1016/j.apenergy.2021.117381_b0030
  article-title: Nonenzymatic Sugar Production from Biomass Using Biomass-Derived γ-Valerolactone
  publication-title: Science
  doi: 10.1126/science.1246748
– volume: 278
  year: 2020
  ident: 10.1016/j.apenergy.2021.117381_b0085
  article-title: Sustainable sugarcane-to-bioethanol supply chain network design: A robust possibilistic programming model
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115653
– year: 2021
  ident: 10.1016/j.apenergy.2021.117381_b0080
  article-title: Food Waste Valorization to Green Energy Vehicles: Sustainability Assessment
  publication-title: Energy Environ Sci
  doi: 10.1039/D1EE00850A
– volume: 198
  start-page: 284
  year: 2017
  ident: 10.1016/j.apenergy.2021.117381_b0020
  article-title: Sustainability of cereal straws for the fermentative production of second generation biofuels: A review of the efficiency and economics of biochemical pretreatment processes
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.12.091
– volume: 16
  start-page: 653
  year: 2014
  ident: 10.1016/j.apenergy.2021.117381_b0040
  article-title: A strategy for the simultaneous catalytic conversion of hemicellulose and cellulose from lignocellulosic biomass to liquid transportation fuels
  publication-title: Green Chem
  doi: 10.1039/C3GC41511B
– volume: 37
  start-page: 5328
  year: 2012
  ident: 10.1016/j.apenergy.2021.117381_b0075
  article-title: Modeling the operation of hydrogen supply networks considering facility location
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.04.001
– volume: 50
  start-page: 6297
  year: 2011
  ident: 10.1016/j.apenergy.2021.117381_b0050
  article-title: Development of a Scalable and Comprehensive Infrastructure Model for Carbon Dioxide Utilization and Disposal
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie200344t
– volume: 38
  start-page: 2792
  year: 2014
  ident: 10.1016/j.apenergy.2021.117381_b0095
  article-title: Effect of the Cu/SBA-15 catalyst preparation method on methyl acetate hydrogenation for ethanol production
  publication-title: New J Chem.
  doi: 10.1039/c4nj00134f
– volume: 279
  year: 2020
  ident: 10.1016/j.apenergy.2021.117381_b0015
  article-title: BECCS based on bioethanol from wood residues: Potential towards a carbon-negative transport and side-effects
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115884
– volume: 154
  start-page: 528
  year: 2015
  ident: 10.1016/j.apenergy.2021.117381_b0110
  article-title: Strategic planning design of microalgae biomass-to-biodiesel supply chain network: Multi-period deterministic model
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.05.047
– volume: 182
  start-page: 258
  year: 2015
  ident: 10.1016/j.apenergy.2021.117381_b0035
  article-title: A lignocellulosic ethanol strategy via nonenzymatic sugar production: Process synthesis and analysis
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2015.01.135
– volume: 448
  start-page: 78
  year: 2018
  ident: 10.1016/j.apenergy.2021.117381_b0065
  article-title: Acetic acid hydrogenation to ethanol over supported Pt-Sn catalyst: Effect of Bronsted acidity on product selectivity
  publication-title: Molecular Catalysis.
  doi: 10.1016/j.mcat.2018.01.030
– volume: 36
  start-page: 147
  year: 2015
  ident: 10.1016/j.apenergy.2021.117381_b0055
  article-title: Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials
  publication-title: Waste Manage
  doi: 10.1016/j.wasman.2014.11.019
– volume: 11
  start-page: 1551
  year: 2018
  ident: 10.1016/j.apenergy.2021.117381_b0060
  article-title: Increasing Profits in Food Waste Biorefinery—A Techno-Economic Analysis
  publication-title: Energies.
  doi: 10.3390/en11061551
– volume: 13
  start-page: 2233
  year: 2020
  ident: 10.1016/j.apenergy.2021.117381_b0025
  article-title: Sustainable development of biorefineries: integrated assessment method for co-production pathways
  publication-title: Energy Environ Sci
  doi: 10.1039/D0EE00812E
– volume: 19
  start-page: 5214
  year: 2017
  ident: 10.1016/j.apenergy.2021.117381_b0100
  article-title: An integrated strategy for catalytic co-production of jet fuel range alkenes, tetrahydrofurfuryl alcohol, and 1,2-pentanediol from lignocellulosic biomass
  publication-title: Green Chem
  doi: 10.1039/C7GC02368E
SSID ssj0002120
Score 2.472492
Snippet •A decision-making strategy for organic waste to bioethanol SCN is developed.•Techno-Economic Assessment of bioethanol SCN is considered.•A deterministic...
Bioethanol (bio-EtOH) is commonly used as a renewable biofuel additive for gasoline. A novel technology producing bio-EtOH from anaerobic digestion of organic...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 117381
SubjectTerms anaerobic digestion
bioethanol
Biofuel
biorefining
case studies
deterministic models
energy
Ethanol
Facility location
gasoline
Organic waste
organic wastes
South Korea
supply chain
Supply chain management
Title Waste-to-bioethanol supply chain network: A deterministic model
URI https://dx.doi.org/10.1016/j.apenergy.2021.117381
https://www.proquest.com/docview/2636497937
Volume 300
WOSCitedRecordID wos000684833800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgy4EeKihUfYGC1FuVkthOYvdSrdAi4FAqUcTeLL8iWqpk1Wxf_77jR3aXUlQQ4hKtojiO_HnHM_Z83yC0g0nlVLZsqo2EAIUxk0pc12lJOctrmFVYKl9sojo8ZOMxP4ol_TpfTqBqGnZ9zSf_FWq4B2A76uxfwD17KdyA3wA6XAF2uP4R8N8kAJdOW4h5W-s2xtuz3c7V7rxxLN-TZrcJmd-Bk25iOozXaw51cRb91d5JtZ4iOLPOV-Gs_nNn2x9zGxZoHtZ-byPWcTcB-3S2wKcMW1w9zWWeU-SpVVmZulArLBrBUrIKO0vJFk0p8aqjv5rlsENwuicn4XP3XNfuvJiEei13JK-_uA59aOdyOBilj9ESrgrOBmhp-HE0_jRba3EU3uw_cIEDfn9vv3M_7izE3rs4foZWYliQDAOcz9Ej26yi5QWxyFW0NppzEuHRaJS7F-jgHsSTgHjiEU8i4vvJMPkJ78Tj_RJ9fT86fvchjXUxUk1oMU0xKQ03ZcZrXWVUydxiDa6yrSFW5IWBkNdkBuLEsiCKyJpUppCKa8kty6nKNVlDg6Zt7DpKKCxvVCuFFdM0q3PlDn5lkWlaOqHFagMV_XAJHUXjXe2SM9FnB56KfpiFG2YRhnkDvZ21mwTZlAdb8B4NEZ2_4NQJmEQPtn3TwyfAOrojL9nY9qITuCRgdZwG5OY_vH8LPZ3_V7bRYHp-YV-hJ_pyetKdv45z8hanzIz1
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Waste-to-bioethanol+supply+chain+network%3A+A+deterministic+model&rft.jtitle=Applied+energy&rft.au=Kwon%2C+Oseok&rft.au=Han%2C+Jeehoon&rft.date=2021-10-15&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=300&rft_id=info:doi/10.1016%2Fj.apenergy.2021.117381&rft.externalDocID=S0306261921007844
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon