Engineering Saccharomyces boulardii for Probiotic Supplementation of l‐Ergothioneine
ABSTRACT Saccharomyces boulardii, as a probiotic yeast, has shown great potential in regulating gut health and treating gastrointestinal diseases. Due to its unique antimicrobial and immune‐regulating functions, it has become a significant subject of research in the field of probiotics. In this stud...
Uložené v:
| Vydané v: | Biotechnology journal Ročník 19; číslo 11; s. e202400527 - n/a |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Germany
01.11.2024
|
| Predmet: | |
| ISSN: | 1860-6768, 1860-7314, 1860-7314 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | ABSTRACT
Saccharomyces boulardii, as a probiotic yeast, has shown great potential in regulating gut health and treating gastrointestinal diseases. Due to its unique antimicrobial and immune‐regulating functions, it has become a significant subject of research in the field of probiotics. In this study, we aim to enhance the antioxidant properties of S. boulardii by producing l‐ergothioneine (EGT). We first constructed a double knockout of ura3 and trp1 gene in S. boulardii to facilitate plasmid‐based expressions. To further enable effective genome editing of S. boulardii, we implemented the PiggyBac system to transpose the heterologous gene expression cassettes into the chromosomes of S. boulardii. By using enhanced green fluorescent protein (EGFP) as the reporter gene, we achieved random chromosomal integration of EGFP expression cassette. By using PiggyBac transposon system, a great variety of EGT‐producing strains was obtained, which is not possible for the conventional single target genome editing, and one best isolated top producer reached 17.50 mg/L EGT after 120 h cultivation. In summary, we have applied the PiggyBac transposon system to S. boulardii for the first time for genetic engineering. The engineered probiotic yeast S. boulardii has been endowed with new antioxidant properties and produces EGT. It has potential applications in developing novel therapeutics and dietary supplements for the prevention and treatment of gastrointestinal disorders.
Graphical and Lay Summary
Saccharomyces boulardii, as a probiotic yeast, has shown great potential in regulating gut health and treating gastrointestinal diseases. In this study, we first constructed double knockout of ura3 and trp1 gene in S. boulardii, to facilitate plasmid‐based expressions. To further enable effective genome editing of S. boulardii, we implemented the PiggyBac system to transpose the heterologous gene expression cassettes into the chromosomes of S. boulardii. By using PiggyBac transposon system, a great variety of EGT‐producing strains was obtained, and one best isolated top producer reached 17.50 mg/L EGT after 120 h cultivation. In the future, the engineered S. boulardii is expected to have potential applications for probiotic supplementation of antioxidants to improve the human health. |
|---|---|
| AbstractList | Saccharomyces boulardii, as a probiotic yeast, has shown great potential in regulating gut health and treating gastrointestinal diseases. Due to its unique antimicrobial and immune-regulating functions, it has become a significant subject of research in the field of probiotics. In this study, we aim to enhance the antioxidant properties of S. boulardii by producing l-ergothioneine (EGT). We first constructed a double knockout of ura3 and trp1 gene in S. boulardii to facilitate plasmid-based expressions. To further enable effective genome editing of S. boulardii, we implemented the PiggyBac system to transpose the heterologous gene expression cassettes into the chromosomes of S. boulardii. By using enhanced green fluorescent protein (EGFP) as the reporter gene, we achieved random chromosomal integration of EGFP expression cassette. By using PiggyBac transposon system, a great variety of EGT-producing strains was obtained, which is not possible for the conventional single target genome editing, and one best isolated top producer reached 17.50 mg/L EGT after 120 h cultivation. In summary, we have applied the PiggyBac transposon system to S. boulardii for the first time for genetic engineering. The engineered probiotic yeast S. boulardii has been endowed with new antioxidant properties and produces EGT. It has potential applications in developing novel therapeutics and dietary supplements for the prevention and treatment of gastrointestinal disorders. Saccharomyces boulardii, as a probiotic yeast, has shown great potential in regulating gut health and treating gastrointestinal diseases. Due to its unique antimicrobial and immune-regulating functions, it has become a significant subject of research in the field of probiotics. In this study, we aim to enhance the antioxidant properties of S. boulardii by producing l-ergothioneine (EGT). We first constructed a double knockout of ura3 and trp1 gene in S. boulardii to facilitate plasmid-based expressions. To further enable effective genome editing of S. boulardii, we implemented the PiggyBac system to transpose the heterologous gene expression cassettes into the chromosomes of S. boulardii. By using enhanced green fluorescent protein (EGFP) as the reporter gene, we achieved random chromosomal integration of EGFP expression cassette. By using PiggyBac transposon system, a great variety of EGT-producing strains was obtained, which is not possible for the conventional single target genome editing, and one best isolated top producer reached 17.50 mg/L EGT after 120 h cultivation. In summary, we have applied the PiggyBac transposon system to S. boulardii for the first time for genetic engineering. The engineered probiotic yeast S. boulardii has been endowed with new antioxidant properties and produces EGT. It has potential applications in developing novel therapeutics and dietary supplements for the prevention and treatment of gastrointestinal disorders.Saccharomyces boulardii, as a probiotic yeast, has shown great potential in regulating gut health and treating gastrointestinal diseases. Due to its unique antimicrobial and immune-regulating functions, it has become a significant subject of research in the field of probiotics. In this study, we aim to enhance the antioxidant properties of S. boulardii by producing l-ergothioneine (EGT). We first constructed a double knockout of ura3 and trp1 gene in S. boulardii to facilitate plasmid-based expressions. To further enable effective genome editing of S. boulardii, we implemented the PiggyBac system to transpose the heterologous gene expression cassettes into the chromosomes of S. boulardii. By using enhanced green fluorescent protein (EGFP) as the reporter gene, we achieved random chromosomal integration of EGFP expression cassette. By using PiggyBac transposon system, a great variety of EGT-producing strains was obtained, which is not possible for the conventional single target genome editing, and one best isolated top producer reached 17.50 mg/L EGT after 120 h cultivation. In summary, we have applied the PiggyBac transposon system to S. boulardii for the first time for genetic engineering. The engineered probiotic yeast S. boulardii has been endowed with new antioxidant properties and produces EGT. It has potential applications in developing novel therapeutics and dietary supplements for the prevention and treatment of gastrointestinal disorders. ABSTRACT Saccharomyces boulardii, as a probiotic yeast, has shown great potential in regulating gut health and treating gastrointestinal diseases. Due to its unique antimicrobial and immune‐regulating functions, it has become a significant subject of research in the field of probiotics. In this study, we aim to enhance the antioxidant properties of S. boulardii by producing l‐ergothioneine (EGT). We first constructed a double knockout of ura3 and trp1 gene in S. boulardii to facilitate plasmid‐based expressions. To further enable effective genome editing of S. boulardii, we implemented the PiggyBac system to transpose the heterologous gene expression cassettes into the chromosomes of S. boulardii. By using enhanced green fluorescent protein (EGFP) as the reporter gene, we achieved random chromosomal integration of EGFP expression cassette. By using PiggyBac transposon system, a great variety of EGT‐producing strains was obtained, which is not possible for the conventional single target genome editing, and one best isolated top producer reached 17.50 mg/L EGT after 120 h cultivation. In summary, we have applied the PiggyBac transposon system to S. boulardii for the first time for genetic engineering. The engineered probiotic yeast S. boulardii has been endowed with new antioxidant properties and produces EGT. It has potential applications in developing novel therapeutics and dietary supplements for the prevention and treatment of gastrointestinal disorders. Graphical and Lay Summary Saccharomyces boulardii, as a probiotic yeast, has shown great potential in regulating gut health and treating gastrointestinal diseases. In this study, we first constructed double knockout of ura3 and trp1 gene in S. boulardii, to facilitate plasmid‐based expressions. To further enable effective genome editing of S. boulardii, we implemented the PiggyBac system to transpose the heterologous gene expression cassettes into the chromosomes of S. boulardii. By using PiggyBac transposon system, a great variety of EGT‐producing strains was obtained, and one best isolated top producer reached 17.50 mg/L EGT after 120 h cultivation. In the future, the engineered S. boulardii is expected to have potential applications for probiotic supplementation of antioxidants to improve the human health. |
| Author | Wang, Junyi Tang, Chaoqun Zou, Congjia Yuan, Jifeng Zhang, Lu Zhang, Yalin |
| Author_xml | – sequence: 1 givenname: Chaoqun surname: Tang fullname: Tang, Chaoqun organization: Qinghai University Medical College – sequence: 2 givenname: Lu surname: Zhang fullname: Zhang, Lu organization: Xiamen University – sequence: 3 givenname: Junyi surname: Wang fullname: Wang, Junyi organization: Xiamen University – sequence: 4 givenname: Congjia surname: Zou fullname: Zou, Congjia organization: Xiamen University – sequence: 5 givenname: Yalin surname: Zhang fullname: Zhang, Yalin email: zhangyalin@xmu.edu.cn organization: Xiamen University – sequence: 6 givenname: Jifeng orcidid: 0000-0003-1874-190X surname: Yuan fullname: Yuan, Jifeng email: jfyuan@xmu.edu.cn organization: Shenzhen Research Institute of Xiamen University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39562168$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkMtKAzEUhoNUtF62LmWWblpzm2S6VKkXKFRodRvS5EwbmZnUZAbpzkfwGX0Sp7RVEMRVTg7f94f8R6hT-QoQOiO4TzCmlzPn6z7FlGOcUrmHuiQTuCcZ4Z3tLKTIDtFRjC8Y85RhfoAO2SAVlIisi56H1dxVAMFV82SijVno4MuVgZjMfFPoYJ1Lch-Sx-DXbzmTTJrlsoASqlrXzleJz5Pi8_1jGOa-XrQLaPNO0H6uiwin2_MYPd0Opzf3vdH47uHmatQzjKeyZwe5tDYVllFJBEhNcJZRzbTIhZTtfQZ8AKCt4BYEzS1YkExQaXLKUkLYMbrY5C6Df20g1qp00UBR6Ap8ExUjDGc0o5S36PkWbWYlWLUMrtRhpXZdtADfACb4GAPkyrjNF-ugXaEIVuvK1boG9V15q_V_abvkP4XBRnhzBaz-odX1w3j6434BSVyWdA |
| CitedBy_id | crossref_primary_10_1016_j_addr_2025_115605 crossref_primary_10_1021_acssynbio_5c00236 crossref_primary_10_1016_j_biotechadv_2025_108663 |
| Cites_doi | 10.1016/j.ejphar.2023.175759 10.1371/journal.pone.0097774 10.3389/fnins.2023.1107436 10.5511/plantbiotechnology.23.0525a 10.1021/acs.jafc.1c05280 10.1073/pnas.0910383107 10.1016/j.freeradbiomed.2017.03.009 10.1177/0271678X211033358 10.1242/dmm.010827 10.1016/j.fct.2012.08.021 10.3390/antiox12020320 10.1128/AEM.02858-17 10.2174/1381612826666200831151316 10.1038/s41598-017-02460-2 10.3390/ijms24097945 10.1016/j.freeradbiomed.2024.03.009 10.1016/j.freeradbiomed.2016.04.013 10.1016/j.ymben.2022.01.012 10.1016/j.jbiosc.2018.05.021 10.1016/j.jenvman.2018.08.027 10.1186/s12934-022-01807-3 10.21037/tp-23-566 10.1002/1873-3468.14271 10.1161/HYPERTENSIONAHA.119.13929 10.1080/10408398.2023.2298770 10.1073/pnas.1008322108 10.1093/nar/gkr764 10.1016/j.ymthe.2018.01.021 10.3390/nu15214663 10.3390/jof8070713 10.1128/jb.87.4.852-862.1964 10.1021/ja101721e 10.1016/S1389-1723(03)90092-2 10.1038/s41598-018-20021-z 10.1006/plas.2001.1557 10.1186/s12934-020-01421-1 10.1139/cjpp-2021-0247 10.1111/mmi.13296 10.5713/ab.20.0817 10.1111/1750-3841.15982 10.1111/jam.14941 10.3390/ijms231810832 10.1016/S0021-9258(18)68578-3 10.1016/j.reth.2021.08.009 10.3748/wjg.v25.i18.2188 10.1007/s11064-022-03665-2 10.3390/pharmaceutics12030277 10.1128/AEM.02201-06 10.1002/biof.5520270114 10.1016/j.tibtech.2015.06.009 10.1016/j.jri.2023.104171 10.1016/j.exer.2024.109862 10.1038/s41398-020-0855-1 10.1016/0378-1119(90)90159-O 10.1136/heartjnl-2019-315485 10.1039/D4FO01269K 10.1002/0471141755.ph1437s72 10.1097/CJI.0b013e3181ad762b 10.1016/j.jbiosc.2023.11.003 10.1016/j.gene.2014.07.065 10.1111/j.1742-4658.2011.08050.x 10.1002/btpr.2447 10.3390/antiox11091717 10.3390/ph15060742 10.1016/j.biopha.2021.111921 10.1371/journal.pone.0018556 10.1128/jb.103.2.475-478.1970 10.34133/bdr.0030 |
| ContentType | Journal Article |
| Copyright | 2024 Wiley‐VCH GmbH. |
| Copyright_xml | – notice: 2024 Wiley‐VCH GmbH. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1002/biot.202400527 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Agriculture |
| EISSN | 1860-7314 |
| EndPage | n/a |
| ExternalDocumentID | 39562168 10_1002_biot_202400527 BIOT202400527 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 32071030; 32270087 – fundername: Xiamen University funderid: 20720240120 – fundername: National Natural Science Foundation of China grantid: 32270087 – fundername: National Natural Science Foundation of China grantid: 32071030 – fundername: Xiamen University grantid: 20720240120 |
| GroupedDBID | --- 05W 0R~ 1L6 1OC 23N 31~ 33P 3WU 4.4 53G 5GY 6P2 8-0 8-1 8UM A00 AAESR AAHHS AAHQN AAIHA AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI CS3 DCZOG DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P FEDTE G-S GODZA HGLYW HHZ HVGLF HZ~ LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW ROL RWI RYL SUPJJ SV3 WBKPD WIH WIK WNSPC WOHZO WXSBR WYISQ WYJ XV2 ZZTAW ~S- AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c3457-d9f7dd56d32716e7a10882a3a6f677e7abe49eead64de62fdede73627cf235113 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001371125400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1860-6768 1860-7314 |
| IngestDate | Sun Nov 09 10:20:25 EST 2025 Mon Jul 21 06:05:29 EDT 2025 Tue Nov 18 22:10:12 EST 2025 Thu Oct 16 04:31:49 EDT 2025 Wed Jan 22 17:14:25 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Saccharomyces boulardii antioxidant l‐ergothioneine PiggyBac transposon |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2024 Wiley‐VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3457-d9f7dd56d32716e7a10882a3a6f677e7abe49eead64de62fdede73627cf235113 |
| Notes | Funding This study was funded by National Natural Science Foundation of China 32071030, 32270087, Xiamen University 20720240120. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-1874-190X |
| PMID | 39562168 |
| PQID | 3130828224 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_3130828224 pubmed_primary_39562168 crossref_citationtrail_10_1002_biot_202400527 crossref_primary_10_1002_biot_202400527 wiley_primary_10_1002_biot_202400527_BIOT202400527 |
| PublicationCentury | 2000 |
| PublicationDate | November 2024 2024-11-00 2024-Nov 20241101 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany |
| PublicationTitle | Biotechnology journal |
| PublicationTitleAlternate | Biotechnol J |
| PublicationYear | 2024 |
| References | 2021; 69 2017; 7 2011; 278 2022; 70 2010; 107 2015; 33 2018; 126 1964; 87 2022; 23 2016; 100 2016; 72 2018; 84 1988; 263 2020; 12 2007; 73 2022; 21 2020; 10 2003; 96 2013; 6 2020; 19 2002; 47 2018; 8 2023; 24 2021; 34 2024; 6 2006; 27 2017; 33 2019; 25 2014; 9 2021; 41 1990; 91 2022; 596 1970; 103 2023; 12 2023; 17 2018; 226 2023; 15 2022; 47 2016; 96 2020; 106 2024; 242 2021; 141 2022; 87 2024; 13 2011; 39 2024; 15 2011; 6 2018; 26 2024; 161 2012; 50 2017; 108 2023; 40 2018; 17 2011; 108 2014; 549 2009; 32 2021; 99 2020; 75 2023 2024; 137 2024; 217 2021; 18 2022; 8 2010; 132 2020; 26 2022; 15 2023; 950 2021; 131 2022; 11 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 Kobliner V. (e_1_2_9_6_1) 2018; 17 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_70_1 Rawat S. S. (e_1_2_9_7_1) 2023; 15 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
| References_xml | – volume: 8 start-page: 713 issue: 7 year: 2022 article-title: Effect of Chilled Storage on Antioxidant Capacities and Volatile Flavors of Synbiotic Yogurt Made With Probiotic Yeast CNCM I‐745 in Combination With Inulin publication-title: Journal of Fungi (Basel) – volume: 137 start-page: 31 year: 2024 end-page: 37 article-title: Homozygous Gene Disruption in Diploid Yeast Through a Single Transformation publication-title: Journal of Bioscience and Bioengineering – volume: 15 start-page: 4663 issue: 21 year: 2023 article-title: The Effect of Probiotic Supplements on Metabolic Parameters of People With Type 2 Diabetes in Greece—A Randomized, Double‐Blind, Placebo‐Controlled Study publication-title: Nutrients – volume: 27 start-page: 157 year: 2006 end-page: 165 article-title: Activity of The Dietary Antioxidant Ergothioneine in a Virus Gene‐Based Assay for Inhibitors of HIV Transcription publication-title: Biofactors – volume: 87 start-page: 852 year: 1964 end-page: 862 article-title: Biosynthesis of Ergothioneine and Hercynine by Mycobacteria publication-title: Journal of Bacteriology – volume: 70 start-page: 129 year: 2022 end-page: 142 article-title: Engineering Precursor Supply for the High‐Level Production of Ergothioneine in publication-title: Metabolic Engineering – volume: 6 year: 2011 article-title: High Cleavage Efficiency of a 2A Peptide Derived From Porcine Teschovirus‐1 in Human Cell Lines, Zebrafish and Mice publication-title: PLoS ONE – volume: 73 start-page: 2458 year: 2007 end-page: 2467 article-title: Genotypic and Physiological Characterization of , the Probiotic Strain of publication-title: Applied and Environmental Microbiology – volume: 96 start-page: 23 year: 2003 end-page: 31 article-title: Isolation of the Cryptococcus Humicolus URA3 Gene Encoding Orotidine‐5′‐Phosphate Decarboxylase and Its Use as a Selective Marker for Transformation publication-title: Journal of Bioscience and Bioengineering – volume: 24 start-page: 7945 year: 2023 article-title: Effects of Probiotic Supernatant on Viability, Nano‐Mechanical Properties of Cytoplasmic Membrane and Pro‐Inflammatory Gene Expression in Human Gastric Cancer AGS Cells publication-title: International Journal of Molecular Sciences – volume: 18 start-page: 347 year: 2021 end-page: 354 article-title: Development of Alternative Gene Transfer Techniques for Ex Vivo and In Vivo Gene Therapy in a Canine Model publication-title: Regenerative Therapy – volume: 242 year: 2024 article-title: Screening and Evaluation of Antioxidants for Retinal Pigment Epithelial Cell Protection: L‐Ergothioneine as a Novel Therapeutic Candidate Through NRF2 Activation publication-title: Experimental Eye Research – volume: 141 year: 2021 article-title: L‐Ergothioneine and Its Combination With Metformin Attenuates Renal Dysfunction in Type‐2 Diabetic Rat Model by Activating Nrf2 Antioxidant Pathway publication-title: Biomedicine & Pharmacotherapy – volume: 549 start-page: 161 year: 2014 end-page: 170 article-title: The Evolutionary History of the Genes Involved in the Biosynthesis of the Antioxidant Ergothioneine publication-title: Gene – volume: 107 start-page: 1343 year: 2010 end-page: 1348 article-title: Multiplexed Transposon‐Mediated Stable Gene Transfer in Human Cells publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 26 start-page: 4970 year: 2020 end-page: 4981 article-title: Edible Mushrooms: Novel Medicinal Agents to Combat Metabolic Syndrome and Associated Diseases publication-title: Current Pharmaceutical Design – volume: 91 start-page: 35 year: 1990 end-page: 41 article-title: Cloning of Promoters Using a Probe Vector Based on Phleomycin Resistance publication-title: Gene – volume: 69 start-page: 13682 year: 2021 end-page: 13690 article-title: Recent Strategies for the Biosynthesis of Ergothioneine publication-title: Journal of Agricultural and Food Chemistry – volume: 7 start-page: 2193 year: 2017 article-title: Systematic Comparison of 2A Peptides for Cloning Multi‐Genes in a Polycistronic Vector publication-title: Scientific Reports – volume: 84 issue: 10 year: 2018 article-title: A Mutation in PGM2 Causing Inefficient Galactose Metabolism in the Probiotic Yeast publication-title: Applied and Environmental Microbiology – volume: 103 start-page: 475 year: 1970 end-page: 478 article-title: Biosynthesis of Ergothioneine and Hercynine by Fungi and Actinomycetales publication-title: Journal of Bacteriology – volume: 15 start-page: 7658 year: 2024 end-page: 7668 article-title: Beneficial Effects of a New Probiotic Formulation on Adipocytokines, Appetite‐Regulating Hormones, and Metabolic Parameters in Obese Women publication-title: Food & Function – volume: 6 start-page: 0030 year: 2024 article-title: Copper‐Induced In Vivo Gene Amplification in Budding Yeast publication-title: BioDesign Research – volume: 33 start-page: 525 year: 2015 end-page: 533 article-title: piggyBac‐ing Models and New Therapeutic Strategies publication-title: Trends in Biotechnology – volume: 19 start-page: 164 year: 2020 article-title: Successful Biosynthesis of Natural Antioxidant Ergothioneine in Required Only Two Genes From publication-title: Microbial Cell Factories – volume: 25 start-page: 2188 year: 2019 end-page: 2203 article-title: Diversity of CNCM I‐745 Mechanisms of Action Against Intestinal Infections publication-title: World Journal of Gastroenterology – volume: 11 start-page: 1717 year: 2022 article-title: Low Plasma Ergothioneine Predicts Cognitive and Functional Decline in an Elderly Cohort Attending Memory Clinics publication-title: Antioxidants (Basel) – volume: 217 start-page: 60 year: 2024 end-page: 67 article-title: Are Age‐Related Neurodegenerative Diseases Caused by a Lack of the Diet‐Derived Compound Ergothioneine? publication-title: Free Radical Biology and Medicine – volume: 96 start-page: 211 year: 2016 end-page: 222 article-title: Ergothioneine Oxidation in the Protection Against High‐Glucose Induced Endothelial Senescence: Involvement of SIRT1 and SIRT6 publication-title: Free Radical Biology and Medicine – volume: 100 start-page: 15 year: 2016 end-page: 24 article-title: Oxidative‐Stress Detoxification and Signalling in Cyanobacteria: The Crucial Glutathione Synthesis Pathway Supports the Production of Ergothioneine and Ophthalmate publication-title: Molecular Microbiology – volume: 34 start-page: 1695 year: 2021 end-page: 1704 article-title: Effects of Ergothioneine‐Enriched Mushroom Extract on Oxidative Stability, Volatile Compounds and Sensory Quality of Emulsified Sausage publication-title: Animal Bioscience – volume: 131 start-page: 460 year: 2021 end-page: 469 article-title: as Therapeutic Alternative in Experimental Giardiasis publication-title: Journal of Applied Microbiology – volume: 17 start-page: 38 year: 2018 end-page: 41 article-title: Reduction in Obsessive Compulsive Disorder and Self‐Injurious Behavior With in a Child With Autism: A Case Report publication-title: Integrative Medicine (Encinitas) – volume: 50 start-page: 3902 year: 2012 end-page: 3911 article-title: Ergothioneine Protects Against Neuronal Injury Induced by β‐Amyloid in Mice publication-title: Food and Chemical Toxicology – volume: 33 start-page: 534 year: 2017 end-page: 540 article-title: Bioreactor Scale Up and Protein Product Quality Characterization of piggyBac Transposon Derived CHO Pools publication-title: Biotechnology Progress – volume: 47 start-page: 2513 year: 2022 end-page: 2521 article-title: Ergothioneine and Central Nervous System Diseases publication-title: Neurochemical Research – volume: 9 year: 2014 article-title: Genetic and Metabolomic Dissection of the Ergothioneine and Selenoneine Biosynthetic Pathway in the Fission Yeast, , and Construction of an Overproduction System publication-title: PLoS ONE – volume: 32 start-page: 826 year: 2009 end-page: 836 article-title: Optimization of the PiggyBac Transposon System for the Sustained Genetic Modification of Human T Lymphocytes publication-title: Journal of Immunotherapy – volume: 75 start-page: 561 year: 2020 end-page: 568 article-title: L‐(+)‐Ergothioneine Significantly Improves the Clinical Characteristics of Preeclampsia in the Reduced Uterine Perfusion Pressure Rat Model publication-title: Hypertension – volume: 87 start-page: 415 year: 2022 end-page: 426 article-title: Protective Role of Ergothioneine Isolated From Pleurotus Ostreatus Against Dextran Sulfate Sodium‐Induced Ulcerative Colitis in Rat Model publication-title: Journal of Food Science – volume: 108 start-page: 8 year: 2017 end-page: 18 article-title: Ergothioneine Products Derived by Superoxide Oxidation in Endothelial Cells Exposed to High‐Glucose publication-title: Free Radical Biology and Medicine – volume: 161 year: 2024 article-title: L‐Ergothioneine Reduces Mitochondrial‐Driven NLRP3 Activation in Gestational Diabetes Mellitus publication-title: Journal of Reproductive Immunology – volume: 6 start-page: 828 year: 2013 end-page: 833 article-title: piggyBac as a High‐Capacity Transgenesis and Gene‐Therapy Vector in Human Cells and Mice publication-title: Disease Models & Mechanisms – volume: 106 start-page: 691 year: 2020 end-page: 697 article-title: Ergothioneine is Associated With Reduced Mortality and Decreased Risk of Cardiovascular Disease publication-title: Heart – volume: 47 start-page: 94 year: 2002 end-page: 107 article-title: Selective Fitness of Four Episomal Shuttle‐Vectors Carrying HIS3, LEU2, TRP1, and URA3 Selectable Markers in publication-title: Plasmid – volume: 99 start-page: 1137 year: 2021 end-page: 1147 article-title: L‐Ergothioneine and Metformin Alleviates Liver Injury in Experimental Type‐2 Diabetic Rats via Reduction of Oxidative Stress, Inflammation, and Hypertriglyceridemia publication-title: Canadian Journal of Physiology and Pharmacology – volume: 23 issue: 18 year: 2022 article-title: A Single Gene Enables Ergothioneine Biosynthesis and Secretion by publication-title: International Journal of Molecular Sciences – volume: 15 year: 2023 article-title: Early‐Life Antibiotics and Childhood Obesity: Yeast Probiotics as a Strategy to Modulate Gut Microbiota publication-title: Cureus – volume: 12 start-page: 320 year: 2023 article-title: Protection Against Doxorubicin‐Induced Cardiotoxicity by Ergothioneine publication-title: Antioxidants (Basel) – volume: 41 start-page: 3324 year: 2021 end-page: 3338 article-title: Differential Regulation of Oxidative Stress, Microbiota‐Derived, and Energy Metabolites in the Mouse Brain During Sleep publication-title: Journal of Cerebral Blood Flow and Metabolism – volume: 17 year: 2023 article-title: Ergothioneine, a Dietary Antioxidant Improves Amyloid Beta Clearance in the Neuroretina of a Mouse Model of Alzheimer's Disease publication-title: Frontiers in Neuroscience – volume: 12 start-page: 277 issue: 3 year: 2020 article-title: piggyBac‐Based Non‐Viral In Vivo Gene Delivery Useful for Production of Genetically Modified Animals and Organs publication-title: Pharmaceutics – volume: 15 start-page: 742 year: 2022 article-title: Longitudinal Consumption of Ergothioneine Reduces Oxidative Stress and Amyloid Plaques and Restores Glucose Metabolism in the 5XFAD Mouse Model of Alzheimer's Disease publication-title: Pharmaceuticals (Basel) – volume: 596 start-page: 1290 year: 2022 end-page: 1298 article-title: Ergothioneine in the Brain publication-title: FEBS Letters – volume: 8 start-page: 1601 year: 2018 article-title: Distribution and Accumulation of Dietary Ergothioneine and Its Metabolites in Mouse Tissues publication-title: Scientific Reports – volume: 21 start-page: 76 year: 2022 article-title: Toward More Efficient Ergothioneine Production Using the Fungal Ergothioneine Biosynthetic Pathway publication-title: Microbial Cell Factories – volume: 10 start-page: 170 year: 2020 article-title: Ergothioneine, a Metabolite of the Gut Bacterium , Protects Against Stress‐Induced Sleep Disturbances publication-title: Translational Psychiatry – start-page: 1 year: 2023 end-page: 24 article-title: Fungi‐Derived Natural Antioxidants publication-title: Critical Reviews in Food Science and Nutrition – volume: 108 start-page: 1531 year: 2011 end-page: 1536 article-title: A hyperactive piggyBac Transposase for Mammalian Applications publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 13 start-page: 72 year: 2024 end-page: 90 article-title: Randomized Controlled Trial Comparing the Impacts of and OF44 on Intestinal Flora in Cerebral Palsy Rats: Insights Into Inflammation Biomarkers and Depression‐Like Behaviors publication-title: Translational Pediatrics – volume: 263 start-page: 7868 year: 1988 end-page: 7875 article-title: The Role of the TRP1 Gene in Yeast Tryptophan Biosynthesis publication-title: Journal of Biological Chemistry – volume: 950 year: 2023 article-title: Ergothioneine Improves Myocardial Remodeling and Heart Function After Acute Myocardial Infarction via S‐Glutathionylation Through the NF‐ĸB Dependent Wnt5a‐sFlt‐1 Pathway publication-title: European Journal of Pharmacology – volume: 26 start-page: 1093 year: 2018 end-page: 1108 article-title: Autologous Cell Therapy Approach for Duchenne Muscular Dystrophy Using PiggyBac Transposons and Mesoangioblasts publication-title: Molecular Therapy – volume: 278 start-page: 1299 year: 2011 end-page: 1315 article-title: Specific Biomarkers for Stochastic Division Patterns and Starvation‐Induced Quiescence Under Limited Glucose Levels in Fission Yeast publication-title: FEBS Journal – volume: 40 start-page: 255 year: 2023 end-page: 262 article-title: Precise Genetic Engineering With Transposon in Plants publication-title: Plant Biotechnology – volume: 132 start-page: 6632 year: 2010 end-page: 6633 article-title: In Vitro Reconstitution of Mycobacterial Ergothioneine Biosynthesis publication-title: Journal of the American Chemical Society – volume: 72 start-page: 14.37.11 year: 2016 end-page: 14.37.12 article-title: Overview of Transgenic Glioblastoma and Oligoastrocytoma CNS Models and Their Utility in Drug Discovery publication-title: Current Protocols in Pharmacology – volume: 126 start-page: 715 year: 2018 end-page: 722 article-title: Ergothioneine Production Using Methylobacterium Species, Yeast, and Fungi publication-title: Journal of Bioscience and Bioengineering – volume: 39 start-page: e148 year: 2011 end-page: e148 article-title: Mobilization of Giant piggyBac Transposons in the Mouse Genome publication-title: Nucleic Acids Research – volume: 226 start-page: 180 year: 2018 end-page: 186 article-title: Bioremediation and Biomass Production From the Cultivation of Probiotic in Parboiled Rice Effluent publication-title: Journal of Environmental Management – ident: e_1_2_9_33_1 doi: 10.1016/j.ejphar.2023.175759 – ident: e_1_2_9_65_1 doi: 10.1371/journal.pone.0097774 – ident: e_1_2_9_18_1 doi: 10.3389/fnins.2023.1107436 – ident: e_1_2_9_61_1 doi: 10.5511/plantbiotechnology.23.0525a – ident: e_1_2_9_38_1 doi: 10.1021/acs.jafc.1c05280 – ident: e_1_2_9_45_1 doi: 10.1073/pnas.0910383107 – ident: e_1_2_9_26_1 doi: 10.1016/j.freeradbiomed.2017.03.009 – ident: e_1_2_9_13_1 doi: 10.1177/0271678X211033358 – ident: e_1_2_9_56_1 doi: 10.1242/dmm.010827 – ident: e_1_2_9_14_1 doi: 10.1016/j.fct.2012.08.021 – ident: e_1_2_9_34_1 doi: 10.3390/antiox12020320 – ident: e_1_2_9_49_1 doi: 10.1128/AEM.02858-17 – ident: e_1_2_9_22_1 doi: 10.2174/1381612826666200831151316 – ident: e_1_2_9_47_1 doi: 10.1038/s41598-017-02460-2 – ident: e_1_2_9_9_1 doi: 10.3390/ijms24097945 – ident: e_1_2_9_19_1 doi: 10.1016/j.freeradbiomed.2024.03.009 – ident: e_1_2_9_29_1 doi: 10.1016/j.freeradbiomed.2016.04.013 – ident: e_1_2_9_43_1 doi: 10.1016/j.ymben.2022.01.012 – ident: e_1_2_9_69_1 doi: 10.1016/j.jbiosc.2018.05.021 – ident: e_1_2_9_3_1 doi: 10.1016/j.jenvman.2018.08.027 – ident: e_1_2_9_42_1 doi: 10.1186/s12934-022-01807-3 – ident: e_1_2_9_5_1 doi: 10.21037/tp-23-566 – ident: e_1_2_9_11_1 doi: 10.1002/1873-3468.14271 – ident: e_1_2_9_25_1 doi: 10.1161/HYPERTENSIONAHA.119.13929 – volume: 17 start-page: 38 year: 2018 ident: e_1_2_9_6_1 article-title: Reduction in Obsessive Compulsive Disorder and Self‐Injurious Behavior With Saccharomyces boulardii in a Child With Autism: A Case Report publication-title: Integrative Medicine (Encinitas) – ident: e_1_2_9_35_1 doi: 10.1080/10408398.2023.2298770 – ident: e_1_2_9_46_1 doi: 10.1073/pnas.1008322108 – ident: e_1_2_9_55_1 doi: 10.1093/nar/gkr764 – ident: e_1_2_9_57_1 doi: 10.1016/j.ymthe.2018.01.021 – ident: e_1_2_9_8_1 doi: 10.3390/nu15214663 – ident: e_1_2_9_2_1 doi: 10.3390/jof8070713 – ident: e_1_2_9_41_1 doi: 10.1128/jb.87.4.852-862.1964 – ident: e_1_2_9_67_1 doi: 10.1021/ja101721e – ident: e_1_2_9_50_1 doi: 10.1016/S1389-1723(03)90092-2 – ident: e_1_2_9_31_1 doi: 10.1038/s41598-018-20021-z – ident: e_1_2_9_52_1 doi: 10.1006/plas.2001.1557 – ident: e_1_2_9_70_1 doi: 10.1186/s12934-020-01421-1 – ident: e_1_2_9_21_1 doi: 10.1139/cjpp-2021-0247 – ident: e_1_2_9_37_1 doi: 10.1111/mmi.13296 – ident: e_1_2_9_39_1 doi: 10.5713/ab.20.0817 – ident: e_1_2_9_24_1 doi: 10.1111/1750-3841.15982 – ident: e_1_2_9_4_1 doi: 10.1111/jam.14941 – ident: e_1_2_9_66_1 doi: 10.3390/ijms231810832 – ident: e_1_2_9_53_1 doi: 10.1016/S0021-9258(18)68578-3 – ident: e_1_2_9_58_1 doi: 10.1016/j.reth.2021.08.009 – ident: e_1_2_9_20_1 doi: 10.3748/wjg.v25.i18.2188 – ident: e_1_2_9_15_1 doi: 10.1007/s11064-022-03665-2 – ident: e_1_2_9_63_1 doi: 10.3390/pharmaceutics12030277 – ident: e_1_2_9_10_1 doi: 10.1128/AEM.02201-06 – ident: e_1_2_9_30_1 doi: 10.1002/biof.5520270114 – ident: e_1_2_9_44_1 doi: 10.1016/j.tibtech.2015.06.009 – ident: e_1_2_9_27_1 doi: 10.1016/j.jri.2023.104171 – ident: e_1_2_9_23_1 doi: 10.1016/j.exer.2024.109862 – ident: e_1_2_9_12_1 doi: 10.1038/s41398-020-0855-1 – volume: 15 year: 2023 ident: e_1_2_9_7_1 article-title: Early‐Life Antibiotics and Childhood Obesity: Yeast Probiotics as a Strategy to Modulate Gut Microbiota publication-title: Cureus – ident: e_1_2_9_54_1 doi: 10.1016/0378-1119(90)90159-O – ident: e_1_2_9_32_1 doi: 10.1136/heartjnl-2019-315485 – ident: e_1_2_9_71_1 doi: 10.1039/D4FO01269K – ident: e_1_2_9_59_1 doi: 10.1002/0471141755.ph1437s72 – ident: e_1_2_9_62_1 doi: 10.1097/CJI.0b013e3181ad762b – ident: e_1_2_9_51_1 doi: 10.1016/j.jbiosc.2023.11.003 – ident: e_1_2_9_40_1 doi: 10.1016/j.gene.2014.07.065 – ident: e_1_2_9_64_1 doi: 10.1111/j.1742-4658.2011.08050.x – ident: e_1_2_9_60_1 doi: 10.1002/btpr.2447 – ident: e_1_2_9_17_1 doi: 10.3390/antiox11091717 – ident: e_1_2_9_16_1 doi: 10.3390/ph15060742 – ident: e_1_2_9_28_1 doi: 10.1016/j.biopha.2021.111921 – ident: e_1_2_9_48_1 doi: 10.1371/journal.pone.0018556 – ident: e_1_2_9_36_1 doi: 10.1128/jb.103.2.475-478.1970 – ident: e_1_2_9_68_1 doi: 10.34133/bdr.0030 |
| SSID | ssj0045304 |
| Score | 2.4055903 |
| Snippet | ABSTRACT
Saccharomyces boulardii, as a probiotic yeast, has shown great potential in regulating gut health and treating gastrointestinal diseases. Due to its... Saccharomyces boulardii , as a probiotic yeast, has shown great potential in regulating gut health and treating gastrointestinal diseases. Due to its unique... Saccharomyces boulardii, as a probiotic yeast, has shown great potential in regulating gut health and treating gastrointestinal diseases. Due to its unique... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e202400527 |
| SubjectTerms | antioxidant Antioxidants Ergothioneine Gene Editing - methods Genetic Engineering - methods l‐ergothioneine PiggyBac transposon Probiotics Saccharomyces boulardii Saccharomyces boulardii - genetics |
| Title | Engineering Saccharomyces boulardii for Probiotic Supplementation of l‐Ergothioneine |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbiot.202400527 https://www.ncbi.nlm.nih.gov/pubmed/39562168 https://www.proquest.com/docview/3130828224 |
| Volume | 19 |
| WOSCitedRecordID | wos001371125400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1860-7314 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045304 issn: 1860-6768 databaseCode: DRFUL dateStart: 20060101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB6VhUM5lAKlLH9ypUqcIhI7sb1H_lYgIUAtoL1FTmyjlbYbtAtI3HiEPiNPwkySDbuqUKX2lpGccZKZsT_H428AvmuE9DgP-kC5BBcoivtA5zoMstAL6bzXkfNlsQl1fq57vc7l1Cn-ih-i-eFGkVGO1xTgJhvvvZGGZv2CciEpBzLhag7mOTpv0oL5ox_d67PJaBwnoiwhGGlJae5ST4gbQ743q2F2YvoDbc6C13L26S79_3N_hk818mT7lasswwc3XIHF_dtRzb7hUJpiJ1yFmymJ_TQ5HdAqfj3hwMKygrJXbb_PEPOyy5LLCdWyskZolY9OBmeFZ4OX59_HI2JZIE4k1PcFrrvHV4cnQV2GIchFnKjAdryyNpFWcFxcOWUiguVGGOmlUihnLu449EgZWye5t846hfOiyj2nbUqxBq0h9rAOzIjQKQR8OQLFWJnQaHQGG0cY-9b5yLQhmNggzWuOciqVMUgrdmWe0uukzddrw27T_q5i53i35beJSVMMINoVMUNXPIxTERFjDyXTtuFrZetGl8DVI4-kbgMvTfqXTtKD04urRtr4l5s24SNdV6cdt6B1P3pw27CQP973x6MdmFM9vVO7-Ctk0vzB |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwEB6VHwk4UChQFlowEhKniMRObO-RFlYglgXBgrhF3thGK8GmWqBSbzwCz8iTMJNkU1ZVVQn16CgZJ5kZz2d7_A3AtkZIj3HQB8olOEFR3Ac602HQC72QznsdOV8Um1Cdjr6-bp5V2YR0Fqbkh6gX3MgzivGaHJwWpHd_s4b2-jklQ1ISZMLVBEzFaEto5FP7563L9mg4jhNR1BCMtKQ8d6lHzI0h3x2XMB6Z_oCb4-i1CD-tj__hxRdgvsKebK80lkX44AafYG7vZljxbzhsveEnXIKrNy12YTI6opXf_cKhhfVyyl-1_T5D1MvOCjYnFMuKKqFlRjqpnOWe3b48PR8MiWeBWJFQ3jJctg663w-DqhBDkIk4UYFtemVtIq3gOL1yykQEzI0w0kulsN1zcdOhTcrYOsm9ddYpjIwq85w2KsUKTA6wh1VgRoROIeTLECrGyoRGoznYOELvt85HpgHBSAlpVrGUU7GM27TkV-YpfU5a_70G7NT3_yj5Of5659ZIpym6EO2LmIHLH-9TERFnD6XTNuBzqexalsD5I4-kbgAvdPqPTtJvR6fdurX2noc2Yeawe9JO20ed43WYpevl2ccvMPkwfHRfYTr7-dC_H25Ulv4KlMr_yQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwED-NFiF4YAM2KBubkZB4ipbYie0-lrXVplWlgg3tLXJje6o0mql_kHjjI-wz7pNwl6TZKjQhIR4dOeckd-f7OT7_DuCDRkiPcdAHyiW4QFHcBzrTYTAOvZDOex05XxSbUMOhvrhoj6psQjoLU_JD1D_cyDOK-Zoc3F1bf3jHGjqe5JQMSUmQCVePoBlTJZkGNLtf-ueD1XQcJ6KoIRhpSXnuUq-YG0N-uC5hPTL9ATfX0WsRfvqb_-HBt-B5hT1ZpzSWF7Dhpi_hWedyVvFvOGzd4yd8Bd_utdhXk9ERrfz7T5xa2Din_FU7mTBEvWxUsDmhWFZUCS0z0knlLPfs6vbXTW9GPAvEioTytuG83zs7Og6qQgxBJuJEBbbtlbWJtILj8sopExEwN8JIL5XC9tjFbYc2KWPrJPfWWacwMqrMc9qoFDvQmOIIb4AZETqFkC9DqBgrExqN5mDjCL3fOh-ZFgQrJaRZxVJOxTKu0pJfmaf0Omn99Vrwse5_XfJzPNjz_UqnKboQ7YuYqcuX81RExNlD6bQteF0qu5YlcP3II6lbwAud_mWQ9NPJ57O69fZfbjqAJ6NuPx2cDE934SldLo8-7kFjMVu6d_A4-7GYzGf7laH_BiAD_0Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+Saccharomyces+boulardii+for+Probiotic+Supplementation+of+l+%E2%80%90Ergothioneine&rft.jtitle=Biotechnology+journal&rft.au=Tang%2C+Chaoqun&rft.au=Zhang%2C+Lu&rft.au=Wang%2C+Junyi&rft.au=Zou%2C+Congjia&rft.date=2024-11-01&rft.issn=1860-6768&rft.eissn=1860-7314&rft.volume=19&rft.issue=11&rft_id=info:doi/10.1002%2Fbiot.202400527&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_biot_202400527 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-6768&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-6768&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-6768&client=summon |