USAC: A Universal Framework for Random Sample Consensus

A computational problem that arises frequently in computer vision is that of estimating the parameters of a model from data that have been contaminated by noise and outliers. More generally, any practical system that seeks to estimate quantities from noisy data measurements must have at its core som...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence Jg. 35; H. 8; S. 2022 - 2038
Hauptverfasser: Raguram, R., Chum, O., Pollefeys, M., Matas, J., Frahm, J.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Los Alamitos, CA IEEE 01.08.2013
IEEE Computer Society
Schlagworte:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A computational problem that arises frequently in computer vision is that of estimating the parameters of a model from data that have been contaminated by noise and outliers. More generally, any practical system that seeks to estimate quantities from noisy data measurements must have at its core some means of dealing with data contamination. The random sample consensus (RANSAC) algorithm is one of the most popular tools for robust estimation. Recent years have seen an explosion of activity in this area, leading to the development of a number of techniques that improve upon the efficiency and robustness of the basic RANSAC algorithm. In this paper, we present a comprehensive overview of recent research in RANSAC-based robust estimation by analyzing and comparing various approaches that have been explored over the years. We provide a common context for this analysis by introducing a new framework for robust estimation, which we call Universal RANSAC (USAC). USAC extends the simple hypothesize-and-verify structure of standard RANSAC to incorporate a number of important practical and computational considerations. In addition, we provide a general-purpose C++ software library that implements the USAC framework by leveraging state-of-the-art algorithms for the various modules. This implementation thus addresses many of the limitations of standard RANSAC within a single unified package. We benchmark the performance of the algorithm on a large collection of estimation problems. The implementation we provide can be used by researchers either as a stand-alone tool for robust estimation or as a benchmark for evaluating new techniques.
AbstractList A computational problem that arises frequently in computer vision is that of estimating the parameters of a model from data that have been contaminated by noise and outliers. More generally, any practical system that seeks to estimate quantities from noisy data measurements must have at its core some means of dealing with data contamination. The random sample consensus (RANSAC) algorithm is one of the most popular tools for robust estimation. Recent years have seen an explosion of activity in this area, leading to the development of a number of techniques that improve upon the efficiency and robustness of the basic RANSAC algorithm. In this paper, we present a comprehensive overview of recent research in RANSAC-based robust estimation by analyzing and comparing various approaches that have been explored over the years. We provide a common context for this analysis by introducing a new framework for robust estimation, which we call Universal RANSAC (USAC). USAC extends the simple hypothesize-and-verify structure of standard RANSAC to incorporate a number of important practical and computational considerations. In addition, we provide a general-purpose C++ software library that implements the USAC framework by leveraging state-of-the-art algorithms for the various modules. This implementation thus addresses many of the limitations of standard RANSAC within a single unified package. We benchmark the performance of the algorithm on a large collection of estimation problems. The implementation we provide can be used by researchers either as a stand-alone tool for robust estimation or as a benchmark for evaluating new techniques.A computational problem that arises frequently in computer vision is that of estimating the parameters of a model from data that have been contaminated by noise and outliers. More generally, any practical system that seeks to estimate quantities from noisy data measurements must have at its core some means of dealing with data contamination. The random sample consensus (RANSAC) algorithm is one of the most popular tools for robust estimation. Recent years have seen an explosion of activity in this area, leading to the development of a number of techniques that improve upon the efficiency and robustness of the basic RANSAC algorithm. In this paper, we present a comprehensive overview of recent research in RANSAC-based robust estimation by analyzing and comparing various approaches that have been explored over the years. We provide a common context for this analysis by introducing a new framework for robust estimation, which we call Universal RANSAC (USAC). USAC extends the simple hypothesize-and-verify structure of standard RANSAC to incorporate a number of important practical and computational considerations. In addition, we provide a general-purpose C++ software library that implements the USAC framework by leveraging state-of-the-art algorithms for the various modules. This implementation thus addresses many of the limitations of standard RANSAC within a single unified package. We benchmark the performance of the algorithm on a large collection of estimation problems. The implementation we provide can be used by researchers either as a stand-alone tool for robust estimation or as a benchmark for evaluating new techniques.
A computational problem that arises frequently in computer vision is that of estimating the parameters of a model from data that have been contaminated by noise and outliers. More generally, any practical system that seeks to estimate quantities from noisy data measurements must have at its core some means of dealing with data contamination. The random sample consensus (RANSAC) algorithm is one of the most popular tools for robust estimation. Recent years have seen an explosion of activity in this area, leading to the development of a number of techniques that improve upon the efficiency and robustness of the basic RANSAC algorithm. In this paper, we present a comprehensive overview of recent research in RANSAC-based robust estimation by analyzing and comparing various approaches that have been explored over the years. We provide a common context for this analysis by introducing a new framework for robust estimation, which we call Universal RANSAC (USAC). USAC extends the simple hypothesize-and-verify structure of standard RANSAC to incorporate a number of important practical and computational considerations. In addition, we provide a general-purpose C++ software library that implements the USAC framework by leveraging state-of-the-art algorithms for the various modules. This implementation thus addresses many of the limitations of standard RANSAC within a single unified package. We benchmark the performance of the algorithm on a large collection of estimation problems. The implementation we provide can be used by researchers either as a stand-alone tool for robust estimation or as a benchmark for evaluating new techniques.
Author Raguram, R.
Chum, O.
Matas, J.
Pollefeys, M.
Frahm, J.
Author_xml – sequence: 1
  givenname: R.
  surname: Raguram
  fullname: Raguram, R.
  email: rraguram@apple.com
  organization: Apple, Inc., Cupertino, CA, USA
– sequence: 2
  givenname: O.
  surname: Chum
  fullname: Chum, O.
  email: chum@cmp.felk.cvut.cz
  organization: Czech Tech. Univ., Prague, Czech Republic
– sequence: 3
  givenname: M.
  surname: Pollefeys
  fullname: Pollefeys, M.
  email: marc.pollefeys@inf.ethz.ch
  organization: Dept. of Comput. Sci., ETH Zurich, Zurich, Switzerland
– sequence: 4
  givenname: J.
  surname: Matas
  fullname: Matas, J.
  email: matas@cmp.felk.cvut.cz
  organization: Czech Tech. Univ., Prague, Czech Republic
– sequence: 5
  givenname: J.
  surname: Frahm
  fullname: Frahm, J.
  email: jmf@cs.unc.edu
  organization: Dept. of Comput. Sci., Univ. of North Carolina at Chapel Hill, Chapel Hill, NC, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27677607$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23787350$$D View this record in MEDLINE/PubMed
BookMark eNp1kEtLw0AUhQep2Idu3QiSjeAmdR7JzMRdKVYLFcW263CT3EA0makzqeK_t7VVQXB1N985l_P1ScdYg4ScMjpkjCZXi8fR_XTIKeNDHqsD0uNM0jDhCe-QHmWSh1pz3SV9758pZVFMxRHpcqG0EjHtEbWcj8bXwShYmuoNnYc6mDho8N26l6C0LngCU9gmmEOzqjEYW-PR-LU_Jocl1B5P9ndAlpObxfgunD3cTsejWZiLKG5DhqVghVYQlRISTIBjgVAwqTlARClnRZZpUMijPAaEOMsRoNBJiQKSLBMDcrnrXTn7ukbfpk3lc6xrMGjXPmVCUSl0tJkzIOd7dJ01WKQrVzXgPtLvsRvgYg-Az6EuHZi88r-ckkpJui0a7rjcWe8dlj8Io-nWevplPd1aTzfWN4HoTyCvWmgra1oHVf1_7GwXqxDx54cUMpYRF5-94Y1O
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_TIP_2022_3192993
crossref_primary_10_1177_1550147717736655
crossref_primary_10_3390_app122010247
crossref_primary_10_1088_1361_6501_aa5ae9
crossref_primary_10_1016_j_inffus_2024_102599
crossref_primary_10_1016_j_isprsjprs_2020_01_009
crossref_primary_10_1109_ACCESS_2020_2967028
crossref_primary_10_1016_j_future_2017_07_007
crossref_primary_10_1109_TIP_2024_3391002
crossref_primary_10_1088_1742_6596_2562_1_012014
crossref_primary_10_1016_j_isprsjprs_2019_05_006
crossref_primary_10_1109_TIP_2021_3134456
crossref_primary_10_3847_1538_4357_ad9f34
crossref_primary_10_1016_j_jobe_2025_113492
crossref_primary_10_3390_jmse13010026
crossref_primary_10_1016_j_isprsjprs_2022_01_001
crossref_primary_10_1109_JSEN_2023_3325820
crossref_primary_10_1080_17538947_2024_2407943
crossref_primary_10_3390_app14156625
crossref_primary_10_1016_j_apenergy_2021_118033
crossref_primary_10_1038_s41598_025_88974_6
crossref_primary_10_1109_TPAMI_2018_2857776
crossref_primary_10_1109_TCSVT_2024_3439348
crossref_primary_10_3390_horticulturae10010040
crossref_primary_10_1177_09544054221081330
crossref_primary_10_1109_TCSVT_2023_3275817
crossref_primary_10_1109_ACCESS_2022_3152539
crossref_primary_10_1109_TPAMI_2014_2339862
crossref_primary_10_1109_TII_2024_3397358
crossref_primary_10_1016_j_inffus_2021_02_012
crossref_primary_10_1109_TPAMI_2020_3030161
crossref_primary_10_1007_s11760_025_03991_2
crossref_primary_10_1007_s00138_015_0689_7
crossref_primary_10_1016_j_patcog_2022_108588
crossref_primary_10_3390_s21186035
crossref_primary_10_1016_j_isprsjprs_2022_01_019
crossref_primary_10_3390_rs14133175
crossref_primary_10_1109_TRO_2015_2473455
crossref_primary_10_1109_TIM_2023_3315361
crossref_primary_10_1109_TPAMI_2018_2871850
crossref_primary_10_1016_j_isprsjprs_2022_08_015
crossref_primary_10_3390_rs9050433
crossref_primary_10_1016_j_cviu_2016_10_003
crossref_primary_10_1016_j_precisioneng_2018_03_001
crossref_primary_10_1109_ACCESS_2018_2803152
crossref_primary_10_1109_TCYB_2018_2869623
crossref_primary_10_20965_jaciii_2018_p0915
crossref_primary_10_1016_j_jksuci_2024_102228
crossref_primary_10_1080_00396265_2024_2307685
crossref_primary_10_1109_TGRS_2025_3570803
crossref_primary_10_1049_iet_cvi_2018_5787
crossref_primary_10_1016_j_neucom_2018_02_103
crossref_primary_10_3233_AIS_170459
crossref_primary_10_1007_s00521_021_06764_3
crossref_primary_10_3390_a10030087
crossref_primary_10_3390_app11135986
crossref_primary_10_1109_ACCESS_2019_2951473
crossref_primary_10_1186_s40648_023_00243_1
crossref_primary_10_1016_j_patrec_2017_05_006
crossref_primary_10_1109_TGRS_2020_3030935
crossref_primary_10_1364_AO_431909
crossref_primary_10_1016_j_isprsjprs_2017_08_009
crossref_primary_10_1109_JSTARS_2024_3400394
crossref_primary_10_1109_TCYB_2018_2889908
crossref_primary_10_3390_f15060893
crossref_primary_10_1016_j_neucom_2020_04_016
crossref_primary_10_1109_TGRS_2024_3511538
crossref_primary_10_1109_JAS_2022_105500
crossref_primary_10_1109_ACCESS_2020_2964425
crossref_primary_10_1016_j_inffus_2024_102344
crossref_primary_10_1109_JSTARS_2021_3069222
crossref_primary_10_3390_rs12121908
crossref_primary_10_1109_ACCESS_2025_3561823
crossref_primary_10_1109_TPAMI_2020_3048013
crossref_primary_10_1016_j_knosys_2020_105871
crossref_primary_10_1109_JSEN_2024_3425842
crossref_primary_10_1109_TGRS_2020_2982221
crossref_primary_10_1007_s11042_023_16080_8
crossref_primary_10_3390_s20082171
crossref_primary_10_1016_j_isprsjprs_2020_04_016
crossref_primary_10_1016_j_isprsjprs_2021_03_003
crossref_primary_10_1016_j_patcog_2021_107897
crossref_primary_10_1080_10095020_2013_774103
crossref_primary_10_1109_ACCESS_2020_2975670
crossref_primary_10_1109_TGRS_2024_3352095
crossref_primary_10_1115_1_4035897
crossref_primary_10_1016_j_imavis_2019_103860
crossref_primary_10_1109_TIP_2021_3058570
crossref_primary_10_1109_JSTARS_2024_3365516
crossref_primary_10_1080_01431161_2016_1196839
crossref_primary_10_1049_iet_ipr_2014_0632
crossref_primary_10_1109_TIP_2022_3201476
crossref_primary_10_3390_s25030622
crossref_primary_10_1007_s11263_020_01359_2
crossref_primary_10_1109_TPAMI_2024_3447048
crossref_primary_10_1016_j_isprsjprs_2019_12_008
crossref_primary_10_1007_s10489_024_05330_3
crossref_primary_10_1016_j_patrec_2017_12_012
crossref_primary_10_1109_TIM_2023_3277130
crossref_primary_10_3390_rs16173291
crossref_primary_10_1109_ACCESS_2021_3135416
crossref_primary_10_1007_s00603_024_04351_1
crossref_primary_10_3390_rs13091820
crossref_primary_10_1016_j_actaastro_2020_11_046
crossref_primary_10_1016_j_patcog_2024_110293
crossref_primary_10_1016_j_neucom_2024_129033
crossref_primary_10_1109_MGRS_2021_3122248
crossref_primary_10_1109_JAS_2023_123774
crossref_primary_10_1016_j_matchar_2025_114725
crossref_primary_10_2197_ipsjtcva_7_84
crossref_primary_10_3390_rs13091828
crossref_primary_10_1109_TASE_2021_3121586
crossref_primary_10_1088_1361_6501_ad5de2
crossref_primary_10_1007_s11263_024_02291_5
crossref_primary_10_1109_TGRS_2024_3496198
crossref_primary_10_1007_s11042_016_3365_7
crossref_primary_10_1109_TCSVT_2024_3374772
crossref_primary_10_1109_TIP_2023_3242598
crossref_primary_10_1016_j_aquaculture_2024_741535
crossref_primary_10_3390_s22134791
crossref_primary_10_1109_TPAMI_2021_3103562
crossref_primary_10_1109_TMM_2024_3521696
crossref_primary_10_1109_ACCESS_2023_3280824
crossref_primary_10_1007_s00138_019_01036_6
crossref_primary_10_1109_ACCESS_2021_3061818
crossref_primary_10_1109_TIP_2025_3539469
crossref_primary_10_3390_drones7040230
crossref_primary_10_1016_j_rsase_2024_101347
crossref_primary_10_1109_TCSVT_2024_3366912
crossref_primary_10_1109_TPAMI_2023_3262780
crossref_primary_10_1016_j_imavis_2020_103984
crossref_primary_10_1016_j_isprsjprs_2020_07_012
crossref_primary_10_3390_rs14030706
crossref_primary_10_1016_j_ijrmms_2023_105603
crossref_primary_10_3389_fnbot_2022_820703
crossref_primary_10_1007_s11263_019_01207_y
crossref_primary_10_1109_TPAMI_2023_3334515
crossref_primary_10_1109_TPAMI_2024_3462453
crossref_primary_10_1016_j_jrmge_2025_03_042
crossref_primary_10_1109_ACCESS_2025_3608487
crossref_primary_10_1109_TNNLS_2024_3443113
crossref_primary_10_1109_TPAMI_2025_3568582
crossref_primary_10_1007_s11263_024_01992_1
crossref_primary_10_1109_ACCESS_2020_2973723
crossref_primary_10_3390_agriculture12081170
crossref_primary_10_1109_TGRS_2015_2391999
crossref_primary_10_1109_TPAMI_2019_2960234
crossref_primary_10_3390_rs17132291
crossref_primary_10_1016_j_cviu_2018_01_003
crossref_primary_10_1007_s11042_018_6475_6
crossref_primary_10_1016_j_acra_2014_08_009
crossref_primary_10_1109_JAS_2022_105926
crossref_primary_10_1109_TIP_2023_3318945
crossref_primary_10_1109_ACCESS_2023_3320682
crossref_primary_10_1109_JSTARS_2021_3078516
crossref_primary_10_1016_j_patrec_2018_09_028
crossref_primary_10_1016_j_neucom_2021_06_084
crossref_primary_10_1109_TGRS_2024_3388580
crossref_primary_10_3390_electronics13122275
crossref_primary_10_1016_j_autcon_2020_103468
crossref_primary_10_1109_TCSVT_2022_3210602
crossref_primary_10_1016_j_knosys_2025_113343
crossref_primary_10_1016_j_autcon_2021_103886
crossref_primary_10_1016_j_isprsjprs_2022_06_009
crossref_primary_10_1109_TGRS_2020_2972982
crossref_primary_10_1007_s00138_017_0883_x
crossref_primary_10_1007_s11263_020_01399_8
crossref_primary_10_1109_ACCESS_2024_3476238
crossref_primary_10_1109_TPAMI_2020_3005373
crossref_primary_10_1093_ijlct_ctae236
crossref_primary_10_1016_j_jvcir_2015_08_008
crossref_primary_10_1109_TGRS_2020_3045456
crossref_primary_10_3788_IRLA20240528
crossref_primary_10_1109_TMM_2022_3162115
crossref_primary_10_1016_j_measurement_2022_111912
crossref_primary_10_1016_j_jvcir_2017_08_005
crossref_primary_10_1109_TGRS_2023_3258645
crossref_primary_10_1016_j_isprsjprs_2023_05_020
crossref_primary_10_3390_rs14143256
crossref_primary_10_1109_LGRS_2022_3183636
crossref_primary_10_1007_s11554_015_0508_4
crossref_primary_10_3390_rs13091622
crossref_primary_10_1007_s11263_022_01574_z
crossref_primary_10_1109_ACCESS_2023_3301777
crossref_primary_10_1007_s00521_022_07113_8
crossref_primary_10_1088_2631_8695_ad1e15
crossref_primary_10_1109_TRO_2024_3484608
crossref_primary_10_1109_JOE_2019_2960582
crossref_primary_10_3390_robotics8040090
crossref_primary_10_3390_s19092143
crossref_primary_10_3390_e22121358
crossref_primary_10_1109_TGRS_2020_2984943
crossref_primary_10_1016_j_isprsjprs_2022_03_006
crossref_primary_10_1017_pasa_2024_21
crossref_primary_10_1177_14727978251348628
crossref_primary_10_3390_s20185117
crossref_primary_10_1109_TIP_2019_2903318
crossref_primary_10_1080_00396265_2016_1183939
crossref_primary_10_1016_j_engstruct_2024_118908
crossref_primary_10_1109_TIM_2023_3348902
crossref_primary_10_1109_TVCG_2015_2459897
crossref_primary_10_1177_00202940231212952
crossref_primary_10_1016_j_rineng_2025_105358
crossref_primary_10_14358_PERS_22_00069R3
crossref_primary_10_1109_JSTARS_2020_2969119
crossref_primary_10_1111_phor_12201
crossref_primary_10_1016_j_compag_2023_107886
crossref_primary_10_1016_j_engstruct_2021_113040
crossref_primary_10_1017_S0263574719000584
crossref_primary_10_1007_s00138_016_0802_6
crossref_primary_10_3390_rs14092110
crossref_primary_10_1088_1361_6501_adaa93
crossref_primary_10_1016_j_measurement_2024_115376
crossref_primary_10_1109_TNNLS_2020_2978031
crossref_primary_10_1109_TPAMI_2021_3109784
crossref_primary_10_1016_j_ins_2021_03_023
crossref_primary_10_3390_rs16234541
crossref_primary_10_1109_JSYST_2014_2320639
crossref_primary_10_1109_LGRS_2021_3069761
crossref_primary_10_1088_1361_6501_ad9100
crossref_primary_10_1061_JCCEE5_CPENG_6468
crossref_primary_10_14358_PERS_24_00008R2
crossref_primary_10_3390_rs11243007
crossref_primary_10_1109_TIM_2019_2943715
crossref_primary_10_3390_s22186977
crossref_primary_10_1371_journal_pone_0311038
crossref_primary_10_1007_s10489_024_05400_6
crossref_primary_10_1109_TGRS_2019_2923684
crossref_primary_10_1088_1755_1315_783_1_012138
crossref_primary_10_1016_j_cageo_2022_105241
crossref_primary_10_1080_15481603_2023_2197281
crossref_primary_10_1007_s11042_017_4581_5
crossref_primary_10_3390_s24237824
crossref_primary_10_1007_s11263_022_01644_2
crossref_primary_10_1109_TITS_2022_3229364
crossref_primary_10_1109_ACCESS_2018_2853100
crossref_primary_10_1016_j_isprsjprs_2023_05_030
crossref_primary_10_1007_s11263_025_02531_2
crossref_primary_10_3390_rs16111873
crossref_primary_10_1016_j_aiia_2025_03_007
crossref_primary_10_3390_electronics12081832
crossref_primary_10_1016_j_patcog_2025_112044
crossref_primary_10_1145_3625294
crossref_primary_10_3390_s21175850
crossref_primary_10_3390_s25030714
crossref_primary_10_1109_TIE_2020_3018074
crossref_primary_10_1109_TPAMI_2018_2869560
crossref_primary_10_1007_s00521_020_05565_4
crossref_primary_10_1016_j_dsp_2024_104402
crossref_primary_10_1109_TPAMI_2021_3118833
crossref_primary_10_3390_ijgi9090521
crossref_primary_10_1016_j_patrec_2021_07_007
crossref_primary_10_1186_s40648_020_00172_3
crossref_primary_10_1109_TIM_2024_3369132
crossref_primary_10_1016_j_patcog_2022_109180
crossref_primary_10_1016_j_isprsjprs_2019_04_006
crossref_primary_10_1109_TNNLS_2021_3118409
crossref_primary_10_1016_j_dsp_2023_104128
crossref_primary_10_1016_j_sigpro_2021_108304
crossref_primary_10_1016_j_procs_2024_04_052
crossref_primary_10_1587_transinf_2020EDL8110
crossref_primary_10_1109_TIP_2024_3512352
crossref_primary_10_3390_rs14194917
crossref_primary_10_1016_j_imavis_2017_09_006
crossref_primary_10_3390_s19245373
crossref_primary_10_1016_j_patcog_2025_112226
crossref_primary_10_3724_SP_J_1089_2022_18902
crossref_primary_10_1177_0959651818802113
crossref_primary_10_1016_j_jag_2024_103858
crossref_primary_10_3390_rs11101248
crossref_primary_10_1109_TIP_2023_3334594
crossref_primary_10_3390_s23010327
crossref_primary_10_20965_jaciii_2017_p0059
crossref_primary_10_1007_s10846_022_01735_9
crossref_primary_10_1109_TPAMI_2021_3065021
crossref_primary_10_1109_TPAMI_2021_3071812
crossref_primary_10_1007_s10846_019_00997_0
crossref_primary_10_3389_fnbot_2022_990453
crossref_primary_10_1109_TIP_2019_2962678
crossref_primary_10_1016_j_isprsjprs_2018_06_009
crossref_primary_10_1016_j_optlastec_2018_08_045
crossref_primary_10_1109_TPAMI_2020_2994190
crossref_primary_10_1016_j_cviu_2014_06_008
crossref_primary_10_1016_j_knosys_2022_109609
crossref_primary_10_1080_01691864_2019_1602564
crossref_primary_10_3390_math13132189
crossref_primary_10_1109_LRA_2022_3146946
crossref_primary_10_1016_j_engappai_2023_106944
crossref_primary_10_1016_j_knosys_2024_111927
crossref_primary_10_1016_j_compenvurbsys_2023_102026
crossref_primary_10_1177_13694332251340721
crossref_primary_10_1061_JCCEE5_CPENG_6026
crossref_primary_10_1007_s11263_020_01297_z
crossref_primary_10_1109_TIE_2021_3076724
crossref_primary_10_3390_su16103930
crossref_primary_10_1016_j_ecoinf_2024_102556
crossref_primary_10_1016_j_neucom_2021_04_093
crossref_primary_10_20965_jrm_2021_p1265
crossref_primary_10_1016_j_isprsjprs_2019_04_020
crossref_primary_10_1088_1361_6501_ad7482
crossref_primary_10_3390_rs12203390
crossref_primary_10_1007_s10898_018_0721_3
crossref_primary_10_1016_j_patcog_2021_107986
crossref_primary_10_1016_j_neucom_2022_10_009
crossref_primary_10_1088_1361_6501_abc868
crossref_primary_10_1016_j_swevo_2024_101535
crossref_primary_10_1109_TMM_2017_2771566
crossref_primary_10_1007_s10614_022_10239_5
crossref_primary_10_1016_j_ins_2020_03_106
crossref_primary_10_1109_MGRS_2019_2937630
crossref_primary_10_1007_s10489_022_03266_0
crossref_primary_10_1016_j_measurement_2019_02_025
crossref_primary_10_3390_a18020065
crossref_primary_10_1016_j_inffus_2021_07_018
crossref_primary_10_1109_TGRS_2023_3313734
crossref_primary_10_3390_s24155073
crossref_primary_10_1109_TPAMI_2020_2978812
crossref_primary_10_1016_j_cviu_2024_104130
crossref_primary_10_1007_s00603_024_03804_x
crossref_primary_10_1007_s10851_024_01182_1
crossref_primary_10_1016_j_isprsjprs_2023_01_016
crossref_primary_10_1007_s10489_024_06120_7
crossref_primary_10_1016_j_neucom_2020_12_052
crossref_primary_10_1109_TGRS_2024_3417217
crossref_primary_10_1109_ACCESS_2018_2847399
crossref_primary_10_1109_LRA_2025_3536285
crossref_primary_10_34248_bsengineering_735705
crossref_primary_10_1007_s10489_025_06296_6
Cites_doi 10.5244/C.19.78
10.1016/S0734-189X(88)80033-1
10.1109/ICCV.2009.5459241
10.1109/ICCV.2009.5459148
10.1109/IROS.2010.5653696
10.1109/TPAMI.2004.109
10.5244/C.14.38
10.15607/rss.2006.ii.018
10.5244/C.16.44
10.1007/978-3-642-15561-1_27
10.1109/CVPR.2006.235
10.1093/biomet/69.1.242
10.1109/34.589215
10.1007/s11263-007-0107-3
10.1109/ICCVW.2009.5457551
10.1007/978-3-540-88682-2_41
10.1007/s11263-007-0086-4
10.1145/358669.358692
10.1109/ICCV.2003.1238441
10.1109/CVPR.2004.1315094
10.1109/IROS.2006.282572
10.1109/ROBOT.2006.1641163
10.1109/ICCV.2009.5459150
10.1016/0004-3702(95)00022-4
10.1109/ICCV.2005.198
10.1017/cbo9780511811685
10.1109/CVPR.2005.354
10.1109/ICCV.2009.5459459
10.1006/cviu.1997.0559
10.1109/CVPR.1996.517089
10.1007/978-3-540-88688-4_37
10.1109/CVPR.2009.5206678
10.1109/CVPR.2005.221
10.1023/A:1007941100561
10.1109/ICCV.2009.5459398
10.1109/34.659940
10.1080/01621459.1984.10477105
10.1109/TPAMI.2004.17
10.1109/TPAMI.2007.70787
10.1007/3-540-47969-4_6
10.1109/ICCV.2001.937672
10.1109/ICCV.2003.1238341
10.1109/34.464558
10.1007/978-3-642-15555-0_39
10.1109/ICCV.2011.6126382
10.1002/SERIES1345
10.1109/CVPR.2008.4587474
10.1109/ICCV.2009.5459456
10.1109/70.976019
10.1007/978-3-540-88682-2_7
10.1007/978-3-540-45243-0_31
10.1109/ICPR.2004.1334020
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
NPM
7X8
DOI 10.1109/TPAMI.2012.257
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 2160-9292
1939-3539
EndPage 2038
ExternalDocumentID 23787350
27677607
10_1109_TPAMI_2012_257
6365642
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
AAYOK
IQODW
RIG
NPM
7X8
ID FETCH-LOGICAL-c345t-1ef31d87a4f6a9e9a2edead1682aa40021dbb8a7e24c5aea5bceaad89fe3a9bb3
IEDL.DBID RIE
ISICitedReferencesCount 508
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000320381400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sun Nov 09 13:50:28 EST 2025
Mon Jul 21 06:05:10 EDT 2025
Wed Apr 02 07:16:12 EDT 2025
Tue Nov 18 21:58:06 EST 2025
Sat Nov 29 08:09:59 EST 2025
Wed Aug 27 02:47:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Computer vision
Parameter estimation
Program library
Estimator robustness
Activity
C language
Contamination
Standards
Outlier
RANSAC
Software libraries
Model matching
Efficiency
robust estimation
Data models
Signal to noise ratio
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-1ef31d87a4f6a9e9a2edead1682aa40021dbb8a7e24c5aea5bceaad89fe3a9bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23787350
PQID 1370638487
PQPubID 23479
PageCount 17
ParticipantIDs pascalfrancis_primary_27677607
crossref_primary_10_1109_TPAMI_2012_257
crossref_citationtrail_10_1109_TPAMI_2012_257
pubmed_primary_23787350
ieee_primary_6365642
proquest_miscellaneous_1370638487
PublicationCentury 2000
PublicationDate 2013-08-01
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2013
Publisher IEEE
IEEE Computer Society
Publisher_xml – name: IEEE
– name: IEEE Computer Society
References ref13
ref12
ref56
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
Tukey (ref1) 1977
ref17
ref16
ref19
Hough (ref5) 1962
ref18
ref50
ref46
ref45
ref48
ref42
ref41
ref44
ref43
Matas (ref47) 2002
Wald (ref51) 1947
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref49
  doi: 10.5244/C.19.78
– ident: ref6
  doi: 10.1016/S0734-189X(88)80033-1
– ident: ref45
  doi: 10.1109/ICCV.2009.5459241
– ident: ref10
  doi: 10.1109/ICCV.2009.5459148
– ident: ref16
  doi: 10.1109/IROS.2010.5653696
– year: 1962
  ident: ref5
  article-title: Method and Means for Recognizing Complex Patterns
– ident: ref24
  doi: 10.1109/TPAMI.2004.109
– ident: ref37
  doi: 10.5244/C.14.38
– ident: ref26
  doi: 10.15607/rss.2006.ii.018
– ident: ref41
  doi: 10.5244/C.16.44
– ident: ref12
  doi: 10.1007/978-3-642-15561-1_27
– ident: ref54
  doi: 10.1109/CVPR.2006.235
– ident: ref3
  doi: 10.1093/biomet/69.1.242
– ident: ref36
  doi: 10.1109/34.589215
– ident: ref9
  doi: 10.1007/s11263-007-0107-3
– ident: ref11
  doi: 10.1109/ICCVW.2009.5457551
– ident: ref29
  doi: 10.1007/978-3-540-88682-2_41
– ident: ref15
  doi: 10.1007/s11263-007-0086-4
– ident: ref7
  doi: 10.1145/358669.358692
– ident: ref25
  doi: 10.1109/ICCV.2003.1238441
– ident: ref13
  doi: 10.1109/CVPR.2004.1315094
– ident: ref14
  doi: 10.1109/IROS.2006.282572
– ident: ref8
  doi: 10.1109/ROBOT.2006.1641163
– ident: ref30
  doi: 10.1109/ICCV.2009.5459150
– ident: ref42
  doi: 10.1016/0004-3702(95)00022-4
– ident: ref50
  doi: 10.1109/ICCV.2005.198
– ident: ref20
  doi: 10.1017/cbo9780511811685
– ident: ref53
  doi: 10.1109/CVPR.2005.354
– ident: ref40
  doi: 10.1109/ICCV.2009.5459459
– ident: ref19
  doi: 10.1006/cviu.1997.0559
– ident: ref22
  doi: 10.1109/CVPR.1996.517089
– ident: ref18
  doi: 10.1007/978-3-540-88688-4_37
– ident: ref27
  doi: 10.1109/CVPR.2009.5206678
– ident: ref44
  doi: 10.1109/CVPR.2005.221
– ident: ref43
  doi: 10.1023/A:1007941100561
– volume-title: Sequential Analysis
  year: 1947
  ident: ref51
– ident: ref34
  doi: 10.1109/ICCV.2009.5459398
– ident: ref23
  doi: 10.1109/34.659940
– ident: ref4
  doi: 10.1080/01621459.1984.10477105
– ident: ref56
  doi: 10.1109/TPAMI.2004.17
– volume-title: Exploratory Data Analysis
  year: 1977
  ident: ref1
– ident: ref17
  doi: 10.1109/TPAMI.2007.70787
– ident: ref35
  doi: 10.1007/3-540-47969-4_6
– ident: ref38
  doi: 10.1109/ICCV.2001.937672
– ident: ref52
  doi: 10.1109/ICCV.2003.1238341
– start-page: 448
  year: 2002
  ident: ref47
  article-title: Randomized RANSAC with $T_{d,d}$ Test
  publication-title: Proc. British Machine Vision Conf.
– ident: ref21
  doi: 10.1109/34.464558
– ident: ref31
  doi: 10.1007/978-3-642-15555-0_39
– ident: ref28
  doi: 10.1109/ICCV.2011.6126382
– ident: ref2
  doi: 10.1002/SERIES1345
– ident: ref39
  doi: 10.1109/CVPR.2008.4587474
– ident: ref55
  doi: 10.1109/ICCV.2009.5459456
– ident: ref32
  doi: 10.1109/70.976019
– ident: ref33
  doi: 10.1007/978-3-540-88682-2_7
– ident: ref48
  doi: 10.1007/978-3-540-45243-0_31
– ident: ref46
  doi: 10.1109/ICPR.2004.1334020
SSID ssj0014503
Score 2.606784
Snippet A computational problem that arises frequently in computer vision is that of estimating the parameters of a model from data that have been contaminated by...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2022
SubjectTerms Algorithm design and analysis
Algorithmics. Computability. Computer arithmetics
Applied sciences
Artificial intelligence
Computational modeling
Computer science; control theory; systems
Context
Data models
Estimation
Exact sciences and technology
Pattern recognition. Digital image processing. Computational geometry
RANSAC
robust estimation
Robustness
Software
Software engineering
Theoretical computing
Title USAC: A Universal Framework for Random Sample Consensus
URI https://ieeexplore.ieee.org/document/6365642
https://www.ncbi.nlm.nih.gov/pubmed/23787350
https://www.proquest.com/docview/1370638487
Volume 35
WOSCitedRecordID wos000320381400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB3S0EN7aJqkH5ukiwqFXupk9WHLzm0JXVJoQ2gS2JsZW2MotN6S3e3vz4zsdVNIDr0ZLMlm5sl6Y43mAXxgkkrBpy6pgsHEaeIr0_ik9syOw8QGHaKnv_qLi3w-Ly634NNwFoaIYvIZHctl3MsPi3otv8pOMsvsw_EH94n3vjurNewYuDSqIDOD4RnOYURfoFFPipPry-m3L5LFZY4ZoFL-1zJMrRy1v7cWRXEVSY3EJVun6WQtHuedcf2Z7fzfm7-EFz3PVNMOGLuwRe0e7Gw0HFQ_pffg-b2ChPvgb66mZ6dqqvp8DR5htsneUkxv1Xdsw-KXukIpKqxE7VOkMpav4Gb2-frsPOmlFZLaunSVaGqsDrlH12RYUIGGAmNKZ7lBdLLwh6rK0ZNxdYqEaVUTYsiLhiwWVWVfw3a7aOktqMAxmKsoRSn0zvFXUevgnKUs8JCN0SNINkYu677uuMhf_Cxj_DEpyuifUvxTsn9G8HFo_7uruPFoy32x9NCqN_IIxv_4cLhvfOZ9NuF-7zdOLXkyyQ4JtrRYL0ttvVA4hukI3nTe_tu7B83Bw089hGcmKmVIbuARbK9u1_QOntZ_Vj-Wt2NG7DwfR8TeATOL5eU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS9xAEB5EC60PWrXq2dauIPSl0dsfySZ9O6SH0vMQPcG3MMlOoFBz4t359zu7yaUW6kPfAtndhJlvs99kZ-cDOGaSSs7GJiqcwshI4itV2ai0zI5dXzvpgqdHdjxO7-6yqxX41p2FIaKQfEYn_jLs5btpufC_yk4TzezD8Ad3LTZGyea0VrdnYOKgg8wchuc4BxJtiUbZz04nV4PLC5_HpU4Yor4AsGagan_Y_sVqFORVfHIkztg-VSNs8TrzDCvQcPP_3v09bLRMUwwaaGzBCtXbsLlUcRDtpN6G9RclCXfA3t4Mzr6LgWgzNniE4TJ_SzDBFddYu-m9uEFfVlh4vU8vljH7ALfDH5Oz86gVV4hKbeJ5JKnS0qUWTZVgRhkqcowqmaQK0fil3xVFipaUKWMkjIuSEF2aVaQxKwq9C6v1tKZ9EI6jMFNQjL7UO0dgWSmdMZoSx0NWSvYgWho5L9vK414A43ceIpB-lgf_5N4_OfunB1-79g9NzY1XW-54S3etWiP34PAvH3b3lU2sTfrc72jp1Jynk98jwZqmi1kutfUkjoHag73G2396t6A5-PdTv8Db88nlKB9djH9-hHcq6Gb4TMFPsDp_XNBneFM-zX_NHg8Dbp8B4szoRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=USAC%3A+a+universal+framework+for+random+sample+consensus&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Raguram%2C+Rahul&rft.au=Chum%2C+Ondrej&rft.au=Pollefeys%2C+Marc&rft.au=Matas%2C+Jir%C3%AD&rft.date=2013-08-01&rft.eissn=1939-3539&rft.volume=35&rft.issue=8&rft.spage=2022&rft_id=info:doi/10.1109%2FTPAMI.2012.257&rft_id=info%3Apmid%2F23787350&rft.externalDocID=23787350
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon