Multi-objective home appliance scheduling with implicit and interactive user satisfaction modelling
[Display omitted] •A new multi-objective approach for appliance scheduling by minimizing the cost and user dissatisfaction.•Implicit modelling of user satisfaction from the past appliance usage patterns obtained from energy disaggregation.•Modified user satisfaction objective where importance of a d...
Uložené v:
| Vydané v: | Applied energy Ročník 267; s. 114690 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.06.2020
|
| Predmet: | |
| ISSN: | 0306-2619, 1872-9118 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | [Display omitted]
•A new multi-objective approach for appliance scheduling by minimizing the cost and user dissatisfaction.•Implicit modelling of user satisfaction from the past appliance usage patterns obtained from energy disaggregation.•Modified user satisfaction objective where importance of a device(s) operation can be incorporated through a priority weight.•Ability to provide customized schedules for different scheduling intervals.•Suggesting representative trade-off schedules (RTS) using trade-off worth (μ) metric and niching.
Residential consumers desire to minimize electricity bills while maximizing comfort by appropriate appliance scheduling. The conflicting nature of the objectives facilitates a multi-objective formulation that can provide a set of trade-off schedules enabling better decision making. In literature, user preference or comfort regarding each device at each time instance is obtained explicitly. In addition, scheduling interval of 1-hour is considered because reducing scheduling interval to 1 or 5 min drastically increases – (1) the dimensionality of search space and complicates the search process, and (2) the number of time instances for which the user has to explicitly provide the preference resulting in human fatigue. However, it is essential to schedule the devices at lower scheduling intervals to precisely-estimate the electricity consumption due to the presence of high power devices such as microwave that operate for shorter intervals (<5 min). In this work, we employ an efficient and scalable multi-objective evolutionary algorithm to solve the scheduling problem. In addition, the user preference is implicitly estimated from the past usage patterns obtained using energy disaggregation. And, if the estimated user preference deviates from the user expectation then the user can modify preference using weights referred to as priority weights. The novel implicit user satisfaction modeling and interactive customization through priority weights makes the proposed work a standalone approach suitable for any user. Experimental results and analysis for various user priorities and scheduling intervals (ranging from 1-minute to 1-hour) proves that the proposed framework is able to provide generalized schedules. |
|---|---|
| AbstractList | Residential consumers desire to minimize electricity bills while maximizing comfort by appropriate appliance scheduling. The conflicting nature of the objectives facilitates a multi-objective formulation that can provide a set of trade-off schedules enabling better decision making. In literature, user preference or comfort regarding each device at each time instance is obtained explicitly. In addition, scheduling interval of 1-hour is considered because reducing scheduling interval to 1 or 5 min drastically increases – (1) the dimensionality of search space and complicates the search process, and (2) the number of time instances for which the user has to explicitly provide the preference resulting in human fatigue. However, it is essential to schedule the devices at lower scheduling intervals to precisely-estimate the electricity consumption due to the presence of high power devices such as microwave that operate for shorter intervals (<5 min). In this work, we employ an efficient and scalable multi-objective evolutionary algorithm to solve the scheduling problem. In addition, the user preference is implicitly estimated from the past usage patterns obtained using energy disaggregation. And, if the estimated user preference deviates from the user expectation then the user can modify preference using weights referred to as priority weights. The novel implicit user satisfaction modeling and interactive customization through priority weights makes the proposed work a standalone approach suitable for any user. Experimental results and analysis for various user priorities and scheduling intervals (ranging from 1-minute to 1-hour) proves that the proposed framework is able to provide generalized schedules. [Display omitted] •A new multi-objective approach for appliance scheduling by minimizing the cost and user dissatisfaction.•Implicit modelling of user satisfaction from the past appliance usage patterns obtained from energy disaggregation.•Modified user satisfaction objective where importance of a device(s) operation can be incorporated through a priority weight.•Ability to provide customized schedules for different scheduling intervals.•Suggesting representative trade-off schedules (RTS) using trade-off worth (μ) metric and niching. Residential consumers desire to minimize electricity bills while maximizing comfort by appropriate appliance scheduling. The conflicting nature of the objectives facilitates a multi-objective formulation that can provide a set of trade-off schedules enabling better decision making. In literature, user preference or comfort regarding each device at each time instance is obtained explicitly. In addition, scheduling interval of 1-hour is considered because reducing scheduling interval to 1 or 5 min drastically increases – (1) the dimensionality of search space and complicates the search process, and (2) the number of time instances for which the user has to explicitly provide the preference resulting in human fatigue. However, it is essential to schedule the devices at lower scheduling intervals to precisely-estimate the electricity consumption due to the presence of high power devices such as microwave that operate for shorter intervals (<5 min). In this work, we employ an efficient and scalable multi-objective evolutionary algorithm to solve the scheduling problem. In addition, the user preference is implicitly estimated from the past usage patterns obtained using energy disaggregation. And, if the estimated user preference deviates from the user expectation then the user can modify preference using weights referred to as priority weights. The novel implicit user satisfaction modeling and interactive customization through priority weights makes the proposed work a standalone approach suitable for any user. Experimental results and analysis for various user priorities and scheduling intervals (ranging from 1-minute to 1-hour) proves that the proposed framework is able to provide generalized schedules. |
| ArticleNumber | 114690 |
| Author | Pamulapati, Trinadh Lee, Minho Mallipeddi, Rammohan |
| Author_xml | – sequence: 1 givenname: Trinadh orcidid: 0000-0003-0611-7640 surname: Pamulapati fullname: Pamulapati, Trinadh – sequence: 2 givenname: Rammohan orcidid: 0000-0001-9071-1145 surname: Mallipeddi fullname: Mallipeddi, Rammohan email: mallipeddi.ram@gmail.com – sequence: 3 givenname: Minho surname: Lee fullname: Lee, Minho |
| BookMark | eNqFkUuP1DAMgCO0SMwu_AWUI5cOzqNpK3EArXhJi7jAOfKk7k5GbVOSdNH-e1IVLlz2ZMn2Z9mfr9nVHGZi7LWAowBh3l6OuNBM8f7xKEGWpNCmg2fsINpGVp0Q7RU7gAJTSSO6F-w6pQsASCHhwNy3dcy-CqcLuewfiJ_DRByXZfQ4O-LJnalfRz_f898-n7mfSsX5zHHuuZ8zRdy5NVHkCbNPw5YJM59CT-NGvmTPBxwTvfobb9jPTx9_3H6p7r5__nr74a5ySte5EogalRhqIE3QC2Xq5qRakD0aaGWDqpOiabFuNHSm0d1pqGtUpuk7Ra0c1A17s89dYvi1Usp28smVHXCmsCYrNYDWrdBNaTV7q4shpUiDXaKfMD5aAXazai_2n1W7WbW71QK--w8sMnC7N0f049P4-x2n4uHBU7TJeSqiex_LA2wf_FMj_gBz0psm |
| CitedBy_id | crossref_primary_10_1016_j_apenergy_2021_117159 crossref_primary_10_1016_j_ijepes_2020_106672 crossref_primary_10_3390_s22124380 crossref_primary_10_1016_j_apenergy_2024_123062 crossref_primary_10_1016_j_energy_2022_125460 crossref_primary_10_1016_j_energy_2022_124063 crossref_primary_10_1016_j_seta_2022_102136 crossref_primary_10_1155_2024_8831617 crossref_primary_10_3389_fenrg_2024_1356704 crossref_primary_10_1016_j_enbuild_2021_111429 crossref_primary_10_1016_j_swevo_2021_100909 crossref_primary_10_1016_j_engappai_2023_105944 crossref_primary_10_3390_en15051600 crossref_primary_10_1109_ACCESS_2021_3093277 crossref_primary_10_1016_j_apenergy_2023_121123 crossref_primary_10_1016_j_asoc_2024_111950 crossref_primary_10_1016_j_egyr_2025_04_065 crossref_primary_10_1007_s11265_022_01829_5 crossref_primary_10_3390_su15020957 crossref_primary_10_1016_j_apenergy_2021_117191 crossref_primary_10_1016_j_ijepes_2021_107890 crossref_primary_10_1016_j_energy_2021_122214 crossref_primary_10_1016_j_energy_2022_125939 |
| Cites_doi | 10.1109/4235.996017 10.1016/j.egypro.2015.12.214 10.1109/MPAE.2003.1192027 10.1016/j.enbuild.2011.10.035 10.1016/j.apenergy.2013.10.062 10.1016/j.apenergy.2019.03.014 10.1109/5.192069 10.1109/TPWRS.2017.2660246 10.1109/4235.797969 10.1016/j.apenergy.2017.06.066 10.1007/s11257-013-9142-7 10.1109/TSG.2014.2349352 10.1109/TEVC.2018.2848921 10.1016/j.apenergy.2016.11.071 10.3390/s121216838 10.1016/j.apenergy.2019.03.108 10.1016/j.ijepes.2015.11.099 10.1109/TCE.2017.014666 10.1016/j.scs.2015.04.004 10.1038/sdata.2016.122 10.1016/j.apenergy.2016.02.032 10.1016/j.apenergy.2016.02.100 10.1109/TEVC.2013.2281535 10.1016/j.energy.2016.04.105 10.1016/j.neucom.2013.08.008 10.1109/TEVC.2009.2017515 10.1016/j.apenergy.2014.11.023 10.1109/TII.2016.2628961 10.1016/j.energy.2014.05.101 10.1007/s00500-011-0694-3 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2020.114690 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| ExternalDocumentID | 10_1016_j_apenergy_2020_114690 S0306261920302026 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c345t-1aa4a31f50e4e0d13657b3802da60827a392178a574096749bf55a367d93e82f3 |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000537365200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Sun Sep 28 08:31:49 EDT 2025 Tue Nov 18 21:50:59 EST 2025 Sat Nov 29 07:19:55 EST 2025 Fri Feb 23 02:47:23 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Implicit user satisfaction estimation Multi-objective scheduling Home appliance scheduling Interactive scheduling Energy disaggregation Electricity cost minimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c345t-1aa4a31f50e4e0d13657b3802da60827a392178a574096749bf55a367d93e82f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-9071-1145 0000-0003-0611-7640 |
| PQID | 2400448147 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2400448147 crossref_primary_10_1016_j_apenergy_2020_114690 crossref_citationtrail_10_1016_j_apenergy_2020_114690 elsevier_sciencedirect_doi_10_1016_j_apenergy_2020_114690 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-06-01 2020-06-00 20200601 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied energy |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Ma, Yao, Yang, Guan (b0065) 2016; 78 Suzuki, Inagaki, Suzuki, Nakamura, Ito (b0180) 2008 Faustine A, Mvungi NH, Kaijage S, and Michael K, A survey on non-intrusive load monitoring methodies and techniques for energy disaggregation problem. arXiv preprint, arXiv:1703.00785, 2017. Pereira, Nunes (b0200) 2018; 8 Hart (b0160) 1992; 80 Tang, Wu, Lei, Tang (b0215) 2014 Murray, Stankovic, Stankovic (b0235) 2017; 4 Soares, Antunes, Oliveira, Gomes (b0135) 2014; 77 International Energy Agency, Energy Statistics. 2019. Rahimpour, Qi, Fugate, Kuruganti (b0175) 2017; 32 Ogunjuyigbe, Monyei, Ayodele (b0055) 2015; 17 Azzouz, Bechikh, Said (b0150) 2017 Eßer, Kamper, Franke, Mőst, Rentz (b0085) 2007 Sou, Weimer, Sandberg, Johansson (b0080) 2011 Bechikh, Said, Ghédira (b0260) 2011 Trabelsi, Azzouz, Bechikh, Said (b0145) 2016 Zitzler, Thiele (b0255) 1999; 3 Laughman, Lee, Cox, Shaw, Leeb, Norford (b0190) 2003; 99 Elarbi, Bechikh, Gupta, Said, Ong (b0250) 2017 . Karmellos, Kiprakis, Mavrotas (b0100) 2015; 139 Anvari-Moghaddam, Monsef, Rahimi-Kian (b0125) 2015; 6 Kolter, Batra, Ng (b0170) 2010 Enerdata, global energy statistical yearbook. 2019. Latif, Javaid, Zarin, Naz, Jamal, Mateen (b0075) 2018 Trabelsi, Brown, O'Sullivan (b0140) 2015; 83 Yang, Yan, Lam (b0070) 2014; 115 Egarter, Elmenreich (b0210) 2013 KEPCO. Electric Rates Table. Available from Zhou, Shi, Shi, Gao, Wu (b0185) 2019; 243 Pamulapati, Mallipeddi, Suganthan (b0110) 2018; 23 Egarter, Elmenreich (b0165) 2015 Deb, Jain (b0245) 2013; 18 Soares, Gomes, Antunes, Oliveira (b0130) 2016; 13 Tang, Wu, Lei, Tang (b0220) 2016; 9 Rachmawati, Srinivasan (b0120) 2009; 13 Ghorbanpour, Pamulapati, Mallipeddi (b0240) 2020 Yun, Kong, Kim, Kim (b0030) 2012; 46 Joo, Choi (b0050) 2017; 63 Campillo, Dahlquist, Wallin, Vassileva (b0060) 2016; 109 APSPDCL, India, Tariff plans. Available from Nan, Zhou, Li (b0095) 2018; 210 Jang, Mallipeddi, Lee (b0225) 2014; 24 Kim, Hong, Jeong, Koo, Jeong (b0035) 2016; 169 Deb, Pratap, Agarwal, Meyarivan (b0105) 2002; 6 Zoha, Gluhak, Imran, Rajasegarar (b0195) 2012; 12 Jang, Mallipeddi, Lee, Kwak, Lee (b0230) 2014; 128 Ogunjuyigbe, Ayodele, Akinola (b0045) 2017; 187 Gonçalves, Gomes, Antunes (b0090) 2019; 242 U.S. Energy Information Administration, Average Price of Electricity to Ultimate Customers. 2019; Available from Shahzad, Brennan, Theodossopoulos, Hughes, Calautit (b0040) 2017; 185 Bechikh, Said, Ghédira (b0115) 2011; 15 Egarter, Sobe, Elmenreich (b0205) 2013 10.1016/j.apenergy.2020.114690_b0025 Latif (10.1016/j.apenergy.2020.114690_b0075) 2018 Yang (10.1016/j.apenergy.2020.114690_b0070) 2014; 115 Egarter (10.1016/j.apenergy.2020.114690_b0165) 2015 Shahzad (10.1016/j.apenergy.2020.114690_b0040) 2017; 185 10.1016/j.apenergy.2020.114690_b0020 Egarter (10.1016/j.apenergy.2020.114690_b0210) 2013 Pereira (10.1016/j.apenergy.2020.114690_b0200) 2018; 8 Murray (10.1016/j.apenergy.2020.114690_b0235) 2017; 4 Karmellos (10.1016/j.apenergy.2020.114690_b0100) 2015; 139 Sou (10.1016/j.apenergy.2020.114690_b0080) 2011 Soares (10.1016/j.apenergy.2020.114690_b0130) 2016; 13 Kolter (10.1016/j.apenergy.2020.114690_b0170) 2010 10.1016/j.apenergy.2020.114690_b0015 Bechikh (10.1016/j.apenergy.2020.114690_b0260) 2011 Ogunjuyigbe (10.1016/j.apenergy.2020.114690_b0045) 2017; 187 Nan (10.1016/j.apenergy.2020.114690_b0095) 2018; 210 Rahimpour (10.1016/j.apenergy.2020.114690_b0175) 2017; 32 Trabelsi (10.1016/j.apenergy.2020.114690_b0140) 2015; 83 Eßer (10.1016/j.apenergy.2020.114690_b0085) 2007 10.1016/j.apenergy.2020.114690_b0010 Pamulapati (10.1016/j.apenergy.2020.114690_b0110) 2018; 23 Tang (10.1016/j.apenergy.2020.114690_b0220) 2016; 9 Ogunjuyigbe (10.1016/j.apenergy.2020.114690_b0055) 2015; 17 Suzuki (10.1016/j.apenergy.2020.114690_b0180) 2008 Zhou (10.1016/j.apenergy.2020.114690_b0185) 2019; 243 Campillo (10.1016/j.apenergy.2020.114690_b0060) 2016; 109 Zitzler (10.1016/j.apenergy.2020.114690_b0255) 1999; 3 Yun (10.1016/j.apenergy.2020.114690_b0030) 2012; 46 Anvari-Moghaddam (10.1016/j.apenergy.2020.114690_b0125) 2015; 6 Gonçalves (10.1016/j.apenergy.2020.114690_b0090) 2019; 242 Jang (10.1016/j.apenergy.2020.114690_b0230) 2014; 128 Joo (10.1016/j.apenergy.2020.114690_b0050) 2017; 63 Egarter (10.1016/j.apenergy.2020.114690_b0205) 2013 10.1016/j.apenergy.2020.114690_b0005 Ma (10.1016/j.apenergy.2020.114690_b0065) 2016; 78 Hart (10.1016/j.apenergy.2020.114690_b0160) 1992; 80 Elarbi (10.1016/j.apenergy.2020.114690_b0250) 2017 Trabelsi (10.1016/j.apenergy.2020.114690_b0145) 2016 Zoha (10.1016/j.apenergy.2020.114690_b0195) 2012; 12 Rachmawati (10.1016/j.apenergy.2020.114690_b0120) 2009; 13 Azzouz (10.1016/j.apenergy.2020.114690_b0150) 2017 Bechikh (10.1016/j.apenergy.2020.114690_b0115) 2011; 15 Ghorbanpour (10.1016/j.apenergy.2020.114690_b0240) 2020 Kim (10.1016/j.apenergy.2020.114690_b0035) 2016; 169 Deb (10.1016/j.apenergy.2020.114690_b0105) 2002; 6 10.1016/j.apenergy.2020.114690_b0155 Tang (10.1016/j.apenergy.2020.114690_b0215) 2014 Deb (10.1016/j.apenergy.2020.114690_b0245) 2013; 18 Jang (10.1016/j.apenergy.2020.114690_b0225) 2014; 24 Soares (10.1016/j.apenergy.2020.114690_b0135) 2014; 77 Laughman (10.1016/j.apenergy.2020.114690_b0190) 2003; 99 |
| References_xml | – start-page: 1537 year: 2013 end-page: 1544 ident: b0210 article-title: EvoNILM: Evolutionary appliance detection for miscellaneous household appliances publication-title: Proceedings of the 15th annual conference companion on Genetic and evolutionary computation – reference: APSPDCL, India, Tariff plans. Available from: – volume: 77 start-page: 144 year: 2014 end-page: 152 ident: b0135 article-title: A multi-objective genetic approach to domestic load scheduling in an energy management system publication-title: Energy – start-page: 566 year: 2014 end-page: 571 ident: b0215 article-title: A simple model-driven approach to energy disaggregation publication-title: 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm) – volume: 169 start-page: 682 year: 2016 end-page: 695 ident: b0035 article-title: An optimization model for selecting the optimal green systems by considering the thermal comfort and energy consumption publication-title: Appl Energy – volume: 3 start-page: 257 year: 1999 end-page: 271 ident: b0255 article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach publication-title: IEEE Trans Evol Comput – volume: 9 start-page: 8 year: 2016 end-page: 19 ident: b0220 article-title: A simple and robust approach to energy disaggregation in the presence of outliers publication-title: Sustain Comput Inf Syst – volume: 187 start-page: 352 year: 2017 end-page: 366 ident: b0045 article-title: User satisfaction-induced demand side load management in residential buildings with user budget constraint publication-title: Appl Energy – start-page: 182 year: 2013 end-page: 191 ident: b0205 article-title: Evolving non-intrusive load monitoring publication-title: European Conference on the Applications of Evolutionary Computation – volume: 24 start-page: 315 year: 2014 end-page: 344 ident: b0225 article-title: Identification of human implicit visual search intention based on eye movement and pupillary analysis publication-title: User Model User-Adap Inter – volume: 83 start-page: 389 year: 2015 end-page: 398 ident: b0140 article-title: Preference elicitation and reasoning while smart shifting of home appliances publication-title: Energy Procedia – volume: 78 start-page: 320 year: 2016 end-page: 325 ident: b0065 article-title: Residential power scheduling for demand response in smart grid publication-title: Int J Electr Power Energy Syst – volume: 17 start-page: 80 year: 2015 end-page: 94 ident: b0055 article-title: Price based demand side management: A persuasive smart energy management system for low/medium income earners publication-title: Sustain Cities Soc – volume: 6 start-page: 324 year: 2015 end-page: 332 ident: b0125 article-title: Optimal smart home energy management considering energy saving and a comfortable lifestyle publication-title: IEEE Trans Smart Grid – volume: 63 start-page: 19 year: 2017 end-page: 27 ident: b0050 article-title: Optimal household appliance scheduling considering consumer's electricity bill target publication-title: IEEE Trans Consum Electron – volume: 109 start-page: 310 year: 2016 end-page: 325 ident: b0060 article-title: Is real-time electricity pricing suitable for residential users without demand-side management? publication-title: Energy – volume: 185 start-page: 1542 year: 2017 end-page: 1555 ident: b0040 article-title: Energy and comfort in contemporary open plan and traditional personal offices publication-title: Appl Energy – start-page: 5144 year: 2011 end-page: 5149 ident: b0080 article-title: Scheduling smart home appliances using mixed integer linear programming publication-title: 50th IEEE Conference on Decsion and Control and European Control Conference – reference: Enerdata, global energy statistical yearbook. 2019. – start-page: 31 year: 2017 end-page: 70 ident: b0150 article-title: Dynamic multi-objective optimization using evolutionary algorithms: a survey publication-title: Recent advances in evolutionary multi-objective optimization – reference: U.S. Energy Information Administration, Average Price of Electricity to Ultimate Customers. 2019; Available from: – reference: Faustine A, Mvungi NH, Kaijage S, and Michael K, A survey on non-intrusive load monitoring methodies and techniques for energy disaggregation problem. arXiv preprint, arXiv:1703.00785, 2017. – start-page: 667 year: 2018 end-page: 677 ident: b0075 article-title: Cost optimization in home energy management system using genetic algorithm, bat algorithm and hybrid bat genetic algorithm publication-title: 32nd International Conference on Advanced Information Networking and Applications (AINA) – start-page: 253 year: 2007 end-page: 258 ident: b0085 article-title: Scheduling of electrical household appliances with price signals publication-title: Operations Research Proceedings 2006 – volume: 128 start-page: 421 year: 2014 end-page: 432 ident: b0230 article-title: Human intention recognition based on eyeball movement pattern and pupil size variation publication-title: Neurocomputing – volume: 15 start-page: 1807 year: 2011 end-page: 1823 ident: b0115 article-title: Searching for knee regions of the Pareto front using mobile reference points publication-title: Soft Comput – volume: 8 year: 2018 ident: b0200 article-title: Performance evaluation in non-intrusive load monitoring: Datasets, metrics, and tools—A review publication-title: WIREs Data Min Knowl Discovery – year: 2020 ident: b0240 article-title: Swarm and evolutionary algorithms for energy disaggregation: challenges and prospects publication-title: Int J Bio-Inspired Comput – reference: KEPCO. Electric Rates Table. Available from: – start-page: 1153 year: 2010 end-page: 1161 ident: b0170 article-title: Energy disaggregation via discriminative sparse coding publication-title: Advances in Neural Information Processing Systems – start-page: 3533 year: 2016 end-page: 3540 ident: b0145 article-title: Leveraging evolutionary algorithms for dynamic multi-objective optimization scheduling of multi-tenant smart home appliances publication-title: IEEE Congress on Evolutionary Computation (CEC) – volume: 12 start-page: 16838 year: 2012 end-page: 16866 ident: b0195 article-title: Non-intrusive load monitoring approaches for disaggregated energy sensing: A survey publication-title: Sensors – year: 2015 ident: b0165 article-title: Load disaggregation with metaheuristic optimization – year: 2011 ident: b0260 article-title: Negotiating decision makers' reference points for group preference-based Evolutionary Multi-objective Optimization publication-title: 2011 11th International Conference on Hybrid Intelligent Systems (HIS) – volume: 242 start-page: 351 year: 2019 end-page: 363 ident: b0090 article-title: Optimizing the management of smart home energy resources under different power cost scenarios publication-title: Appl Energy – volume: 32 start-page: 4430 year: 2017 end-page: 4441 ident: b0175 article-title: Non-intrusive energy disaggregation using non-negative matrix factorization with sum-to-k constraint publication-title: IEEE Trans Power Syst – volume: 243 start-page: 35 year: 2019 end-page: 46 ident: b0185 article-title: Disaggregating power consumption of commercial buildings based on the finite mixture model publication-title: Appl Energy – volume: 99 start-page: 56 year: 2003 end-page: 63 ident: b0190 article-title: Power signature analysis publication-title: IEEE Power Energ Mag – volume: 80 start-page: 1870 year: 1992 end-page: 1891 ident: b0160 article-title: Nonintrusive appliance load monitoring publication-title: Proc IEEE – volume: 23 start-page: 346 year: 2018 end-page: 352 ident: b0110 article-title: I publication-title: IEEE Trans Evol Comput – volume: 13 start-page: 810 year: 2009 end-page: 824 ident: b0120 article-title: Multiobjective evolutionary algorithm with controllable focus on the knees of the Pareto front publication-title: IEEE Trans Evol Comput – volume: 210 start-page: 1280 year: 2018 end-page: 1289 ident: b0095 article-title: Optimal residential community demand response scheduling in smart grid publication-title: Appl Energy – start-page: 2742 year: 2008 end-page: 2747 ident: b0180 article-title: Nonintrusive appliance load monitoring based on integer programming publication-title: SICE Annual Conference – reference: . – volume: 18 start-page: 577 year: 2013 end-page: 601 ident: b0245 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints publication-title: IEEE Trans Evol Comput – volume: 13 start-page: 492 year: 2016 end-page: 501 ident: b0130 article-title: A customized evolutionary algorithm for multiobjective management of residential energy resources publication-title: IEEE Trans Ind Inf – volume: 115 start-page: 164 year: 2014 end-page: 173 ident: b0070 article-title: Thermal comfort and building energy consumption implications–a review publication-title: Appl Energy – reference: International Energy Agency, Energy Statistics. 2019. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b0105 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans Evol Comput – start-page: 1191 year: 2017 end-page: 1210 ident: b0250 article-title: A new decomposition-based NSGA-II for many-objective optimization publication-title: IEEE transactions on systems, man, and cybernetics: systems – volume: 139 start-page: 131 year: 2015 end-page: 150 ident: b0100 article-title: A multi-objective approach for optimal prioritization of energy efficiency measures in buildings: Model, software and case studies publication-title: Appl Energy – volume: 46 start-page: 146 year: 2012 end-page: 151 ident: b0030 article-title: A field survey of visual comfort and lighting energy consumption in open plan offices publication-title: Energy Build – volume: 4 start-page: 160122 year: 2017 ident: b0235 article-title: An electrical load measurements dataset of United Kingdom households from a two-year longitudinal study publication-title: Sci Data – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.apenergy.2020.114690_b0105 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 – volume: 83 start-page: 389 year: 2015 ident: 10.1016/j.apenergy.2020.114690_b0140 article-title: Preference elicitation and reasoning while smart shifting of home appliances publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.12.214 – volume: 99 start-page: 56 issue: 2 year: 2003 ident: 10.1016/j.apenergy.2020.114690_b0190 article-title: Power signature analysis publication-title: IEEE Power Energ Mag doi: 10.1109/MPAE.2003.1192027 – ident: 10.1016/j.apenergy.2020.114690_b0010 – year: 2011 ident: 10.1016/j.apenergy.2020.114690_b0260 article-title: Negotiating decision makers' reference points for group preference-based Evolutionary Multi-objective Optimization – volume: 46 start-page: 146 year: 2012 ident: 10.1016/j.apenergy.2020.114690_b0030 article-title: A field survey of visual comfort and lighting energy consumption in open plan offices publication-title: Energy Build doi: 10.1016/j.enbuild.2011.10.035 – volume: 115 start-page: 164 year: 2014 ident: 10.1016/j.apenergy.2020.114690_b0070 article-title: Thermal comfort and building energy consumption implications–a review publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.10.062 – volume: 243 start-page: 35 year: 2019 ident: 10.1016/j.apenergy.2020.114690_b0185 article-title: Disaggregating power consumption of commercial buildings based on the finite mixture model publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.03.014 – start-page: 253 year: 2007 ident: 10.1016/j.apenergy.2020.114690_b0085 article-title: Scheduling of electrical household appliances with price signals – volume: 80 start-page: 1870 issue: 12 year: 1992 ident: 10.1016/j.apenergy.2020.114690_b0160 article-title: Nonintrusive appliance load monitoring publication-title: Proc IEEE doi: 10.1109/5.192069 – ident: 10.1016/j.apenergy.2020.114690_b0155 – start-page: 182 year: 2013 ident: 10.1016/j.apenergy.2020.114690_b0205 article-title: Evolving non-intrusive load monitoring – volume: 32 start-page: 4430 issue: 6 year: 2017 ident: 10.1016/j.apenergy.2020.114690_b0175 article-title: Non-intrusive energy disaggregation using non-negative matrix factorization with sum-to-k constraint publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2017.2660246 – volume: 3 start-page: 257 issue: 4 year: 1999 ident: 10.1016/j.apenergy.2020.114690_b0255 article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.797969 – start-page: 2742 year: 2008 ident: 10.1016/j.apenergy.2020.114690_b0180 article-title: Nonintrusive appliance load monitoring based on integer programming – year: 2020 ident: 10.1016/j.apenergy.2020.114690_b0240 article-title: Swarm and evolutionary algorithms for energy disaggregation: challenges and prospects publication-title: Int J Bio-Inspired Comput – start-page: 31 year: 2017 ident: 10.1016/j.apenergy.2020.114690_b0150 article-title: Dynamic multi-objective optimization using evolutionary algorithms: a survey – volume: 210 start-page: 1280 year: 2018 ident: 10.1016/j.apenergy.2020.114690_b0095 article-title: Optimal residential community demand response scheduling in smart grid publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.06.066 – start-page: 1537 year: 2013 ident: 10.1016/j.apenergy.2020.114690_b0210 article-title: EvoNILM: Evolutionary appliance detection for miscellaneous household appliances – volume: 24 start-page: 315 issue: 4 year: 2014 ident: 10.1016/j.apenergy.2020.114690_b0225 article-title: Identification of human implicit visual search intention based on eye movement and pupillary analysis publication-title: User Model User-Adap Inter doi: 10.1007/s11257-013-9142-7 – ident: 10.1016/j.apenergy.2020.114690_b0020 – volume: 6 start-page: 324 issue: 1 year: 2015 ident: 10.1016/j.apenergy.2020.114690_b0125 article-title: Optimal smart home energy management considering energy saving and a comfortable lifestyle publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2014.2349352 – volume: 9 start-page: 8 year: 2016 ident: 10.1016/j.apenergy.2020.114690_b0220 article-title: A simple and robust approach to energy disaggregation in the presence of outliers publication-title: Sustain Comput Inf Syst – volume: 23 start-page: 346 issue: 2 year: 2018 ident: 10.1016/j.apenergy.2020.114690_b0110 article-title: ISDE+—An indicator for multi and many-objective optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2018.2848921 – year: 2015 ident: 10.1016/j.apenergy.2020.114690_b0165 – volume: 187 start-page: 352 year: 2017 ident: 10.1016/j.apenergy.2020.114690_b0045 article-title: User satisfaction-induced demand side load management in residential buildings with user budget constraint publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.11.071 – volume: 12 start-page: 16838 issue: 12 year: 2012 ident: 10.1016/j.apenergy.2020.114690_b0195 article-title: Non-intrusive load monitoring approaches for disaggregated energy sensing: A survey publication-title: Sensors doi: 10.3390/s121216838 – volume: 242 start-page: 351 year: 2019 ident: 10.1016/j.apenergy.2020.114690_b0090 article-title: Optimizing the management of smart home energy resources under different power cost scenarios publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.03.108 – start-page: 3533 year: 2016 ident: 10.1016/j.apenergy.2020.114690_b0145 article-title: Leveraging evolutionary algorithms for dynamic multi-objective optimization scheduling of multi-tenant smart home appliances – volume: 78 start-page: 320 year: 2016 ident: 10.1016/j.apenergy.2020.114690_b0065 article-title: Residential power scheduling for demand response in smart grid publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2015.11.099 – start-page: 1191 year: 2017 ident: 10.1016/j.apenergy.2020.114690_b0250 article-title: A new decomposition-based NSGA-II for many-objective optimization – start-page: 1153 year: 2010 ident: 10.1016/j.apenergy.2020.114690_b0170 article-title: Energy disaggregation via discriminative sparse coding – start-page: 566 year: 2014 ident: 10.1016/j.apenergy.2020.114690_b0215 article-title: A simple model-driven approach to energy disaggregation – volume: 63 start-page: 19 issue: 1 year: 2017 ident: 10.1016/j.apenergy.2020.114690_b0050 article-title: Optimal household appliance scheduling considering consumer's electricity bill target publication-title: IEEE Trans Consum Electron doi: 10.1109/TCE.2017.014666 – volume: 17 start-page: 80 year: 2015 ident: 10.1016/j.apenergy.2020.114690_b0055 article-title: Price based demand side management: A persuasive smart energy management system for low/medium income earners publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2015.04.004 – volume: 4 start-page: 160122 year: 2017 ident: 10.1016/j.apenergy.2020.114690_b0235 article-title: An electrical load measurements dataset of United Kingdom households from a two-year longitudinal study publication-title: Sci Data doi: 10.1038/sdata.2016.122 – ident: 10.1016/j.apenergy.2020.114690_b0025 – ident: 10.1016/j.apenergy.2020.114690_b0005 – start-page: 5144 year: 2011 ident: 10.1016/j.apenergy.2020.114690_b0080 article-title: Scheduling smart home appliances using mixed integer linear programming – volume: 169 start-page: 682 year: 2016 ident: 10.1016/j.apenergy.2020.114690_b0035 article-title: An optimization model for selecting the optimal green systems by considering the thermal comfort and energy consumption publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.02.032 – volume: 8 issue: 6 year: 2018 ident: 10.1016/j.apenergy.2020.114690_b0200 article-title: Performance evaluation in non-intrusive load monitoring: Datasets, metrics, and tools—A review publication-title: WIREs Data Min Knowl Discovery – volume: 185 start-page: 1542 year: 2017 ident: 10.1016/j.apenergy.2020.114690_b0040 article-title: Energy and comfort in contemporary open plan and traditional personal offices publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.02.100 – volume: 18 start-page: 577 issue: 4 year: 2013 ident: 10.1016/j.apenergy.2020.114690_b0245 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2013.2281535 – volume: 109 start-page: 310 year: 2016 ident: 10.1016/j.apenergy.2020.114690_b0060 article-title: Is real-time electricity pricing suitable for residential users without demand-side management? publication-title: Energy doi: 10.1016/j.energy.2016.04.105 – ident: 10.1016/j.apenergy.2020.114690_b0015 – volume: 128 start-page: 421 year: 2014 ident: 10.1016/j.apenergy.2020.114690_b0230 article-title: Human intention recognition based on eyeball movement pattern and pupil size variation publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.08.008 – volume: 13 start-page: 810 issue: 4 year: 2009 ident: 10.1016/j.apenergy.2020.114690_b0120 article-title: Multiobjective evolutionary algorithm with controllable focus on the knees of the Pareto front publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2009.2017515 – volume: 139 start-page: 131 year: 2015 ident: 10.1016/j.apenergy.2020.114690_b0100 article-title: A multi-objective approach for optimal prioritization of energy efficiency measures in buildings: Model, software and case studies publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.11.023 – volume: 13 start-page: 492 issue: 2 year: 2016 ident: 10.1016/j.apenergy.2020.114690_b0130 article-title: A customized evolutionary algorithm for multiobjective management of residential energy resources publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2016.2628961 – volume: 77 start-page: 144 year: 2014 ident: 10.1016/j.apenergy.2020.114690_b0135 article-title: A multi-objective genetic approach to domestic load scheduling in an energy management system publication-title: Energy doi: 10.1016/j.energy.2014.05.101 – start-page: 667 year: 2018 ident: 10.1016/j.apenergy.2020.114690_b0075 article-title: Cost optimization in home energy management system using genetic algorithm, bat algorithm and hybrid bat genetic algorithm – volume: 15 start-page: 1807 issue: 9 year: 2011 ident: 10.1016/j.apenergy.2020.114690_b0115 article-title: Searching for knee regions of the Pareto front using mobile reference points publication-title: Soft Comput doi: 10.1007/s00500-011-0694-3 |
| SSID | ssj0002120 |
| Score | 2.464291 |
| Snippet | [Display omitted]
•A new multi-objective approach for appliance scheduling by minimizing the cost and user dissatisfaction.•Implicit modelling of user... Residential consumers desire to minimize electricity bills while maximizing comfort by appropriate appliance scheduling. The conflicting nature of the... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 114690 |
| SubjectTerms | algorithms consumer satisfaction decision making electric energy consumption electricity Electricity cost minimization energy Energy disaggregation Home appliance scheduling household equipment humans Implicit user satisfaction estimation Interactive scheduling Multi-objective scheduling |
| Title | Multi-objective home appliance scheduling with implicit and interactive user satisfaction modelling |
| URI | https://dx.doi.org/10.1016/j.apenergy.2020.114690 https://www.proquest.com/docview/2400448147 |
| Volume | 267 |
| WOSCitedRecordID | wos000537365200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKxwM8oDGYNhjISLxVKfmw5_hxQkUDaRNCQ-qb5TiO2ipLqn5M-_M5x3aSdcDYAy9R5cauk_v1fGff7w6hjzxRjJBMBxGJs4BwGQVSch2ALaA02PyUKtIUm2CXl-l0yr8PBkvPhbkpWVWlt7d8-V9FDW0gbEOdfYS420GhAT6D0OEKYofrPwm-odQGdbawqmw0q6_1qDmnbtgB4M3C6lK2e7DzJqR8vnFpmAwh2fYz2xejdY_8YKvmlH6t86lrnRmrGxJhdyJ1vS2lidZuALGaVzJvN54vpDmA0HnefPlDwruZ3QsNuphXs7q_JxGHXeyU52JBg_HN-no2tnU3nKY0bGhbKPSeErf7CYuxXNqpj81PjLsOd7Nm76xmbYyhD19bCD-OMOMIO84TtBczytMh2jv7Opl-a1fv2KXy9E_QY5X_fkZ_Mmh2lvbGXrnaRy-co4HPLEBeooGuDtDzXvrJA3Q46ViOcKtT8-tXSO1gCBsM4RZDuMMQNhjCHkMYMIR7GMIGQ7iPIdxi6DX6-WVy9fk8cNU4ApUQugkiKYlMooKGmugwN-GRLEvSMM7lKdiRTIKlHbFUUkbALWaEZwWlMjllOU90GhfJIRpWdaWPEAY3VsWaKPCWC8JymRa64Aqch5TGLCfhMaL-lQrlUtWbiiml-LtQj9Gntt_SJmt5sAf3EhPO5LSmpAAwPtj3gxexAJ1sDtpkpevtWpi4bELSiLA3j57RW_Ss-0edoOFmtdXv0FN1A6JavXdo_QXXqbYf |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+home+appliance+scheduling+with+implicit+and+interactive+user+satisfaction+modelling&rft.jtitle=Applied+energy&rft.au=Pamulapati%2C+Trinadh&rft.au=Mallipeddi%2C+Rammohan&rft.au=Lee%2C+Minho&rft.date=2020-06-01&rft.issn=0306-2619&rft.volume=267&rft.spage=114690&rft_id=info:doi/10.1016%2Fj.apenergy.2020.114690&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2020_114690 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |