USAC: A Universal Framework for Random Sample Consensus
A computational problem that arises frequently in computer vision is that of estimating the parameters of a model from data that have been contaminated by noise and outliers. More generally, any practical system that seeks to estimate quantities from noisy data measurements must have at its core som...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence Jg. 35; H. 8; S. 2022 - 2038 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Los Alamitos, CA
IEEE
01.08.2013
IEEE Computer Society |
| Schlagworte: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A computational problem that arises frequently in computer vision is that of estimating the parameters of a model from data that have been contaminated by noise and outliers. More generally, any practical system that seeks to estimate quantities from noisy data measurements must have at its core some means of dealing with data contamination. The random sample consensus (RANSAC) algorithm is one of the most popular tools for robust estimation. Recent years have seen an explosion of activity in this area, leading to the development of a number of techniques that improve upon the efficiency and robustness of the basic RANSAC algorithm. In this paper, we present a comprehensive overview of recent research in RANSAC-based robust estimation by analyzing and comparing various approaches that have been explored over the years. We provide a common context for this analysis by introducing a new framework for robust estimation, which we call Universal RANSAC (USAC). USAC extends the simple hypothesize-and-verify structure of standard RANSAC to incorporate a number of important practical and computational considerations. In addition, we provide a general-purpose C++ software library that implements the USAC framework by leveraging state-of-the-art algorithms for the various modules. This implementation thus addresses many of the limitations of standard RANSAC within a single unified package. We benchmark the performance of the algorithm on a large collection of estimation problems. The implementation we provide can be used by researchers either as a stand-alone tool for robust estimation or as a benchmark for evaluating new techniques. |
|---|---|
| AbstractList | A computational problem that arises frequently in computer vision is that of estimating the parameters of a model from data that have been contaminated by noise and outliers. More generally, any practical system that seeks to estimate quantities from noisy data measurements must have at its core some means of dealing with data contamination. The random sample consensus (RANSAC) algorithm is one of the most popular tools for robust estimation. Recent years have seen an explosion of activity in this area, leading to the development of a number of techniques that improve upon the efficiency and robustness of the basic RANSAC algorithm. In this paper, we present a comprehensive overview of recent research in RANSAC-based robust estimation by analyzing and comparing various approaches that have been explored over the years. We provide a common context for this analysis by introducing a new framework for robust estimation, which we call Universal RANSAC (USAC). USAC extends the simple hypothesize-and-verify structure of standard RANSAC to incorporate a number of important practical and computational considerations. In addition, we provide a general-purpose C++ software library that implements the USAC framework by leveraging state-of-the-art algorithms for the various modules. This implementation thus addresses many of the limitations of standard RANSAC within a single unified package. We benchmark the performance of the algorithm on a large collection of estimation problems. The implementation we provide can be used by researchers either as a stand-alone tool for robust estimation or as a benchmark for evaluating new techniques.A computational problem that arises frequently in computer vision is that of estimating the parameters of a model from data that have been contaminated by noise and outliers. More generally, any practical system that seeks to estimate quantities from noisy data measurements must have at its core some means of dealing with data contamination. The random sample consensus (RANSAC) algorithm is one of the most popular tools for robust estimation. Recent years have seen an explosion of activity in this area, leading to the development of a number of techniques that improve upon the efficiency and robustness of the basic RANSAC algorithm. In this paper, we present a comprehensive overview of recent research in RANSAC-based robust estimation by analyzing and comparing various approaches that have been explored over the years. We provide a common context for this analysis by introducing a new framework for robust estimation, which we call Universal RANSAC (USAC). USAC extends the simple hypothesize-and-verify structure of standard RANSAC to incorporate a number of important practical and computational considerations. In addition, we provide a general-purpose C++ software library that implements the USAC framework by leveraging state-of-the-art algorithms for the various modules. This implementation thus addresses many of the limitations of standard RANSAC within a single unified package. We benchmark the performance of the algorithm on a large collection of estimation problems. The implementation we provide can be used by researchers either as a stand-alone tool for robust estimation or as a benchmark for evaluating new techniques. A computational problem that arises frequently in computer vision is that of estimating the parameters of a model from data that have been contaminated by noise and outliers. More generally, any practical system that seeks to estimate quantities from noisy data measurements must have at its core some means of dealing with data contamination. The random sample consensus (RANSAC) algorithm is one of the most popular tools for robust estimation. Recent years have seen an explosion of activity in this area, leading to the development of a number of techniques that improve upon the efficiency and robustness of the basic RANSAC algorithm. In this paper, we present a comprehensive overview of recent research in RANSAC-based robust estimation by analyzing and comparing various approaches that have been explored over the years. We provide a common context for this analysis by introducing a new framework for robust estimation, which we call Universal RANSAC (USAC). USAC extends the simple hypothesize-and-verify structure of standard RANSAC to incorporate a number of important practical and computational considerations. In addition, we provide a general-purpose C++ software library that implements the USAC framework by leveraging state-of-the-art algorithms for the various modules. This implementation thus addresses many of the limitations of standard RANSAC within a single unified package. We benchmark the performance of the algorithm on a large collection of estimation problems. The implementation we provide can be used by researchers either as a stand-alone tool for robust estimation or as a benchmark for evaluating new techniques. |
| Author | Raguram, R. Chum, O. Matas, J. Pollefeys, M. Frahm, J. |
| Author_xml | – sequence: 1 givenname: R. surname: Raguram fullname: Raguram, R. email: rraguram@apple.com organization: Apple, Inc., Cupertino, CA, USA – sequence: 2 givenname: O. surname: Chum fullname: Chum, O. email: chum@cmp.felk.cvut.cz organization: Czech Tech. Univ., Prague, Czech Republic – sequence: 3 givenname: M. surname: Pollefeys fullname: Pollefeys, M. email: marc.pollefeys@inf.ethz.ch organization: Dept. of Comput. Sci., ETH Zurich, Zurich, Switzerland – sequence: 4 givenname: J. surname: Matas fullname: Matas, J. email: matas@cmp.felk.cvut.cz organization: Czech Tech. Univ., Prague, Czech Republic – sequence: 5 givenname: J. surname: Frahm fullname: Frahm, J. email: jmf@cs.unc.edu organization: Dept. of Comput. Sci., Univ. of North Carolina at Chapel Hill, Chapel Hill, NC, USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27677607$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23787350$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kEtLw0AUhQep2Idu3QiSjeAmdR7JzMRdKVYLFcW263CT3EA0makzqeK_t7VVQXB1N985l_P1ScdYg4ScMjpkjCZXi8fR_XTIKeNDHqsD0uNM0jDhCe-QHmWSh1pz3SV9758pZVFMxRHpcqG0EjHtEbWcj8bXwShYmuoNnYc6mDho8N26l6C0LngCU9gmmEOzqjEYW-PR-LU_Jocl1B5P9ndAlpObxfgunD3cTsejWZiLKG5DhqVghVYQlRISTIBjgVAwqTlARClnRZZpUMijPAaEOMsRoNBJiQKSLBMDcrnrXTn7ukbfpk3lc6xrMGjXPmVCUSl0tJkzIOd7dJ01WKQrVzXgPtLvsRvgYg-Az6EuHZi88r-ckkpJui0a7rjcWe8dlj8Io-nWevplPd1aTzfWN4HoTyCvWmgra1oHVf1_7GwXqxDx54cUMpYRF5-94Y1O |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1109_TIP_2022_3192993 crossref_primary_10_1177_1550147717736655 crossref_primary_10_3390_app122010247 crossref_primary_10_1088_1361_6501_aa5ae9 crossref_primary_10_1016_j_inffus_2024_102599 crossref_primary_10_1016_j_isprsjprs_2020_01_009 crossref_primary_10_1109_ACCESS_2020_2967028 crossref_primary_10_1016_j_future_2017_07_007 crossref_primary_10_1109_TIP_2024_3391002 crossref_primary_10_1088_1742_6596_2562_1_012014 crossref_primary_10_1016_j_isprsjprs_2019_05_006 crossref_primary_10_1109_TIP_2021_3134456 crossref_primary_10_3847_1538_4357_ad9f34 crossref_primary_10_1016_j_jobe_2025_113492 crossref_primary_10_3390_jmse13010026 crossref_primary_10_1016_j_isprsjprs_2022_01_001 crossref_primary_10_1109_JSEN_2023_3325820 crossref_primary_10_1080_17538947_2024_2407943 crossref_primary_10_3390_app14156625 crossref_primary_10_1016_j_apenergy_2021_118033 crossref_primary_10_1038_s41598_025_88974_6 crossref_primary_10_1109_TPAMI_2018_2857776 crossref_primary_10_1109_TCSVT_2024_3439348 crossref_primary_10_3390_horticulturae10010040 crossref_primary_10_1177_09544054221081330 crossref_primary_10_1109_TCSVT_2023_3275817 crossref_primary_10_1109_ACCESS_2022_3152539 crossref_primary_10_1109_TPAMI_2014_2339862 crossref_primary_10_1109_TII_2024_3397358 crossref_primary_10_1016_j_inffus_2021_02_012 crossref_primary_10_1109_TPAMI_2020_3030161 crossref_primary_10_1007_s11760_025_03991_2 crossref_primary_10_1007_s00138_015_0689_7 crossref_primary_10_1016_j_patcog_2022_108588 crossref_primary_10_3390_s21186035 crossref_primary_10_1016_j_isprsjprs_2022_01_019 crossref_primary_10_3390_rs14133175 crossref_primary_10_1109_TRO_2015_2473455 crossref_primary_10_1109_TIM_2023_3315361 crossref_primary_10_1109_TPAMI_2018_2871850 crossref_primary_10_1016_j_isprsjprs_2022_08_015 crossref_primary_10_3390_rs9050433 crossref_primary_10_1016_j_cviu_2016_10_003 crossref_primary_10_1016_j_precisioneng_2018_03_001 crossref_primary_10_1109_ACCESS_2018_2803152 crossref_primary_10_1109_TCYB_2018_2869623 crossref_primary_10_20965_jaciii_2018_p0915 crossref_primary_10_1016_j_jksuci_2024_102228 crossref_primary_10_1080_00396265_2024_2307685 crossref_primary_10_1109_TGRS_2025_3570803 crossref_primary_10_1049_iet_cvi_2018_5787 crossref_primary_10_1016_j_neucom_2018_02_103 crossref_primary_10_3233_AIS_170459 crossref_primary_10_1007_s00521_021_06764_3 crossref_primary_10_3390_a10030087 crossref_primary_10_3390_app11135986 crossref_primary_10_1109_ACCESS_2019_2951473 crossref_primary_10_1186_s40648_023_00243_1 crossref_primary_10_1016_j_patrec_2017_05_006 crossref_primary_10_1109_TGRS_2020_3030935 crossref_primary_10_1364_AO_431909 crossref_primary_10_1016_j_isprsjprs_2017_08_009 crossref_primary_10_1109_JSTARS_2024_3400394 crossref_primary_10_1109_TCYB_2018_2889908 crossref_primary_10_3390_f15060893 crossref_primary_10_1016_j_neucom_2020_04_016 crossref_primary_10_1109_TGRS_2024_3511538 crossref_primary_10_1109_JAS_2022_105500 crossref_primary_10_1109_ACCESS_2020_2964425 crossref_primary_10_1016_j_inffus_2024_102344 crossref_primary_10_1109_JSTARS_2021_3069222 crossref_primary_10_3390_rs12121908 crossref_primary_10_1109_ACCESS_2025_3561823 crossref_primary_10_1109_TPAMI_2020_3048013 crossref_primary_10_1016_j_knosys_2020_105871 crossref_primary_10_1109_JSEN_2024_3425842 crossref_primary_10_1109_TGRS_2020_2982221 crossref_primary_10_1007_s11042_023_16080_8 crossref_primary_10_3390_s20082171 crossref_primary_10_1016_j_isprsjprs_2020_04_016 crossref_primary_10_1016_j_isprsjprs_2021_03_003 crossref_primary_10_1016_j_patcog_2021_107897 crossref_primary_10_1080_10095020_2013_774103 crossref_primary_10_1109_ACCESS_2020_2975670 crossref_primary_10_1109_TGRS_2024_3352095 crossref_primary_10_1115_1_4035897 crossref_primary_10_1016_j_imavis_2019_103860 crossref_primary_10_1109_TIP_2021_3058570 crossref_primary_10_1109_JSTARS_2024_3365516 crossref_primary_10_1080_01431161_2016_1196839 crossref_primary_10_1049_iet_ipr_2014_0632 crossref_primary_10_1109_TIP_2022_3201476 crossref_primary_10_3390_s25030622 crossref_primary_10_1007_s11263_020_01359_2 crossref_primary_10_1109_TPAMI_2024_3447048 crossref_primary_10_1016_j_isprsjprs_2019_12_008 crossref_primary_10_1007_s10489_024_05330_3 crossref_primary_10_1016_j_patrec_2017_12_012 crossref_primary_10_1109_TIM_2023_3277130 crossref_primary_10_3390_rs16173291 crossref_primary_10_1109_ACCESS_2021_3135416 crossref_primary_10_1007_s00603_024_04351_1 crossref_primary_10_3390_rs13091820 crossref_primary_10_1016_j_actaastro_2020_11_046 crossref_primary_10_1016_j_patcog_2024_110293 crossref_primary_10_1016_j_neucom_2024_129033 crossref_primary_10_1109_MGRS_2021_3122248 crossref_primary_10_1109_JAS_2023_123774 crossref_primary_10_1016_j_matchar_2025_114725 crossref_primary_10_2197_ipsjtcva_7_84 crossref_primary_10_3390_rs13091828 crossref_primary_10_1109_TASE_2021_3121586 crossref_primary_10_1088_1361_6501_ad5de2 crossref_primary_10_1007_s11263_024_02291_5 crossref_primary_10_1109_TGRS_2024_3496198 crossref_primary_10_1007_s11042_016_3365_7 crossref_primary_10_1109_TCSVT_2024_3374772 crossref_primary_10_1109_TIP_2023_3242598 crossref_primary_10_1016_j_aquaculture_2024_741535 crossref_primary_10_3390_s22134791 crossref_primary_10_1109_TPAMI_2021_3103562 crossref_primary_10_1109_TMM_2024_3521696 crossref_primary_10_1109_ACCESS_2023_3280824 crossref_primary_10_1007_s00138_019_01036_6 crossref_primary_10_1109_ACCESS_2021_3061818 crossref_primary_10_1109_TIP_2025_3539469 crossref_primary_10_3390_drones7040230 crossref_primary_10_1016_j_rsase_2024_101347 crossref_primary_10_1109_TCSVT_2024_3366912 crossref_primary_10_1109_TPAMI_2023_3262780 crossref_primary_10_1016_j_imavis_2020_103984 crossref_primary_10_1016_j_isprsjprs_2020_07_012 crossref_primary_10_3390_rs14030706 crossref_primary_10_1016_j_ijrmms_2023_105603 crossref_primary_10_3389_fnbot_2022_820703 crossref_primary_10_1007_s11263_019_01207_y crossref_primary_10_1109_TPAMI_2023_3334515 crossref_primary_10_1109_TPAMI_2024_3462453 crossref_primary_10_1016_j_jrmge_2025_03_042 crossref_primary_10_1109_ACCESS_2025_3608487 crossref_primary_10_1109_TNNLS_2024_3443113 crossref_primary_10_1109_TPAMI_2025_3568582 crossref_primary_10_1007_s11263_024_01992_1 crossref_primary_10_1109_ACCESS_2020_2973723 crossref_primary_10_3390_agriculture12081170 crossref_primary_10_1109_TGRS_2015_2391999 crossref_primary_10_1109_TPAMI_2019_2960234 crossref_primary_10_3390_rs17132291 crossref_primary_10_1016_j_cviu_2018_01_003 crossref_primary_10_1007_s11042_018_6475_6 crossref_primary_10_1016_j_acra_2014_08_009 crossref_primary_10_1109_JAS_2022_105926 crossref_primary_10_1109_TIP_2023_3318945 crossref_primary_10_1109_ACCESS_2023_3320682 crossref_primary_10_1109_JSTARS_2021_3078516 crossref_primary_10_1016_j_patrec_2018_09_028 crossref_primary_10_1016_j_neucom_2021_06_084 crossref_primary_10_1109_TGRS_2024_3388580 crossref_primary_10_3390_electronics13122275 crossref_primary_10_1016_j_autcon_2020_103468 crossref_primary_10_1109_TCSVT_2022_3210602 crossref_primary_10_1016_j_knosys_2025_113343 crossref_primary_10_1016_j_autcon_2021_103886 crossref_primary_10_1016_j_isprsjprs_2022_06_009 crossref_primary_10_1109_TGRS_2020_2972982 crossref_primary_10_1007_s00138_017_0883_x crossref_primary_10_1007_s11263_020_01399_8 crossref_primary_10_1109_ACCESS_2024_3476238 crossref_primary_10_1109_TPAMI_2020_3005373 crossref_primary_10_1093_ijlct_ctae236 crossref_primary_10_1016_j_jvcir_2015_08_008 crossref_primary_10_1109_TGRS_2020_3045456 crossref_primary_10_3788_IRLA20240528 crossref_primary_10_1109_TMM_2022_3162115 crossref_primary_10_1016_j_measurement_2022_111912 crossref_primary_10_1016_j_jvcir_2017_08_005 crossref_primary_10_1109_TGRS_2023_3258645 crossref_primary_10_1016_j_isprsjprs_2023_05_020 crossref_primary_10_3390_rs14143256 crossref_primary_10_1109_LGRS_2022_3183636 crossref_primary_10_1007_s11554_015_0508_4 crossref_primary_10_3390_rs13091622 crossref_primary_10_1007_s11263_022_01574_z crossref_primary_10_1109_ACCESS_2023_3301777 crossref_primary_10_1007_s00521_022_07113_8 crossref_primary_10_1088_2631_8695_ad1e15 crossref_primary_10_1109_TRO_2024_3484608 crossref_primary_10_1109_JOE_2019_2960582 crossref_primary_10_3390_robotics8040090 crossref_primary_10_3390_s19092143 crossref_primary_10_3390_e22121358 crossref_primary_10_1109_TGRS_2020_2984943 crossref_primary_10_1016_j_isprsjprs_2022_03_006 crossref_primary_10_1017_pasa_2024_21 crossref_primary_10_1177_14727978251348628 crossref_primary_10_3390_s20185117 crossref_primary_10_1109_TIP_2019_2903318 crossref_primary_10_1080_00396265_2016_1183939 crossref_primary_10_1016_j_engstruct_2024_118908 crossref_primary_10_1109_TIM_2023_3348902 crossref_primary_10_1109_TVCG_2015_2459897 crossref_primary_10_1177_00202940231212952 crossref_primary_10_1016_j_rineng_2025_105358 crossref_primary_10_14358_PERS_22_00069R3 crossref_primary_10_1109_JSTARS_2020_2969119 crossref_primary_10_1111_phor_12201 crossref_primary_10_1016_j_compag_2023_107886 crossref_primary_10_1016_j_engstruct_2021_113040 crossref_primary_10_1017_S0263574719000584 crossref_primary_10_1007_s00138_016_0802_6 crossref_primary_10_3390_rs14092110 crossref_primary_10_1088_1361_6501_adaa93 crossref_primary_10_1016_j_measurement_2024_115376 crossref_primary_10_1109_TNNLS_2020_2978031 crossref_primary_10_1109_TPAMI_2021_3109784 crossref_primary_10_1016_j_ins_2021_03_023 crossref_primary_10_3390_rs16234541 crossref_primary_10_1109_JSYST_2014_2320639 crossref_primary_10_1109_LGRS_2021_3069761 crossref_primary_10_1088_1361_6501_ad9100 crossref_primary_10_1061_JCCEE5_CPENG_6468 crossref_primary_10_14358_PERS_24_00008R2 crossref_primary_10_3390_rs11243007 crossref_primary_10_1109_TIM_2019_2943715 crossref_primary_10_3390_s22186977 crossref_primary_10_1371_journal_pone_0311038 crossref_primary_10_1007_s10489_024_05400_6 crossref_primary_10_1109_TGRS_2019_2923684 crossref_primary_10_1088_1755_1315_783_1_012138 crossref_primary_10_1016_j_cageo_2022_105241 crossref_primary_10_1080_15481603_2023_2197281 crossref_primary_10_1007_s11042_017_4581_5 crossref_primary_10_3390_s24237824 crossref_primary_10_1007_s11263_022_01644_2 crossref_primary_10_1109_TITS_2022_3229364 crossref_primary_10_1109_ACCESS_2018_2853100 crossref_primary_10_1016_j_isprsjprs_2023_05_030 crossref_primary_10_1007_s11263_025_02531_2 crossref_primary_10_3390_rs16111873 crossref_primary_10_1016_j_aiia_2025_03_007 crossref_primary_10_3390_electronics12081832 crossref_primary_10_1016_j_patcog_2025_112044 crossref_primary_10_1145_3625294 crossref_primary_10_3390_s21175850 crossref_primary_10_3390_s25030714 crossref_primary_10_1109_TIE_2020_3018074 crossref_primary_10_1109_TPAMI_2018_2869560 crossref_primary_10_1007_s00521_020_05565_4 crossref_primary_10_1016_j_dsp_2024_104402 crossref_primary_10_1109_TPAMI_2021_3118833 crossref_primary_10_3390_ijgi9090521 crossref_primary_10_1016_j_patrec_2021_07_007 crossref_primary_10_1186_s40648_020_00172_3 crossref_primary_10_1109_TIM_2024_3369132 crossref_primary_10_1016_j_patcog_2022_109180 crossref_primary_10_1016_j_isprsjprs_2019_04_006 crossref_primary_10_1109_TNNLS_2021_3118409 crossref_primary_10_1016_j_dsp_2023_104128 crossref_primary_10_1016_j_sigpro_2021_108304 crossref_primary_10_1016_j_procs_2024_04_052 crossref_primary_10_1587_transinf_2020EDL8110 crossref_primary_10_1109_TIP_2024_3512352 crossref_primary_10_3390_rs14194917 crossref_primary_10_1016_j_imavis_2017_09_006 crossref_primary_10_3390_s19245373 crossref_primary_10_1016_j_patcog_2025_112226 crossref_primary_10_3724_SP_J_1089_2022_18902 crossref_primary_10_1177_0959651818802113 crossref_primary_10_1016_j_jag_2024_103858 crossref_primary_10_3390_rs11101248 crossref_primary_10_1109_TIP_2023_3334594 crossref_primary_10_3390_s23010327 crossref_primary_10_20965_jaciii_2017_p0059 crossref_primary_10_1007_s10846_022_01735_9 crossref_primary_10_1109_TPAMI_2021_3065021 crossref_primary_10_1109_TPAMI_2021_3071812 crossref_primary_10_1007_s10846_019_00997_0 crossref_primary_10_3389_fnbot_2022_990453 crossref_primary_10_1109_TIP_2019_2962678 crossref_primary_10_1016_j_isprsjprs_2018_06_009 crossref_primary_10_1016_j_optlastec_2018_08_045 crossref_primary_10_1109_TPAMI_2020_2994190 crossref_primary_10_1016_j_cviu_2014_06_008 crossref_primary_10_1016_j_knosys_2022_109609 crossref_primary_10_1080_01691864_2019_1602564 crossref_primary_10_3390_math13132189 crossref_primary_10_1109_LRA_2022_3146946 crossref_primary_10_1016_j_engappai_2023_106944 crossref_primary_10_1016_j_knosys_2024_111927 crossref_primary_10_1016_j_compenvurbsys_2023_102026 crossref_primary_10_1177_13694332251340721 crossref_primary_10_1061_JCCEE5_CPENG_6026 crossref_primary_10_1007_s11263_020_01297_z crossref_primary_10_1109_TIE_2021_3076724 crossref_primary_10_3390_su16103930 crossref_primary_10_1016_j_ecoinf_2024_102556 crossref_primary_10_1016_j_neucom_2021_04_093 crossref_primary_10_20965_jrm_2021_p1265 crossref_primary_10_1016_j_isprsjprs_2019_04_020 crossref_primary_10_1088_1361_6501_ad7482 crossref_primary_10_3390_rs12203390 crossref_primary_10_1007_s10898_018_0721_3 crossref_primary_10_1016_j_patcog_2021_107986 crossref_primary_10_1016_j_neucom_2022_10_009 crossref_primary_10_1088_1361_6501_abc868 crossref_primary_10_1016_j_swevo_2024_101535 crossref_primary_10_1109_TMM_2017_2771566 crossref_primary_10_1007_s10614_022_10239_5 crossref_primary_10_1016_j_ins_2020_03_106 crossref_primary_10_1109_MGRS_2019_2937630 crossref_primary_10_1007_s10489_022_03266_0 crossref_primary_10_1016_j_measurement_2019_02_025 crossref_primary_10_3390_a18020065 crossref_primary_10_1016_j_inffus_2021_07_018 crossref_primary_10_1109_TGRS_2023_3313734 crossref_primary_10_3390_s24155073 crossref_primary_10_1109_TPAMI_2020_2978812 crossref_primary_10_1016_j_cviu_2024_104130 crossref_primary_10_1007_s00603_024_03804_x crossref_primary_10_1007_s10851_024_01182_1 crossref_primary_10_1016_j_isprsjprs_2023_01_016 crossref_primary_10_1007_s10489_024_06120_7 crossref_primary_10_1016_j_neucom_2020_12_052 crossref_primary_10_1109_TGRS_2024_3417217 crossref_primary_10_1109_ACCESS_2018_2847399 crossref_primary_10_1109_LRA_2025_3536285 crossref_primary_10_34248_bsengineering_735705 crossref_primary_10_1007_s10489_025_06296_6 |
| Cites_doi | 10.5244/C.19.78 10.1016/S0734-189X(88)80033-1 10.1109/ICCV.2009.5459241 10.1109/ICCV.2009.5459148 10.1109/IROS.2010.5653696 10.1109/TPAMI.2004.109 10.5244/C.14.38 10.15607/rss.2006.ii.018 10.5244/C.16.44 10.1007/978-3-642-15561-1_27 10.1109/CVPR.2006.235 10.1093/biomet/69.1.242 10.1109/34.589215 10.1007/s11263-007-0107-3 10.1109/ICCVW.2009.5457551 10.1007/978-3-540-88682-2_41 10.1007/s11263-007-0086-4 10.1145/358669.358692 10.1109/ICCV.2003.1238441 10.1109/CVPR.2004.1315094 10.1109/IROS.2006.282572 10.1109/ROBOT.2006.1641163 10.1109/ICCV.2009.5459150 10.1016/0004-3702(95)00022-4 10.1109/ICCV.2005.198 10.1017/cbo9780511811685 10.1109/CVPR.2005.354 10.1109/ICCV.2009.5459459 10.1006/cviu.1997.0559 10.1109/CVPR.1996.517089 10.1007/978-3-540-88688-4_37 10.1109/CVPR.2009.5206678 10.1109/CVPR.2005.221 10.1023/A:1007941100561 10.1109/ICCV.2009.5459398 10.1109/34.659940 10.1080/01621459.1984.10477105 10.1109/TPAMI.2004.17 10.1109/TPAMI.2007.70787 10.1007/3-540-47969-4_6 10.1109/ICCV.2001.937672 10.1109/ICCV.2003.1238341 10.1109/34.464558 10.1007/978-3-642-15555-0_39 10.1109/ICCV.2011.6126382 10.1002/SERIES1345 10.1109/CVPR.2008.4587474 10.1109/ICCV.2009.5459456 10.1109/70.976019 10.1007/978-3-540-88682-2_7 10.1007/978-3-540-45243-0_31 10.1109/ICPR.2004.1334020 |
| ContentType | Journal Article |
| Copyright | 2015 INIST-CNRS |
| Copyright_xml | – notice: 2015 INIST-CNRS |
| DBID | 97E RIA RIE AAYXX CITATION IQODW NPM 7X8 |
| DOI | 10.1109/TPAMI.2012.257 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Applied Sciences |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 2038 |
| ExternalDocumentID | 23787350 27677607 10_1109_TPAMI_2012_257 6365642 |
| Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYXX CITATION AAYOK IQODW RIG NPM 7X8 |
| ID | FETCH-LOGICAL-c345t-1ef31d87a4f6a9e9a2edead1682aa40021dbb8a7e24c5aea5bceaad89fe3a9bb3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 508 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000320381400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Sun Nov 09 13:50:28 EST 2025 Mon Jul 21 06:05:10 EDT 2025 Wed Apr 02 07:16:12 EDT 2025 Tue Nov 18 21:58:06 EST 2025 Sat Nov 29 08:09:59 EST 2025 Wed Aug 27 02:47:49 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Computer vision Parameter estimation Program library Estimator robustness Activity C language Contamination Standards Outlier RANSAC Software libraries Model matching Efficiency robust estimation Data models Signal to noise ratio |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c345t-1ef31d87a4f6a9e9a2edead1682aa40021dbb8a7e24c5aea5bceaad89fe3a9bb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 23787350 |
| PQID | 1370638487 |
| PQPubID | 23479 |
| PageCount | 17 |
| ParticipantIDs | pascalfrancis_primary_27677607 crossref_primary_10_1109_TPAMI_2012_257 crossref_citationtrail_10_1109_TPAMI_2012_257 pubmed_primary_23787350 ieee_primary_6365642 proquest_miscellaneous_1370638487 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-08-01 |
| PublicationDateYYYYMMDD | 2013-08-01 |
| PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Los Alamitos, CA |
| PublicationPlace_xml | – name: Los Alamitos, CA – name: United States |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2013 |
| Publisher | IEEE IEEE Computer Society |
| Publisher_xml | – name: IEEE – name: IEEE Computer Society |
| References | ref13 ref12 ref56 ref15 ref14 ref53 ref52 ref11 ref55 ref10 ref54 Tukey (ref1) 1977 ref17 ref16 ref19 Hough (ref5) 1962 ref18 ref50 ref46 ref45 ref48 ref42 ref41 ref44 ref43 Matas (ref47) 2002 Wald (ref51) 1947 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref49 doi: 10.5244/C.19.78 – ident: ref6 doi: 10.1016/S0734-189X(88)80033-1 – ident: ref45 doi: 10.1109/ICCV.2009.5459241 – ident: ref10 doi: 10.1109/ICCV.2009.5459148 – ident: ref16 doi: 10.1109/IROS.2010.5653696 – year: 1962 ident: ref5 article-title: Method and Means for Recognizing Complex Patterns – ident: ref24 doi: 10.1109/TPAMI.2004.109 – ident: ref37 doi: 10.5244/C.14.38 – ident: ref26 doi: 10.15607/rss.2006.ii.018 – ident: ref41 doi: 10.5244/C.16.44 – ident: ref12 doi: 10.1007/978-3-642-15561-1_27 – ident: ref54 doi: 10.1109/CVPR.2006.235 – ident: ref3 doi: 10.1093/biomet/69.1.242 – ident: ref36 doi: 10.1109/34.589215 – ident: ref9 doi: 10.1007/s11263-007-0107-3 – ident: ref11 doi: 10.1109/ICCVW.2009.5457551 – ident: ref29 doi: 10.1007/978-3-540-88682-2_41 – ident: ref15 doi: 10.1007/s11263-007-0086-4 – ident: ref7 doi: 10.1145/358669.358692 – ident: ref25 doi: 10.1109/ICCV.2003.1238441 – ident: ref13 doi: 10.1109/CVPR.2004.1315094 – ident: ref14 doi: 10.1109/IROS.2006.282572 – ident: ref8 doi: 10.1109/ROBOT.2006.1641163 – ident: ref30 doi: 10.1109/ICCV.2009.5459150 – ident: ref42 doi: 10.1016/0004-3702(95)00022-4 – ident: ref50 doi: 10.1109/ICCV.2005.198 – ident: ref20 doi: 10.1017/cbo9780511811685 – ident: ref53 doi: 10.1109/CVPR.2005.354 – ident: ref40 doi: 10.1109/ICCV.2009.5459459 – ident: ref19 doi: 10.1006/cviu.1997.0559 – ident: ref22 doi: 10.1109/CVPR.1996.517089 – ident: ref18 doi: 10.1007/978-3-540-88688-4_37 – ident: ref27 doi: 10.1109/CVPR.2009.5206678 – ident: ref44 doi: 10.1109/CVPR.2005.221 – ident: ref43 doi: 10.1023/A:1007941100561 – volume-title: Sequential Analysis year: 1947 ident: ref51 – ident: ref34 doi: 10.1109/ICCV.2009.5459398 – ident: ref23 doi: 10.1109/34.659940 – ident: ref4 doi: 10.1080/01621459.1984.10477105 – ident: ref56 doi: 10.1109/TPAMI.2004.17 – volume-title: Exploratory Data Analysis year: 1977 ident: ref1 – ident: ref17 doi: 10.1109/TPAMI.2007.70787 – ident: ref35 doi: 10.1007/3-540-47969-4_6 – ident: ref38 doi: 10.1109/ICCV.2001.937672 – ident: ref52 doi: 10.1109/ICCV.2003.1238341 – start-page: 448 year: 2002 ident: ref47 article-title: Randomized RANSAC with $T_{d,d}$ Test publication-title: Proc. British Machine Vision Conf. – ident: ref21 doi: 10.1109/34.464558 – ident: ref31 doi: 10.1007/978-3-642-15555-0_39 – ident: ref28 doi: 10.1109/ICCV.2011.6126382 – ident: ref2 doi: 10.1002/SERIES1345 – ident: ref39 doi: 10.1109/CVPR.2008.4587474 – ident: ref55 doi: 10.1109/ICCV.2009.5459456 – ident: ref32 doi: 10.1109/70.976019 – ident: ref33 doi: 10.1007/978-3-540-88682-2_7 – ident: ref48 doi: 10.1007/978-3-540-45243-0_31 – ident: ref46 doi: 10.1109/ICPR.2004.1334020 |
| SSID | ssj0014503 |
| Score | 2.606784 |
| Snippet | A computational problem that arises frequently in computer vision is that of estimating the parameters of a model from data that have been contaminated by... |
| SourceID | proquest pubmed pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2022 |
| SubjectTerms | Algorithm design and analysis Algorithmics. Computability. Computer arithmetics Applied sciences Artificial intelligence Computational modeling Computer science; control theory; systems Context Data models Estimation Exact sciences and technology Pattern recognition. Digital image processing. Computational geometry RANSAC robust estimation Robustness Software Software engineering Theoretical computing |
| Title | USAC: A Universal Framework for Random Sample Consensus |
| URI | https://ieeexplore.ieee.org/document/6365642 https://www.ncbi.nlm.nih.gov/pubmed/23787350 https://www.proquest.com/docview/1370638487 |
| Volume | 35 |
| WOSCitedRecordID | wos000320381400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB3S0EN7aJqkH5ukiwqFXupk9WHLzm0JXVJoQ2gS2JsZW2MotN6S3e3vz4zsdVNIDr0ZLMlm5sl6Y43mAXxgkkrBpy6pgsHEaeIr0_ik9syOw8QGHaKnv_qLi3w-Ly634NNwFoaIYvIZHctl3MsPi3otv8pOMsvsw_EH94n3vjurNewYuDSqIDOD4RnOYURfoFFPipPry-m3L5LFZY4ZoFL-1zJMrRy1v7cWRXEVSY3EJVun6WQtHuedcf2Z7fzfm7-EFz3PVNMOGLuwRe0e7Gw0HFQ_pffg-b2ChPvgb66mZ6dqqvp8DR5htsneUkxv1Xdsw-KXukIpKqxE7VOkMpav4Gb2-frsPOmlFZLaunSVaGqsDrlH12RYUIGGAmNKZ7lBdLLwh6rK0ZNxdYqEaVUTYsiLhiwWVWVfw3a7aOktqMAxmKsoRSn0zvFXUevgnKUs8JCN0SNINkYu677uuMhf_Cxj_DEpyuifUvxTsn9G8HFo_7uruPFoy32x9NCqN_IIxv_4cLhvfOZ9NuF-7zdOLXkyyQ4JtrRYL0ttvVA4hukI3nTe_tu7B83Bw089hGcmKmVIbuARbK9u1_QOntZ_Vj-Wt2NG7DwfR8TeATOL5eU |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS9xAEB5EC60PWrXq2dauIPSl0dsfySZ9O6SH0vMQPcG3MMlOoFBz4t359zu7yaUW6kPfAtndhJlvs99kZ-cDOGaSSs7GJiqcwshI4itV2ai0zI5dXzvpgqdHdjxO7-6yqxX41p2FIaKQfEYn_jLs5btpufC_yk4TzezD8Ad3LTZGyea0VrdnYOKgg8wchuc4BxJtiUbZz04nV4PLC5_HpU4Yor4AsGagan_Y_sVqFORVfHIkztg-VSNs8TrzDCvQcPP_3v09bLRMUwwaaGzBCtXbsLlUcRDtpN6G9RclCXfA3t4Mzr6LgWgzNniE4TJ_SzDBFddYu-m9uEFfVlh4vU8vljH7ALfDH5Oz86gVV4hKbeJ5JKnS0qUWTZVgRhkqcowqmaQK0fil3xVFipaUKWMkjIuSEF2aVaQxKwq9C6v1tKZ9EI6jMFNQjL7UO0dgWSmdMZoSx0NWSvYgWho5L9vK414A43ceIpB-lgf_5N4_OfunB1-79g9NzY1XW-54S3etWiP34PAvH3b3lU2sTfrc72jp1Jynk98jwZqmi1kutfUkjoHag73G2396t6A5-PdTv8Db88nlKB9djH9-hHcq6Gb4TMFPsDp_XNBneFM-zX_NHg8Dbp8B4szoRA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=USAC%3A+a+universal+framework+for+random+sample+consensus&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Raguram%2C+Rahul&rft.au=Chum%2C+Ondrej&rft.au=Pollefeys%2C+Marc&rft.au=Matas%2C+Jir%C3%AD&rft.date=2013-08-01&rft.eissn=1939-3539&rft.volume=35&rft.issue=8&rft.spage=2022&rft_id=info:doi/10.1109%2FTPAMI.2012.257&rft_id=info%3Apmid%2F23787350&rft.externalDocID=23787350 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |