Optimal operation strategy for interconnected microgrids in market environment considering uncertainty

•Solved the optimal operation problem for IMS in market environment with uncertainty.•Established a hierarchical distributed framework for cloud-edge coordination.•Proposed a bi-level distributed optimization model with fair price mechanism.•Analytical target cascading and augment Lagrange method ar...

Full description

Saved in:
Bibliographic Details
Published in:Applied energy Vol. 275; p. 115336
Main Authors: Kong, Xiangyu, Liu, Dehong, Wang, Chengshan, Sun, Fangyuan, Li, Shupeng
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.10.2020
Subjects:
ISSN:0306-2619, 1872-9118
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Solved the optimal operation problem for IMS in market environment with uncertainty.•Established a hierarchical distributed framework for cloud-edge coordination.•Proposed a bi-level distributed optimization model with fair price mechanism.•Analytical target cascading and augment Lagrange method are integrated.•The diagonal quadratic approximation is employed for parallel solution. The interconnected microgrid system (IMS) is a promising solution for the problem of growing penetration of renewable-based microgrids into the power system. To optimally coordinate the operation of microgrids owned by different owners while considering uncertainties in market environment, a bi-level distributed optimized operation method for IMS with uncertainties is proposed in this paper. A hierarchical and distributed operational communication architecture of IMS is first established. A bi-level distributed optimization model was built for IMS, where at the upper level, the IMS operates purchase-sale mode or demand response mode with the distribution network operator and optimizes the trading power with microgrids to maximize revenue. At the lower level, the chance constraint programming is used to describe and deal with the uncertainty of renewable energy and loads and optimize the output and energy storage of distributed energy with the goal of minimum cost. The analytical target cascading and augmented Lagrange method are combined to decouple and reconstruct the bi-level model for distributed solution and establishing a fair price mechanism. The optimal solutions of the problem are obtained through parallel iteration, in which the price signal plays a coordinated role in the distributed iterative optimization process. Abundant case studies verify the advantages of the model and the performance of the proposed method.
AbstractList •Solved the optimal operation problem for IMS in market environment with uncertainty.•Established a hierarchical distributed framework for cloud-edge coordination.•Proposed a bi-level distributed optimization model with fair price mechanism.•Analytical target cascading and augment Lagrange method are integrated.•The diagonal quadratic approximation is employed for parallel solution. The interconnected microgrid system (IMS) is a promising solution for the problem of growing penetration of renewable-based microgrids into the power system. To optimally coordinate the operation of microgrids owned by different owners while considering uncertainties in market environment, a bi-level distributed optimized operation method for IMS with uncertainties is proposed in this paper. A hierarchical and distributed operational communication architecture of IMS is first established. A bi-level distributed optimization model was built for IMS, where at the upper level, the IMS operates purchase-sale mode or demand response mode with the distribution network operator and optimizes the trading power with microgrids to maximize revenue. At the lower level, the chance constraint programming is used to describe and deal with the uncertainty of renewable energy and loads and optimize the output and energy storage of distributed energy with the goal of minimum cost. The analytical target cascading and augmented Lagrange method are combined to decouple and reconstruct the bi-level model for distributed solution and establishing a fair price mechanism. The optimal solutions of the problem are obtained through parallel iteration, in which the price signal plays a coordinated role in the distributed iterative optimization process. Abundant case studies verify the advantages of the model and the performance of the proposed method.
The interconnected microgrid system (IMS) is a promising solution for the problem of growing penetration of renewable-based microgrids into the power system. To optimally coordinate the operation of microgrids owned by different owners while considering uncertainties in market environment, a bi-level distributed optimized operation method for IMS with uncertainties is proposed in this paper. A hierarchical and distributed operational communication architecture of IMS is first established. A bi-level distributed optimization model was built for IMS, where at the upper level, the IMS operates purchase-sale mode or demand response mode with the distribution network operator and optimizes the trading power with microgrids to maximize revenue. At the lower level, the chance constraint programming is used to describe and deal with the uncertainty of renewable energy and loads and optimize the output and energy storage of distributed energy with the goal of minimum cost. The analytical target cascading and augmented Lagrange method are combined to decouple and reconstruct the bi-level model for distributed solution and establishing a fair price mechanism. The optimal solutions of the problem are obtained through parallel iteration, in which the price signal plays a coordinated role in the distributed iterative optimization process. Abundant case studies verify the advantages of the model and the performance of the proposed method.
ArticleNumber 115336
Author Wang, Chengshan
Sun, Fangyuan
Li, Shupeng
Kong, Xiangyu
Liu, Dehong
Author_xml – sequence: 1
  givenname: Xiangyu
  surname: Kong
  fullname: Kong, Xiangyu
  email: eekongxy@tju.edu.cn
  organization: Key Laboratory of Smart Grid of Ministry of Education (Tianjin University), Nankai District, Tianjin 300072, China
– sequence: 2
  givenname: Dehong
  surname: Liu
  fullname: Liu, Dehong
  email: Dekh_liu@tju.edu.cn
  organization: Key Laboratory of Smart Grid of Ministry of Education (Tianjin University), Nankai District, Tianjin 300072, China
– sequence: 3
  givenname: Chengshan
  surname: Wang
  fullname: Wang, Chengshan
  organization: Key Laboratory of Smart Grid of Ministry of Education (Tianjin University), Nankai District, Tianjin 300072, China
– sequence: 4
  givenname: Fangyuan
  surname: Sun
  fullname: Sun, Fangyuan
  organization: Key Laboratory of Smart Grid of Ministry of Education (Tianjin University), Nankai District, Tianjin 300072, China
– sequence: 5
  givenname: Shupeng
  surname: Li
  fullname: Li, Shupeng
  organization: Tianjin Electric Power Company Electric Power Science Research Institute, Tianjin, 300384, China
BookMark eNqF0MtOAyEUBmBiNLFeXsGwdDOVA5TOJC40xlti0o2uCWXONNQZGIGa9O2lVjduXEHg_09yvhNy6INHQi6ATYGBulpPzYge42o75YyXR5gJoQ7IBOo5rxqA-pBMmGCq4gqaY3KS0poxxoGzCekWY3aD6WkYMZrsgqcplwuutrQLkTqfMdrgPdqMLR2cjWEVXZvKDx1MfMdM0X-6GPyAPtMSTa7F6PyKbrzFmE0ZsT0jR53pE57_nKfk7eH-9e6pelk8Pt_dvlRWyFmuOO_mIOadNaw2HJdLC00jBbLlsrYzkLNGMstbQACrZG2VwLIk2M5AJyWgOCWX-7ljDB8bTFkPLlnse-MxbJLmUjJV10LJElX7aNkopYidHmORiFsNTO9g9Vr_wuodrN7DluL1n6J1-ZuuwLn-__rNvo7F4dNh1Mk6LFStiwVZt8H9N-IL12eeIA
CitedBy_id crossref_primary_10_1016_j_apenergy_2021_116830
crossref_primary_10_1016_j_est_2020_102111
crossref_primary_10_1016_j_seta_2021_101395
crossref_primary_10_1016_j_apenergy_2022_120311
crossref_primary_10_1080_21681015_2021_1972478
crossref_primary_10_3390_en14206658
crossref_primary_10_1016_j_egyr_2022_01_117
crossref_primary_10_1016_j_renene_2022_09_037
crossref_primary_10_1016_j_egyr_2021_12_022
crossref_primary_10_1016_j_apenergy_2021_118090
crossref_primary_10_1016_j_apenergy_2023_121550
crossref_primary_10_3390_en15051932
crossref_primary_10_1016_j_ijepes_2024_110223
crossref_primary_10_3390_en17205201
crossref_primary_10_1007_s00607_021_00929_7
crossref_primary_10_1109_TPEL_2025_3588845
crossref_primary_10_1016_j_jclepro_2023_137922
crossref_primary_10_1016_j_ecmx_2025_101246
crossref_primary_10_1109_TSG_2021_3061619
crossref_primary_10_1016_j_ijepes_2023_109683
crossref_primary_10_1016_j_apenergy_2021_117760
crossref_primary_10_1016_j_est_2023_107943
crossref_primary_10_1016_j_ijepes_2022_108494
crossref_primary_10_1016_j_segan_2023_101192
crossref_primary_10_1016_j_jclepro_2024_140654
crossref_primary_10_1016_j_apenergy_2021_117435
crossref_primary_10_1016_j_apenergy_2022_120428
crossref_primary_10_1016_j_epsr_2024_110533
crossref_primary_10_1016_j_est_2024_112505
crossref_primary_10_1109_ACCESS_2021_3065400
crossref_primary_10_1016_j_apenergy_2024_124050
crossref_primary_10_3390_electronics11040554
crossref_primary_10_1016_j_energy_2022_124060
crossref_primary_10_1016_j_epsr_2024_110992
crossref_primary_10_3389_fenrg_2023_1100214
crossref_primary_10_3390_jsan13020020
crossref_primary_10_1016_j_segan_2024_101569
crossref_primary_10_1109_TIA_2023_3327992
crossref_primary_10_3389_fenrg_2022_888156
crossref_primary_10_3390_su151914592
crossref_primary_10_1016_j_est_2024_112120
crossref_primary_10_1016_j_ijepes_2023_109015
crossref_primary_10_3390_app11178043
crossref_primary_10_1016_j_apenergy_2021_117596
crossref_primary_10_1155_2024_4638185
crossref_primary_10_1007_s00202_025_03036_4
crossref_primary_10_1016_j_apenergy_2022_119452
Cites_doi 10.1109/TSTE.2016.2525728
10.1109/TSTE.2018.2873206
10.1016/j.cie.2014.09.029
10.1016/j.enbuild.2016.03.072
10.1109/TSG.2017.2746014
10.1109/TSG.2016.2585671
10.1111/j.1467-9574.1967.tb00544.x
10.1109/TPWRS.2017.2650683
10.1109/TSTE.2019.2915585
10.1109/TSG.2016.2569604
10.1007/s11081-005-1744-4
10.1016/j.ijepes.2019.105702
10.1016/j.rser.2017.06.032
10.1016/j.energy.2017.09.145
10.1016/j.apenergy.2018.07.047
10.1016/j.apenergy.2017.07.023
10.1109/TPWRS.2012.2205021
10.1016/j.apenergy.2018.04.087
10.1016/j.apenergy.2019.114188
10.1109/TSG.2014.2329846
10.1016/j.isatra.2017.12.004
10.2514/6.2002-5506
10.1016/j.apenergy.2017.12.048
10.1109/TSG.2015.2396992
10.1109/TPWRS.2018.2840055
10.1016/0142-0615(92)90003-R
10.1016/j.apenergy.2019.113845
10.1007/s00158-005-0579-0
10.1016/j.apenergy.2019.02.085
10.1016/j.apenergy.2018.02.121
10.1287/moor.20.3.634
10.1109/TSG.2015.2476669
10.1109/TCST.2014.2314474
10.1115/1.1582501
10.1007/s00158-014-1097-8
10.1016/j.apenergy.2019.113588
10.1109/TII.2018.2881540
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2020.115336
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2020_115336
S0306261920308485
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c345t-22f7137fca08a2ebbc19943e0bb8c5145940c2d1e11c648c63e1871cfa1f441e3
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000565600400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Sat Sep 27 23:53:37 EDT 2025
Sat Nov 29 07:22:21 EST 2025
Tue Nov 18 21:53:34 EST 2025
Fri Feb 23 02:48:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Uncertainty
Bi-level energy dispatch
Multi-microgrid system
Decentralized framework
Power Internet of things
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c345t-22f7137fca08a2ebbc19943e0bb8c5145940c2d1e11c648c63e1871cfa1f441e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2440688364
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2440688364
crossref_primary_10_1016_j_apenergy_2020_115336
crossref_citationtrail_10_1016_j_apenergy_2020_115336
elsevier_sciencedirect_doi_10_1016_j_apenergy_2020_115336
PublicationCentury 2000
PublicationDate 2020-10-01
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Xu, Tomsovic (b0125) 2016; 7
Liu, Yao (b0155) 2015; 89
Wei, Zhang, Wang, Cao, Khan (b0130) 2020; 260
Naebi, SeyedShenava, Contreras, Ruiz, Akbarimajd (b0055) 2020; 117
Zhou, Ai, Yousif (b0135) 2019; 253
Bin, Jia, Cao, Tian, Bing, Sun (b0140) 2018
Lassiter, Wiecek, Andrighetti (b0185) 2005; 6
Wang, Chen, Wang, Begovic, Chen (b0120) 2015; 6
Alam, Chakrabarti, Ghosh (b0040) 2019; 15
Wu, Huang, Tai, Liang (b0090) 2018; 210
Bui, Hussain, Kim (b0080) 2018; 9
Liu, Guo, Wang (b0085) 2018; 228
Li, Zhaosong, Michalek (b0160) 2008; 13
Ouammi A, Ahmed. Optimal power scheduling for a cooperative network of smart residential buildings. IEEE Trans Sustain Energy 7:2016;1317–26.
Wessels (b0145) 2008; 21
Ma, Wang, Gupta, Chen (b0115) 2018; 9
Wang, Zhang, Li, Song, Li (b0015) 2019; 255
Michelena N, Park H, Papalambros P. Convergence properties of analytical target cascading. In: 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and OptimizationAtlanta, GA, United States; 2002.
Yang, Pei, Huo, Sun, Xu (b0070) 2018; 228
Jalali, Zare, Seyedi (b0060) 2017; 141
Kim, Michelena, Papalambros, Jiang (b0195) 2003; 125
Gazijahani, Ravadanegh, Salehi (b0205) 2018; 73
Li, Xu (b0095) 2019; 240
Tosserams, Etman, Papalambros, Rooda (b0190) 2006; 31
Ruszczyński, Andrzej (b0200) 1995; 20
Haddadian H, Noroozian R. Multi-microgrid-based operation of active distribution networks considering demand response programs, 10:2019;1804–12.
Ma, Liu, Wang, Zhang, Lei, Zeng (b0045) 2016; 121
Ouammi, Dagdougui, Sacile (b0025) 2015; 23
Dehghanpour, Nehrir (b0065) 2019; 10
Bullich-Massagué, Díaz-González, Aragüés-Peñalba, Girbau-Llistuella, Olivella-Rosell, Sumper (b0010) 2018; 212
Nikmehr, Najafi Ravadanegh (b0020) 2015; 6
Zhu, Duan, Liu (b0150) 2015; 5
Bertsimas, Litvinov, Sun, Zhao, Zheng (b0100) 2013; 28
Kang, Kokkolaras, Papalambros, Yoo, Na, Park (b0175) 2014; 50
Zhao, Wang, Lin, Calvin, Morgan, Qin (b0075) 2018; 33
Liu, Gu, Wang, Yu, Xi (b0050) 2017
Guan, Luh, Yan, Amalfi (b0180) 1992; 14
Arefifar, Ordonez, Mohamed (b0035) 2017; 2
Zhang, Li, Wang, Feng (b0105) 2018; 217
Qiu, Gu, Xu, Wu, Zhou, Pan (b0110) 2020; 11
Xu, Yang, Zheng, Zhang, Peng, Zeng (b0005) 2018; 81
Malekpour, Pahwa (b0165) 2017; 32
Bin (10.1016/j.apenergy.2020.115336_b0140) 2018
Zhu (10.1016/j.apenergy.2020.115336_b0150) 2015; 5
Liu (10.1016/j.apenergy.2020.115336_b0125) 2016; 7
Gazijahani (10.1016/j.apenergy.2020.115336_b0205) 2018; 73
Arefifar (10.1016/j.apenergy.2020.115336_b0035) 2017; 2
Xu (10.1016/j.apenergy.2020.115336_b0005) 2018; 81
Lassiter (10.1016/j.apenergy.2020.115336_b0185) 2005; 6
Wang (10.1016/j.apenergy.2020.115336_b0015) 2019; 255
Yang (10.1016/j.apenergy.2020.115336_b0070) 2018; 228
Bertsimas (10.1016/j.apenergy.2020.115336_b0100) 2013; 28
Li (10.1016/j.apenergy.2020.115336_b0095) 2019; 240
Liu (10.1016/j.apenergy.2020.115336_b0155) 2015; 89
Tosserams (10.1016/j.apenergy.2020.115336_b0190) 2006; 31
Kim (10.1016/j.apenergy.2020.115336_b0195) 2003; 125
10.1016/j.apenergy.2020.115336_b0210
Ma (10.1016/j.apenergy.2020.115336_b0045) 2016; 121
Liu (10.1016/j.apenergy.2020.115336_b0085) 2018; 228
Guan (10.1016/j.apenergy.2020.115336_b0180) 1992; 14
Ouammi (10.1016/j.apenergy.2020.115336_b0025) 2015; 23
Naebi (10.1016/j.apenergy.2020.115336_b0055) 2020; 117
Wang (10.1016/j.apenergy.2020.115336_b0120) 2015; 6
Bui (10.1016/j.apenergy.2020.115336_b0080) 2018; 9
Li (10.1016/j.apenergy.2020.115336_b0160) 2008; 13
Malekpour (10.1016/j.apenergy.2020.115336_b0165) 2017; 32
10.1016/j.apenergy.2020.115336_b0030
Zhao (10.1016/j.apenergy.2020.115336_b0075) 2018; 33
Kang (10.1016/j.apenergy.2020.115336_b0175) 2014; 50
10.1016/j.apenergy.2020.115336_b0170
Ruszczyński (10.1016/j.apenergy.2020.115336_b0200) 1995; 20
Wu (10.1016/j.apenergy.2020.115336_b0090) 2018; 210
Nikmehr (10.1016/j.apenergy.2020.115336_b0020) 2015; 6
Qiu (10.1016/j.apenergy.2020.115336_b0110) 2020; 11
Zhou (10.1016/j.apenergy.2020.115336_b0135) 2019; 253
Dehghanpour (10.1016/j.apenergy.2020.115336_b0065) 2019; 10
Wessels (10.1016/j.apenergy.2020.115336_b0145) 2008; 21
Bullich-Massagué (10.1016/j.apenergy.2020.115336_b0010) 2018; 212
Jalali (10.1016/j.apenergy.2020.115336_b0060) 2017; 141
Ma (10.1016/j.apenergy.2020.115336_b0115) 2018; 9
Liu (10.1016/j.apenergy.2020.115336_b0050) 2017
Zhang (10.1016/j.apenergy.2020.115336_b0105) 2018; 217
Wei (10.1016/j.apenergy.2020.115336_b0130) 2020; 260
Alam (10.1016/j.apenergy.2020.115336_b0040) 2019; 15
References_xml – volume: 10
  start-page: 514
  year: 2019
  end-page: 522
  ident: b0065
  article-title: An agent-based hierarchical bargaining framework for power management of multiple cooperative microgrids
  publication-title: IEEE Trans Smart Grid
– volume: 89
  start-page: 235
  year: 2015
  end-page: 240
  ident: b0155
  article-title: Uncertain multilevel programming: algorithm and applications
  publication-title: Comput Ind Eng
– volume: 6
  start-page: 1648
  year: 2015
  end-page: 1657
  ident: b0020
  article-title: Optimal power dispatch of multi-microgrids at future smart distribution grids
  publication-title: IEEE Trans Smart Grid
– volume: 240
  start-page: 719
  year: 2019
  end-page: 729
  ident: b0095
  article-title: Temporally-coordinated optimal operation of a multi-energy microgrid under diverse uncertainties
  publication-title: Appl Energy
– reference: Haddadian H, Noroozian R. Multi-microgrid-based operation of active distribution networks considering demand response programs, 10:2019;1804–12.
– volume: 13
  start-page: 51
  year: 2008
  end-page: 63
  ident: b0160
  article-title: Diagonal quadratic approximation for parallelization of analytical target cascading
  publication-title: J Mech Des
– volume: 6
  start-page: 361
  year: 2005
  end-page: 381
  ident: b0185
  article-title: Lagrangian coordination and analytical target cascading: solving ATC-decomposed problems with lagrangian duality
  publication-title: Optimization Eng
– volume: 260
  start-page: 114
  year: 2020
  end-page: 188
  ident: b0130
  article-title: Multi-period planning of multi-energy microgrid with multi-type uncertainties using chance constrained information gap decision method
  publication-title: Appl Energy
– volume: 5
  start-page: 3239
  year: 2015
  end-page: 3247
  ident: b0150
  article-title: Electric real-time balance dispatch via bi-level coordination of source-grid-load of power system with risk
  publication-title: Proc CSEE
– volume: 117
  year: 2020
  ident: b0055
  article-title: EPEC approach for finding optimal day-ahead bidding strategy equilibria of multi-microgrids in active distribution networks
  publication-title: Int J Electr Power Energy Syst
– volume: 6
  start-page: 45
  year: 2015
  end-page: 53
  ident: b0120
  article-title: Coordinated energy management of networked microgrids in distribution systems
  publication-title: IEEE Trans Smart Grid
– volume: 2
  start-page: 910
  year: 2017
  end-page: 922
  ident: b0035
  article-title: Energy management in multi-microgrid systems — development and assessment
  publication-title: IEEE Trans Power Syst
– reference: Michelena N, Park H, Papalambros P. Convergence properties of analytical target cascading. In: 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and OptimizationAtlanta, GA, United States; 2002.
– volume: 212
  start-page: 340
  year: 2018
  end-page: 361
  ident: b0010
  article-title: Microgrid clustering architectures
  publication-title: Appl Energy
– volume: 50
  start-page: 1103
  year: 2014
  end-page: 1114
  ident: b0175
  article-title: Optimal design of commercial vehicle systems using analytical target cascading
  publication-title: Struct Multidiscip Optim
– year: 2017
  ident: b0050
  article-title: Game theoretic non-cooperative distributed coordination control for multi-microgrids
  publication-title: IEEE Trans Smart Grid
– volume: 33
  start-page: 6410
  year: 2018
  end-page: 6421
  ident: b0075
  article-title: Energy management of multiple microgrids based on a system of systems architecture
  publication-title: IEEE Trans Power Syst
– volume: 9
  start-page: 1323
  year: 2018
  end-page: 1333
  ident: b0080
  article-title: A multiagent-based hierarchical energy management strategy for multi-microgrids considering adjustable power and demand response
  publication-title: IEEE Trans Smart Grid
– volume: 14
  start-page: 9
  year: 1992
  end-page: 17
  ident: b0180
  article-title: An optimization-based method for unit commitment
  publication-title: Int J Electr Power Energy Syst
– volume: 121
  start-page: 11
  year: 2016
  end-page: 21
  ident: b0045
  article-title: Multi-party energy management for smart building cluster with PV systems using automatic demand response
  publication-title: Energy Build
– volume: 31
  start-page: 176
  year: 2006
  end-page: 189
  ident: b0190
  article-title: An augmented Lagrangian relaxation for analytical target cascading using the alternating direction method of multipliers
  publication-title: Struct Multidiscip Optim
– volume: 228
  start-page: 130
  year: 2018
  end-page: 140
  ident: b0085
  article-title: A robust operation-based scheduling optimization for smart distribution networks with multi-microgrids
  publication-title: Appl Energy
– volume: 255
  year: 2019
  ident: b0015
  article-title: Robust distributed optimization for energy dispatch of multi-stakeholder multiple microgrids under uncertainty
  publication-title: Appl Energy
– volume: 253
  start-page: 113
  year: 2019
  end-page: 128
  ident: b0135
  article-title: Two kinds of decentralized robust economic dispatch framework combined distribution network and multi-microgrids
  publication-title: Appl Energy
– volume: 210
  start-page: 1002
  year: 2018
  end-page: 1016
  ident: b0090
  article-title: A novel design of architecture and control for multiple microgrids with hybrid AC/DC connection
  publication-title: Appl Energy
– volume: 125
  start-page: 474
  year: 2003
  end-page: 480
  ident: b0195
  article-title: Target cascading in optimal system design
  publication-title: J Mech Des, Trans ASME
– volume: 73
  start-page: 100
  year: 2018
  end-page: 111
  ident: b0205
  article-title: Stochastic multi-objective model for optimal energy exchange optimization of networked microgrids with presence of renewable generation under risk-based strategies
  publication-title: ISA Trans
– volume: 81
  start-page: 2204
  year: 2018
  end-page: 2216
  ident: b0005
  article-title: Analysis on the organization and Development of multi-microgrids
  publication-title: Renew Sustain Energy Rev
– volume: 21
  start-page: 39
  year: 2008
  end-page: 53
  ident: b0145
  article-title: Stochastic programming
  publication-title: Stat Neerl
– volume: 228
  start-page: 2361
  year: 2018
  end-page: 2374
  ident: b0070
  article-title: Coordinated planning method of multiple micro-grids and distribution network with flexible interconnection
  publication-title: Appl Energy
– volume: 28
  start-page: 52
  year: 2013
  end-page: 63
  ident: b0100
  article-title: Adaptive robust optimization for the security constrained unit commitment problem
  publication-title: IEEE Trans Power Syst
– reference: Ouammi A, Ahmed. Optimal power scheduling for a cooperative network of smart residential buildings. IEEE Trans Sustain Energy 7:2016;1317–26.
– volume: 7
  start-page: 227
  year: 2016
  end-page: 237
  ident: b0125
  article-title: Bidding strategy for microgrid in day-ahead market based on hybrid stochastic/robust optimization
  publication-title: IEEE Trans Smart Grid
– volume: 20
  start-page: 634
  year: 1995
  end-page: 656
  ident: b0200
  article-title: On convergence of an augmented lagrangian decomposition method for sparse convex optimization
  publication-title: Math Oper Res
– volume: 32
  start-page: 3681
  year: 2017
  end-page: 3693
  ident: b0165
  article-title: Stochastic networked microgrid energy management with correlated wind generators
  publication-title: IEEE Trans Power Syst
– volume: 15
  start-page: 1238
  year: 2019
  end-page: 1250
  ident: b0040
  article-title: Networked microgrids: state-of-the-art and future perspectives
  publication-title: IEEE Trans Ind Inf
– volume: 141
  start-page: 1059
  year: 2017
  end-page: 1071
  ident: b0060
  article-title: Strategic decision-making of distribution network operator with multi-microgrids considering demand response program
  publication-title: Energy
– volume: 11
  start-page: 988
  year: 2020
  end-page: 1001
  ident: b0110
  article-title: Robustly multi-microgrid scheduling: stakeholder-parallelizing distributed optimization
  publication-title: IEEE Trans Sustainable Energy
– year: 2018
  ident: b0140
  article-title: Application prospect of edge computing in power demand response business
  publication-title: Power System Technology
– volume: 217
  start-page: 346
  year: 2018
  end-page: 360
  ident: b0105
  article-title: Robust optimization for energy transactions in multi-microgrids under uncertainty
  publication-title: Appl Energy
– volume: 23
  start-page: 128
  year: 2015
  end-page: 138
  ident: b0025
  article-title: Optimal control of power flows and energy local storages in a network of microgrids modeled as a system of systems
  publication-title: IEEE Trans Control Syst Technol
– volume: 9
  start-page: 847
  year: 2018
  end-page: 856
  ident: b0115
  article-title: Distributed energy management for networked microgrids using online ADMM with regret
  publication-title: IEEE Trans Smart Grid
– ident: 10.1016/j.apenergy.2020.115336_b0030
  doi: 10.1109/TSTE.2016.2525728
– ident: 10.1016/j.apenergy.2020.115336_b0210
  doi: 10.1109/TSTE.2018.2873206
– volume: 89
  start-page: 235
  year: 2015
  ident: 10.1016/j.apenergy.2020.115336_b0155
  article-title: Uncertain multilevel programming: algorithm and applications
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2014.09.029
– volume: 121
  start-page: 11
  year: 2016
  ident: 10.1016/j.apenergy.2020.115336_b0045
  article-title: Multi-party energy management for smart building cluster with PV systems using automatic demand response
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2016.03.072
– volume: 10
  start-page: 514
  year: 2019
  ident: 10.1016/j.apenergy.2020.115336_b0065
  article-title: An agent-based hierarchical bargaining framework for power management of multiple cooperative microgrids
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2017.2746014
– volume: 9
  start-page: 1323
  year: 2018
  ident: 10.1016/j.apenergy.2020.115336_b0080
  article-title: A multiagent-based hierarchical energy management strategy for multi-microgrids considering adjustable power and demand response
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2016.2585671
– volume: 13
  start-page: 51
  year: 2008
  ident: 10.1016/j.apenergy.2020.115336_b0160
  article-title: Diagonal quadratic approximation for parallelization of analytical target cascading
  publication-title: J Mech Des
– volume: 21
  start-page: 39
  year: 2008
  ident: 10.1016/j.apenergy.2020.115336_b0145
  article-title: Stochastic programming
  publication-title: Stat Neerl
  doi: 10.1111/j.1467-9574.1967.tb00544.x
– volume: 32
  start-page: 3681
  year: 2017
  ident: 10.1016/j.apenergy.2020.115336_b0165
  article-title: Stochastic networked microgrid energy management with correlated wind generators
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2017.2650683
– volume: 11
  start-page: 988
  year: 2020
  ident: 10.1016/j.apenergy.2020.115336_b0110
  article-title: Robustly multi-microgrid scheduling: stakeholder-parallelizing distributed optimization
  publication-title: IEEE Trans Sustainable Energy
  doi: 10.1109/TSTE.2019.2915585
– volume: 9
  start-page: 847
  year: 2018
  ident: 10.1016/j.apenergy.2020.115336_b0115
  article-title: Distributed energy management for networked microgrids using online ADMM with regret
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2016.2569604
– volume: 6
  start-page: 361
  year: 2005
  ident: 10.1016/j.apenergy.2020.115336_b0185
  article-title: Lagrangian coordination and analytical target cascading: solving ATC-decomposed problems with lagrangian duality
  publication-title: Optimization Eng
  doi: 10.1007/s11081-005-1744-4
– volume: 117
  year: 2020
  ident: 10.1016/j.apenergy.2020.115336_b0055
  article-title: EPEC approach for finding optimal day-ahead bidding strategy equilibria of multi-microgrids in active distribution networks
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2019.105702
– volume: 81
  start-page: 2204
  year: 2018
  ident: 10.1016/j.apenergy.2020.115336_b0005
  article-title: Analysis on the organization and Development of multi-microgrids
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.06.032
– volume: 141
  start-page: 1059
  year: 2017
  ident: 10.1016/j.apenergy.2020.115336_b0060
  article-title: Strategic decision-making of distribution network operator with multi-microgrids considering demand response program
  publication-title: Energy
  doi: 10.1016/j.energy.2017.09.145
– volume: 228
  start-page: 2361
  year: 2018
  ident: 10.1016/j.apenergy.2020.115336_b0070
  article-title: Coordinated planning method of multiple micro-grids and distribution network with flexible interconnection
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.07.047
– volume: 5
  start-page: 3239
  year: 2015
  ident: 10.1016/j.apenergy.2020.115336_b0150
  article-title: Electric real-time balance dispatch via bi-level coordination of source-grid-load of power system with risk
  publication-title: Proc CSEE
– year: 2018
  ident: 10.1016/j.apenergy.2020.115336_b0140
  article-title: Application prospect of edge computing in power demand response business
  publication-title: Power System Technology
– volume: 210
  start-page: 1002
  year: 2018
  ident: 10.1016/j.apenergy.2020.115336_b0090
  article-title: A novel design of architecture and control for multiple microgrids with hybrid AC/DC connection
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.07.023
– volume: 28
  start-page: 52
  year: 2013
  ident: 10.1016/j.apenergy.2020.115336_b0100
  article-title: Adaptive robust optimization for the security constrained unit commitment problem
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2012.2205021
– volume: 228
  start-page: 130
  year: 2018
  ident: 10.1016/j.apenergy.2020.115336_b0085
  article-title: A robust operation-based scheduling optimization for smart distribution networks with multi-microgrids
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.04.087
– volume: 260
  start-page: 114
  year: 2020
  ident: 10.1016/j.apenergy.2020.115336_b0130
  article-title: Multi-period planning of multi-energy microgrid with multi-type uncertainties using chance constrained information gap decision method
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114188
– volume: 6
  start-page: 45
  year: 2015
  ident: 10.1016/j.apenergy.2020.115336_b0120
  article-title: Coordinated energy management of networked microgrids in distribution systems
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2014.2329846
– volume: 73
  start-page: 100
  year: 2018
  ident: 10.1016/j.apenergy.2020.115336_b0205
  article-title: Stochastic multi-objective model for optimal energy exchange optimization of networked microgrids with presence of renewable generation under risk-based strategies
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2017.12.004
– year: 2017
  ident: 10.1016/j.apenergy.2020.115336_b0050
  article-title: Game theoretic non-cooperative distributed coordination control for multi-microgrids
  publication-title: IEEE Trans Smart Grid
– ident: 10.1016/j.apenergy.2020.115336_b0170
  doi: 10.2514/6.2002-5506
– volume: 212
  start-page: 340
  year: 2018
  ident: 10.1016/j.apenergy.2020.115336_b0010
  article-title: Microgrid clustering architectures
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.12.048
– volume: 2
  start-page: 910
  year: 2017
  ident: 10.1016/j.apenergy.2020.115336_b0035
  article-title: Energy management in multi-microgrid systems — development and assessment
  publication-title: IEEE Trans Power Syst
– volume: 6
  start-page: 1648
  year: 2015
  ident: 10.1016/j.apenergy.2020.115336_b0020
  article-title: Optimal power dispatch of multi-microgrids at future smart distribution grids
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2015.2396992
– volume: 33
  start-page: 6410
  year: 2018
  ident: 10.1016/j.apenergy.2020.115336_b0075
  article-title: Energy management of multiple microgrids based on a system of systems architecture
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2018.2840055
– volume: 14
  start-page: 9
  year: 1992
  ident: 10.1016/j.apenergy.2020.115336_b0180
  article-title: An optimization-based method for unit commitment
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/0142-0615(92)90003-R
– volume: 255
  year: 2019
  ident: 10.1016/j.apenergy.2020.115336_b0015
  article-title: Robust distributed optimization for energy dispatch of multi-stakeholder multiple microgrids under uncertainty
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113845
– volume: 31
  start-page: 176
  year: 2006
  ident: 10.1016/j.apenergy.2020.115336_b0190
  article-title: An augmented Lagrangian relaxation for analytical target cascading using the alternating direction method of multipliers
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-005-0579-0
– volume: 240
  start-page: 719
  year: 2019
  ident: 10.1016/j.apenergy.2020.115336_b0095
  article-title: Temporally-coordinated optimal operation of a multi-energy microgrid under diverse uncertainties
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.02.085
– volume: 217
  start-page: 346
  year: 2018
  ident: 10.1016/j.apenergy.2020.115336_b0105
  article-title: Robust optimization for energy transactions in multi-microgrids under uncertainty
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.02.121
– volume: 20
  start-page: 634
  year: 1995
  ident: 10.1016/j.apenergy.2020.115336_b0200
  article-title: On convergence of an augmented lagrangian decomposition method for sparse convex optimization
  publication-title: Math Oper Res
  doi: 10.1287/moor.20.3.634
– volume: 7
  start-page: 227
  year: 2016
  ident: 10.1016/j.apenergy.2020.115336_b0125
  article-title: Bidding strategy for microgrid in day-ahead market based on hybrid stochastic/robust optimization
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2015.2476669
– volume: 23
  start-page: 128
  year: 2015
  ident: 10.1016/j.apenergy.2020.115336_b0025
  article-title: Optimal control of power flows and energy local storages in a network of microgrids modeled as a system of systems
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2014.2314474
– volume: 125
  start-page: 474
  year: 2003
  ident: 10.1016/j.apenergy.2020.115336_b0195
  article-title: Target cascading in optimal system design
  publication-title: J Mech Des, Trans ASME
  doi: 10.1115/1.1582501
– volume: 50
  start-page: 1103
  year: 2014
  ident: 10.1016/j.apenergy.2020.115336_b0175
  article-title: Optimal design of commercial vehicle systems using analytical target cascading
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-014-1097-8
– volume: 253
  start-page: 113
  year: 2019
  ident: 10.1016/j.apenergy.2020.115336_b0135
  article-title: Two kinds of decentralized robust economic dispatch framework combined distribution network and multi-microgrids
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113588
– volume: 15
  start-page: 1238
  year: 2019
  ident: 10.1016/j.apenergy.2020.115336_b0040
  article-title: Networked microgrids: state-of-the-art and future perspectives
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2018.2881540
SSID ssj0002120
Score 2.5411355
Snippet •Solved the optimal operation problem for IMS in market environment with uncertainty.•Established a hierarchical distributed framework for cloud-edge...
The interconnected microgrid system (IMS) is a promising solution for the problem of growing penetration of renewable-based microgrids into the power system....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115336
SubjectTerms Bi-level energy dispatch
case studies
Decentralized framework
energy
income
markets
Multi-microgrid system
Power Internet of things
prices
renewable energy sources
Uncertainty
Title Optimal operation strategy for interconnected microgrids in market environment considering uncertainty
URI https://dx.doi.org/10.1016/j.apenergy.2020.115336
https://www.proquest.com/docview/2440688364
Volume 275
WOSCitedRecordID wos000565600400013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLag44E9IBhMjJuMxGtG4lzsPE5Tp4HQQNqQ-hY5rtN2omnVNNP495zjS5IN0ECIl6hyY7vt9_Wc45NzIeRdNuVhGQk4ljCAIclkGeSSpwHPyilq7Igrkyj8iZ-dickk_-J8uo1pJ8DrWlxf5-v_CjWMAdiYOvsXcHeLwgC8BtDhCrDD9Y-A_wxCYIkm5lo7dBtbgdaGZmJ9iI3C8BaFxuYSA_Jmm4WNi12aHOhh9huGpZuOnuhSAB1oIwi2Nx4Ge0tWmzzCToS7YN8JEHD2ve0ifxatlXPzlVOaxp1v7z2e63rWzHvGnrfWvDZLuGHno4ADqY92c44znzzTRyqZhK0wC_AAZ1WRlb-CM5S_Yiigme2t8pOwt36Hy0O5tt_vELcGHQAW7K3q2kZfn-OG5sCINXoSkd4nO7B0LkZk5-jDePKx0-DMlfP0H3CQWf7r3X5n1NxS78ZmuXhMHrnDBj2yJHlC7ul6j-wOSlDukf1xjzXc6kR985RUjke04xH1PKLAI3qTR7TnEbxDLY_ogEd0wCM64NEz8vVkfHF8GrimHIGKk3QbMFbxKOaVkqGQTJelwurSsQ7LUiiwvtM8CRWbRjqKVJYIlcUaQI1UJaMKTG8d75NRvar1c0IznjOpZahioROd5DKbKs1VVJVxIkWZH5DU_6qFchXrsXHKt8KHJl4WHo0C0SgsGgfkfTdvbWu23Dkj96AVzvK0FmUBXLtz7luPcgGiGZ-3yVqv2qYAyxlbOsVZ8uIf1n9JHvZ_qVdktN20-jV5oK62i2bzxlH3B4b1vp8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+operation+strategy+for+interconnected+microgrids+in+market+environment+considering+uncertainty&rft.jtitle=Applied+energy&rft.au=Kong%2C+Xiangyu&rft.au=Liu%2C+Dehong&rft.au=Wang%2C+Chengshan&rft.au=Sun%2C+Fangyuan&rft.date=2020-10-01&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=275&rft_id=info:doi/10.1016%2Fj.apenergy.2020.115336&rft.externalDocID=S0306261920308485
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon