The Southern Annular Mode in 6th Coupled Model Intercomparison Project Models

I analyze trends in the Southern Annular Mode (SAM) in CMIP6 simulations. For the period 1957–2014, simulated linear trends are generally consistent with two observational references but seasonally in disagreement with two other representations of the SAM. Using a regression analysis applied to mode...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of geophysical research. Atmospheres Ročník 126; číslo 5
Hlavní autor: Morgenstern, O.
Médium: Journal Article
Jazyk:angličtina
Vydáno: 16.03.2021
Témata:
ISSN:2169-897X, 2169-8996
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract I analyze trends in the Southern Annular Mode (SAM) in CMIP6 simulations. For the period 1957–2014, simulated linear trends are generally consistent with two observational references but seasonally in disagreement with two other representations of the SAM. Using a regression analysis applied to model simulations with interactive ozone chemistry, a strengthening of the SAM in summer is attributed nearly completely to ozone depletion because a further strengthening influence due to long‐lived greenhouse gases is almost fully counterbalanced by a weakening influence due to stratospheric ozone increases associated with these greenhouse gas increases. Ignoring such ozone feedbacks would yield comparable contributions from these two influences, an incorrect result. In winter, trends are smaller but an influence of greenhouse gas‐mediated ozone feedbacks is also identified. The regression analysis furthermore yields significant differences in the attribution of SAM changes to the two influences between models with and without interactive ozone chemistry, with ozone depletion and GHG increases playing seasonally a stronger and weaker, respectively, role in the chemistry models versus the no‐chemistry ones. Plain Language Summary The Southern Annular Mode consists of a see‐saw of atmospheric mass between southern middle and high latitudes. It is subject to human influences due to ozone loss (esp. the ozone hole) and global warming. Here I show, using a regression analysis performed on simulations recently produced by present‐generation climate models, that the ozone loss influence is dominant in summer because the influence of global warming is largely offset by the impact on the mode of stratospheric mid‐ and high‐latitude ozone increases caused by greenhouse gas increases, causing a weakening. Models simulating ozone as part of chemistry schemes on average show a larger influence on the mode due to ozone loss and a smaller influence of greenhouse gases than models that prescribe ozone. The results suggest that only relying on such “no‐chemistry” models for the attribution of trends in the mode can lead to incorrect results. Key Points The influences of ozone changes and greenhouses gases on the Southern Annular Mode are analyzed in CMIP6 simulations Ozone depletion exerts a stronger and GHGs a weaker influence on the Southern Annular Mode (SAM) in chemistry versus no‐chemistry models Three sensitivity experiments are explained considering an impact of GHGs onto the SAM resulting from ozone changes
AbstractList I analyze trends in the Southern Annular Mode (SAM) in CMIP6 simulations. For the period 1957–2014, simulated linear trends are generally consistent with two observational references but seasonally in disagreement with two other representations of the SAM. Using a regression analysis applied to model simulations with interactive ozone chemistry, a strengthening of the SAM in summer is attributed nearly completely to ozone depletion because a further strengthening influence due to long‐lived greenhouse gases is almost fully counterbalanced by a weakening influence due to stratospheric ozone increases associated with these greenhouse gas increases. Ignoring such ozone feedbacks would yield comparable contributions from these two influences, an incorrect result. In winter, trends are smaller but an influence of greenhouse gas‐mediated ozone feedbacks is also identified. The regression analysis furthermore yields significant differences in the attribution of SAM changes to the two influences between models with and without interactive ozone chemistry, with ozone depletion and GHG increases playing seasonally a stronger and weaker, respectively, role in the chemistry models versus the no‐chemistry ones. The Southern Annular Mode consists of a see‐saw of atmospheric mass between southern middle and high latitudes. It is subject to human influences due to ozone loss (esp. the ozone hole) and global warming. Here I show, using a regression analysis performed on simulations recently produced by present‐generation climate models, that the ozone loss influence is dominant in summer because the influence of global warming is largely offset by the impact on the mode of stratospheric mid‐ and high‐latitude ozone increases caused by greenhouse gas increases, causing a weakening. Models simulating ozone as part of chemistry schemes on average show a larger influence on the mode due to ozone loss and a smaller influence of greenhouse gases than models that prescribe ozone. The results suggest that only relying on such “no‐chemistry” models for the attribution of trends in the mode can lead to incorrect results. The influences of ozone changes and greenhouses gases on the Southern Annular Mode are analyzed in CMIP6 simulations Ozone depletion exerts a stronger and GHGs a weaker influence on the Southern Annular Mode (SAM) in chemistry versus no‐chemistry models Three sensitivity experiments are explained considering an impact of GHGs onto the SAM resulting from ozone changes
I analyze trends in the Southern Annular Mode (SAM) in CMIP6 simulations. For the period 1957–2014, simulated linear trends are generally consistent with two observational references but seasonally in disagreement with two other representations of the SAM. Using a regression analysis applied to model simulations with interactive ozone chemistry, a strengthening of the SAM in summer is attributed nearly completely to ozone depletion because a further strengthening influence due to long‐lived greenhouse gases is almost fully counterbalanced by a weakening influence due to stratospheric ozone increases associated with these greenhouse gas increases. Ignoring such ozone feedbacks would yield comparable contributions from these two influences, an incorrect result. In winter, trends are smaller but an influence of greenhouse gas‐mediated ozone feedbacks is also identified. The regression analysis furthermore yields significant differences in the attribution of SAM changes to the two influences between models with and without interactive ozone chemistry, with ozone depletion and GHG increases playing seasonally a stronger and weaker, respectively, role in the chemistry models versus the no‐chemistry ones. Plain Language Summary The Southern Annular Mode consists of a see‐saw of atmospheric mass between southern middle and high latitudes. It is subject to human influences due to ozone loss (esp. the ozone hole) and global warming. Here I show, using a regression analysis performed on simulations recently produced by present‐generation climate models, that the ozone loss influence is dominant in summer because the influence of global warming is largely offset by the impact on the mode of stratospheric mid‐ and high‐latitude ozone increases caused by greenhouse gas increases, causing a weakening. Models simulating ozone as part of chemistry schemes on average show a larger influence on the mode due to ozone loss and a smaller influence of greenhouse gases than models that prescribe ozone. The results suggest that only relying on such “no‐chemistry” models for the attribution of trends in the mode can lead to incorrect results. Key Points The influences of ozone changes and greenhouses gases on the Southern Annular Mode are analyzed in CMIP6 simulations Ozone depletion exerts a stronger and GHGs a weaker influence on the Southern Annular Mode (SAM) in chemistry versus no‐chemistry models Three sensitivity experiments are explained considering an impact of GHGs onto the SAM resulting from ozone changes
Author Morgenstern, O.
Author_xml – sequence: 1
  givenname: O.
  orcidid: 0000-0002-9967-9740
  surname: Morgenstern
  fullname: Morgenstern, O.
  email: olaf.morgenstern@niwa.co.nz
  organization: National Institute of Water and Atmospheric Research (NIWA)
BookMark eNp9kNFKAzEQRYNUsNa--QH5AFeTbHY3eSyt1pYWRSv4tqTZWZqyTUqSIv17V1dEBJ2XGWbOnQv3HPWss4DQJSXXlDB5wwgj8wlJOc3pCeozmstESJn3vufi9QwNQ9iStkQLZryPlqsN4Gd3iBvwFo-sPTTK46WrABuL87jBY3fYN1B97ho8sxG8dru98iY4ix-924KO3TVcoNNaNQGGX32AXu5uV-P7ZPEwnY1Hi0S3rkXCGdMi07BmQHWmoOZCA0lVlQupi7xghLJKUlZXlFFIRVZwreuaKy2AcrVOB-iq-6u9C8FDXe692Sl_LCkpP9Iof6bR4uwXrk1U0TgbvTLNX6K0E72ZBo7_GpTz6dMkywtZpO-MvHJJ
CitedBy_id crossref_primary_10_1029_2022AV000833
crossref_primary_10_5194_acp_21_5777_2021
crossref_primary_10_5194_gmd_18_4399_2025
crossref_primary_10_1029_2021GL095376
crossref_primary_10_1002_joc_7447
crossref_primary_10_1029_2022JD036452
crossref_primary_10_1007_s00376_024_4350_0
crossref_primary_10_1029_2022GL098252
crossref_primary_10_1071_ES22015
Cites_doi 10.5194/esd‐9‐1235‐2018
10.5194/gmd‐2019‐378
10.1002/wcc.652
10.1029/2019MS001916
10.5194/acp‐7‐4537‐2007
10.1007/s13351‐019‐8074‐5
10.1029/2019MS001791
10.1029/2019MS002010
10.1029/2017MS001217
10.1007/s13143-019-00144-7
10.5194/gmd‐13‐3465‐2020
10.5194/gmd‐10‐639‐2017
10.1029/2009GL038671
10.1038/ngeo1296
10.1029/2020GL088295
10.1029/2019MS001739
10.1002/qj.3598
10.1175/JCLI3937.1
10.1029/2018MS001273
10.1175/JCLI‐D‐17‐0879.1
10.5194/gmd‐10‐2057‐2017
10.1175/JCLI‐D‐15‐0334.1
10.1029/2019MS002009
10.1002/2014GL062140
10.1071/ES19035
10.1029/2019MS001829
10.22033/ESGF/CMIP6.10894
10.1002/2014JD023009
10.1029/2019JC016036
10.1002/2017GL076770
10.1175/2009JCLI2786.1
10.1029/2019JD030943
10.5194/gmd‐13‐2197‐2020
10.1029/2019MS002015
10.1088/1748‐9326/aabf21
10.1002/jgrd.50316
10.1029/2019MS001683
10.12006/j.issn.1673‐1719.2019.166
10.5194/gmd‐13‐977‐2020
10.1175/1520‐0442(2003)016⟨4134:TITSAM⟩2.0.CO;2
10.1029/2010JD014271
10.1029/2019MS002025
10.1029/1999GL900003
10.1002/2017MS001115
10.5194/acp-20-14043-2020
10.5194/gmd‐12‐2727‐2019
10.5194/gmd‐9‐1937‐2016
10.1002/2017GL076226
10.1175/JCLI3774.1
10.1126/science.1202131
10.5194/acp‐18‐1091‐2018
10.1029/2018ms001603
10.1002/grl.50249
10.2151/jmsj.2019‐051
10.5194/gmd‐12‐4823‐2019
10.1175/1520‐0477(1996)077⟨0437:TNYRP⟩2.0.CO;2
10.5194/acp‐19‐3417‐2019
10.5194/gmd‐12‐1573‐2019
ContentType Journal Article
Copyright 2021. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2021. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
DOI 10.1029/2020JD034161
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 2169-8996
EndPage n/a
ExternalDocumentID 10_1029_2020JD034161
JGRD56797
Genre article
GrantInformation_xml – fundername: Ministry for Business Innovation and Employment (MBIE)
  funderid: CACV2105
GroupedDBID 05W
0R~
1OC
24P
33P
50Y
52M
5VS
702
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZFZN
AZVAB
BFHJK
BMXJE
BRXPI
DPXWK
DRFUL
DRSTM
EBS
G-S
HGLYW
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
P2W
R.K
RNS
ROL
SUPJJ
WBKPD
WIN
WXSBR
WYJ
~OA
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
ID FETCH-LOGICAL-c3457-422c85ceb2e1c5aef48ce03ad689c7672012d912fd121e38574ccff4ac8e14ab3
IEDL.DBID WIN
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000629772000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-897X
IngestDate Tue Nov 18 21:00:07 EST 2025
Sat Nov 29 05:39:08 EST 2025
Wed Jan 22 16:29:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3457-422c85ceb2e1c5aef48ce03ad689c7672012d912fd121e38574ccff4ac8e14ab3
ORCID 0000-0002-9967-9740
PageCount 20
ParticipantIDs crossref_primary_10_1029_2020JD034161
crossref_citationtrail_10_1029_2020JD034161
wiley_primary_10_1029_2020JD034161_JGRD56797
PublicationCentury 2000
PublicationDate 16 March 2021
PublicationDateYYYYMMDD 2021-03-16
PublicationDate_xml – month: 03
  year: 2021
  text: 16 March 2021
  day: 16
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Atmospheres
PublicationYear 2021
References 2009; 22
2020; 20
2019; 97
2019; 33
2019; 11
2013; 40
2019; 12
2015; 120
1999; 26
2019; 15
2019; 124
2019; 19
2006; 19
2003; 16
2020; 13
2020; 12
2020; 56
2020; 11
2020; 125
2018; 45
2014; 41
2011; 4
2011; 332
2019; 145
1996; 77
2018; 18
2009; 36
2018; 9
2015; 28
2020; 2020
2020
2017; 10
2010; 115
2020; 70
2013; 118
2019
2020; 47
2007; 7
2013
2018; 10
2018; 31
2016; 9
2018; 13
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Simmons A. (e_1_2_10_45_1) 2020
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 12
  year: 2020
  article-title: The Community Earth System Model version 2 (CESM2)
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 10
  start-page: 1172
  issue: 5
  year: 2018
  end-page: 1195
  article-title: CERA‐20C: A coupled reanalysis of the twentieth century
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 70
  start-page: 193
  issue: 1
  year: 2020
  end-page: 214
  article-title: The Australian earth system model: ACCESS‐ESM1.5
  publication-title: Journal of Southern Hemisphere Earth Systems Science
– volume: 26
  start-page: 459
  issue: 4
  year: 1999
  end-page: 462
  article-title: Definition of Antarctic oscillation index
  publication-title: Geophysical Research Letters
– volume: 11
  issue: 4
  year: 2020
  article-title: The Southern Annular Mode: Variability, trends, and climate impacts across the Southern Hemisphere
  publication-title: WIREs Climate Change
– volume: 28
  start-page: 8840
  year: 2015
  end-page: 8859
  article-title: Comparing trends in the Southern Annular Mode and surface westerly jet
  publication-title: Journal of Climate
– volume: 77
  start-page: 437
  issue: 3
  year: 1996
  end-page: 472
  article-title: The NCEP/NCAR 40‐year reanalysis project
  publication-title: Bulletin of the American Meteorological Society
– volume: 11
  start-page: 4182
  issue: 12
  year: 2019
  end-page: 4227
  article-title: Evaluation of CNRM Earth System Model, CNRM‐ESM2‐1: Role of Earth system processes in present‐day and future climate
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 45
  start-page: 3264
  issue: 7
  year: 2018
  end-page: 3273
  article-title: Historical tropospheric and stratospheric ozone radiative forcing using the CMIP6 database
  publication-title: Geophysical Research Letters
– volume: 12
  start-page: 4823
  issue: 11
  year: 2019
  end-page: 4873
  article-title: The Canadian earth system model version 5 (CanESM5.0.3)
  publication-title: Geoscientific Model Development
– volume: 31
  start-page: 3865
  issue: 10
  year: 2018
  end-page: 3874
  article-title: A new monthly pressure dataset poleward of 60S since 1957
  publication-title: Journal of Climate
– volume: 118
  start-page: 5029
  issue: 10
  year: 2013
  end-page: 5060
  article-title: Long‐term ozone changes and associated climate impacts in CMIP5 simulations
  publication-title: Journal of Geophysical Research: Atmosphere
– volume: 9
  start-page: 1235
  year: 2018
  end-page: 1242
  article-title: Simulation of observed climate changes in 18502014 with climate model INM‐CM5
  publication-title: Earth System Dynamics
– volume: 15
  start-page: 545
  year: 2019
  end-page: 550
  article-title: The Community Integrated Earth System Model (CIESM) from Tsinghua University and its plan for CMIP6 experiments
  publication-title: Climate Change Research
– volume: 13
  start-page: 3465
  issue: 8
  year: 2020
  end-page: 3474
  article-title: On the increased climate sensitivity in the EC‐Earth model from CMIP5 to CMIP6
  publication-title: Geoscientific Model Development
– volume: 20
  start-page: 14043
  year: 2020
  end-page: 14061
  article-title: Sensitivity of the Southern Hemisphere circumpolar jet response to Antarctic ozone depletion: prescribed versus interactive chemistry
  publication-title: Atmospheric Chemistry and Physics
– volume: 332
  start-page: 951
  issue: 6032
  year: 2011
  end-page: 954
  article-title: Impact of polar ozone depletion on subtropical precipitation
  publication-title: Science
– volume: 13
  start-page: 977
  year: 2020
  end-page: 1005
  article-title: Beijing climate center earth system model version 1 (BCC‐ESM1): Model description and evaluation of aerosol simulations
  publication-title: Geoscientific Model Development
– volume: 124
  start-page: 12380
  issue: 23
  year: 2019
  end-page: 12403
  article-title: The Whole Atmosphere Community Climate Model version 6 (WACCM6)
  publication-title: Journal of Geophysical Research: Atmosphere
– volume: 12
  issue: 9
  year: 2020
  article-title: Simulations for CMIP6 with the AWI climate model AWI‐CM‐1‐1
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 12
  year: 2020
  article-title: The GFDL Earth System Model version 4.1 (GFDL‐ESM4.1): Overall coupled model description and simulation characteristics
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 12
  issue: 7
  year: 2020
  article-title: Presentation and evaluation of the IPSL‐CM6A‐LR climate model
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 40
  start-page: 1189
  issue: 6
  year: 2013
  end-page: 1193
  article-title: Annular mode changes in the CMIP5 simulations
  publication-title: Geophysical Research Letters
– year: 2019
  article-title: NCC NorCPM1 model output prepared for CMIP6 CMIP historical
  publication-title: Earth System Grid Federation
– volume: 10
  start-page: 357
  issue: 2
  year: 2018
  end-page: 380
  article-title: The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) configurations
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 47
  issue: 20
  year: 2020
  article-title: Reappraisal of the climate impacts of ozone‐depleting substances
  publication-title: Geophysical Research Letters
– volume: 11
  start-page: 3691
  year: 2019
  end-page: 3727
  article-title: Structure and performance of GFDL's CM4.0 climate model
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 68
  article-title: The Norwegian Earth System Model, NorESM2 evaluation of the CMIP6 DECK and historical simulations
  publication-title: Geoscientific Model Development
– volume: 13
  issue: 5
  year: 2018
  article-title: Tropospheric jet response to Antarctic ozone depletion: An update with chemistry‐climate model initiative (CCMI) models
  publication-title: Environmental Research Letters
– volume: 41
  start-page: 9050
  issue: 24
  year: 2014
  end-page: 9057
  article-title: Direct and ozone‐mediated forcing of the southern annular mode by greenhouse gases
  publication-title: Geophysical Research Letters
– volume: 10
  start-page: 1383
  issue: 7
  year: 2018
  end-page: 1413
  article-title: A higher‐resolution version of the Max Planck Institute Earth System Model (MPI‐ESM1.2‐HR)
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 18
  start-page: 1091
  year: 2018
  end-page: 1114
  article-title: Ozone sensitivity to varying greenhouse gases and ozone‐depleting substances in CCMI‐1 simulations
  publication-title: Atmospheric Chemistry and Physics
– volume: 11
  start-page: 2089
  year: 2019
  end-page: 2129
  article-title: The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 56
  start-page: 381
  year: 2020
  end-page: 395
  article-title: Evaluation of the Korea Meteorological Administration Advanced Community Earth‐system model (K‐ACE)
  publication-title: Asia‐Pacific Journal of Atmosspheric Science
– volume: 16
  start-page: 4134
  issue: 24
  year: 2003
  end-page: 4143
  article-title: Trends in the Southern Annular Mode from observations and reanalyses
  publication-title: Journal of Climate
– volume: 97
  year: 2019
  article-title: The Meteorological Research Institute Earth System Model Version 2.0, MRI‐ESM2.0: Description and basic evaluation of the physical component
  publication-title: Journal of the Meteorological Society of Japan
– volume: 10
  start-page: 639
  year: 2017
  end-page: 671
  article-title: Review of the global models used within phase 1 of the Chemistry‐Climate Model Initiative (CCMI)
  publication-title: Geoscientific Model Development
– volume: 19
  start-page: 5816
  year: 2006
  end-page: 5842
  article-title: A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004
  publication-title: Journal of Climate
– volume: 33
  start-page: 31
  year: 2019
  end-page: 45
  article-title: Climate sensitivity and feedbacks of a new coupled model CAMS‐CSM to idealized CO forcing: A comparison with CMIP5 models
  publication-title: Journal of Meteorological Research
– volume: 9
  start-page: 1937
  issue: 5
  year: 2016
  end-page: 1958
  article-title: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization
  publication-title: Geoscientific Model Development
– volume: 120
  start-page: 6305
  issue: 13
  year: 2015
  end-page: 6312
  article-title: The effect of ozone depletion on the Southern Annular Mode and stratosphere‐troposphere coupling
  publication-title: Journal of Geophysical Research: Atmosphere
– volume: 145
  start-page: 2876
  issue: 724
  year: 2019
  end-page: 2908
  article-title: Towards a more reliable historical reanalysis: Improvements for version 3 of the twentieth century reanalysis system
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 12
  start-page: 1573
  year: 2019
  end-page: 1600
  article-title: The Beijing climate center climate system model (BCC‐CSM): the main progress from CMIP5 to CMIP6
  publication-title: Geoscientific Model Development
– volume: 12
  start-page: 2727
  issue: 7
  year: 2019
  end-page: 2765
  article-title: Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6
  publication-title: Geoscientific Model Development
– volume: 11
  start-page: 4513
  issue: 12
  year: 2019
  end-page: 4558
  article-title: UKESM1: Description and evaluation of the U.K. Earth System Model
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 125
  year: 2020
  article-title: FIO‐ESM version 2.0: Model description and evaluation
  publication-title: Journal of Geophysical Research: Oceans
– volume: 13
  start-page: 2197
  year: 2020
  end-page: 2244
  article-title: Development of the MIROC‐ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks
  publication-title: Geoscientific Model Development
– volume: 19
  start-page: 3417
  issue: 5
  year: 2019
  end-page: 3432
  article-title: The importance of interactive chemistry for stratosphere–troposphere coupling
  publication-title: Atmospheric Chemistry and Physics
– year: 2020
– volume: 22
  start-page: 5346
  issue: 20
  year: 2009
  end-page: 5365
  article-title: Historical SAM variability. Part II: Twentieth‐century variability and trends from reconstructions, observations, and the IPCC AR4 models
  publication-title: Journal of Climate
– volume: 36
  issue: 15
  year: 2009
  article-title: Ozone hole and Southern Hemisphere climate change
  publication-title: Geophysical Research Letters
– volume: 45
  start-page: 964
  issue: 2
  year: 2018
  end-page: 973
  article-title: Artifacts in century‐length atmospheric and coupled reanalyzes over Antarctica due to historical data availability
  publication-title: Geophysical Research Letters
– volume: 11
  start-page: 2177
  year: 2019
  end-page: 2213
  article-title: Evaluation of CMIP6 DECK experiments with CNRMCM61
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 19
  start-page: 2896
  issue: 12
  year: 2006
  end-page: 2905
  article-title: Contributions of external forcings to Southern Annular Mode trends
  publication-title: Journal of Climate
– volume: 12
  year: 2020
  article-title: GISS‐E2.1: Configurations and climatology
  publication-title: Journal of Advances in Modelling Earth Systems
– volume: 7
  start-page: 4537
  issue: 17
  year: 2007
  end-page: 4552
  article-title: A new formulation of equivalent effective stratospheric chlorine (EESC)
  publication-title: Atmospheric Chemistry and Physics
– volume: 115
  issue: D3
  year: 2010
  article-title: Impact of stratospheric ozone on southern hemisphere circulation change: A multimodel assessment
  publication-title: Journal of Geophysical Research: Atmosphere
– volume: 10
  start-page: 2057
  year: 2017
  end-page: 2116
  article-title: Historical greenhouse gas concentrations for climate modelling (CMIP6)
  publication-title: Geoscientific Model Development
– volume: 4
  start-page: 741
  year: 2011
  end-page: 749
  article-title: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change
  publication-title: Nature Geoscience
– year: 2013
– ident: e_1_2_10_55_1
  doi: 10.5194/esd‐9‐1235‐2018
– ident: e_1_2_10_41_1
  doi: 10.5194/gmd‐2019‐378
– ident: e_1_2_10_15_1
  doi: 10.1002/wcc.652
– ident: e_1_2_10_9_1
  doi: 10.1029/2019MS001916
– ident: e_1_2_10_39_1
  doi: 10.5194/acp‐7‐4537‐2007
– ident: e_1_2_10_8_1
  doi: 10.1007/s13351‐019‐8074‐5
– ident: e_1_2_10_44_1
  doi: 10.1029/2019MS001791
– ident: e_1_2_10_6_1
  doi: 10.1029/2019MS002010
– ident: e_1_2_10_37_1
  doi: 10.1029/2017MS001217
– ident: e_1_2_10_29_1
  doi: 10.1007/s13143-019-00144-7
– ident: e_1_2_10_59_1
  doi: 10.5194/gmd‐13‐3465‐2020
– ident: e_1_2_10_33_1
  doi: 10.5194/gmd‐10‐639‐2017
– ident: e_1_2_10_49_1
  doi: 10.1029/2009GL038671
– ident: e_1_2_10_53_1
  doi: 10.1038/ngeo1296
– ident: e_1_2_10_34_1
  doi: 10.1029/2020GL088295
– ident: e_1_2_10_42_1
  doi: 10.1029/2019MS001739
– ident: e_1_2_10_46_1
  doi: 10.1002/qj.3598
– ident: e_1_2_10_2_1
  doi: 10.1175/JCLI3937.1
– ident: e_1_2_10_28_1
  doi: 10.1029/2018MS001273
– ident: e_1_2_10_14_1
  doi: 10.1175/JCLI‐D‐17‐0879.1
– ident: e_1_2_10_32_1
  doi: 10.5194/gmd‐10‐2057‐2017
– ident: e_1_2_10_51_1
  doi: 10.1175/JCLI‐D‐15‐0334.1
– ident: e_1_2_10_43_1
  doi: 10.1029/2019MS002009
– ident: e_1_2_10_36_1
  doi: 10.1002/2014GL062140
– ident: e_1_2_10_61_1
  doi: 10.1071/ES19035
– ident: e_1_2_10_24_1
  doi: 10.1029/2019MS001829
– ident: e_1_2_10_5_1
  doi: 10.22033/ESGF/CMIP6.10894
– ident: e_1_2_10_10_1
  doi: 10.1002/2014JD023009
– ident: e_1_2_10_4_1
  doi: 10.1029/2019JC016036
– ident: e_1_2_10_7_1
  doi: 10.1002/2017GL076770
– ident: e_1_2_10_16_1
  doi: 10.1175/2009JCLI2786.1
– ident: e_1_2_10_17_1
  doi: 10.1029/2019JD030943
– ident: e_1_2_10_23_1
  doi: 10.5194/gmd‐13‐2197‐2020
– ident: e_1_2_10_11_1
  doi: 10.1029/2019MS002015
– ident: e_1_2_10_48_1
  doi: 10.1088/1748‐9326/aabf21
– ident: e_1_2_10_12_1
  doi: 10.1002/jgrd.50316
– ident: e_1_2_10_54_1
  doi: 10.1029/2019MS001683
– ident: e_1_2_10_30_1
  doi: 10.12006/j.issn.1673‐1719.2019.166
– ident: e_1_2_10_58_1
  doi: 10.5194/gmd‐13‐977‐2020
– ident: e_1_2_10_31_1
  doi: 10.1175/1520‐0442(2003)016⟨4134:TITSAM⟩2.0.CO;2
– ident: e_1_2_10_47_1
  doi: 10.1029/2010JD014271
– ident: e_1_2_10_27_1
  doi: 10.1029/2019MS002025
– ident: e_1_2_10_20_1
  doi: 10.1029/1999GL900003
– ident: e_1_2_10_38_1
– ident: e_1_2_10_56_1
  doi: 10.1002/2017MS001115
– ident: e_1_2_10_21_1
  doi: 10.5194/acp-20-14043-2020
– ident: e_1_2_10_52_1
  doi: 10.5194/gmd‐12‐2727‐2019
– ident: e_1_2_10_13_1
  doi: 10.5194/gmd‐9‐1937‐2016
– ident: e_1_2_10_40_1
  doi: 10.1002/2017GL076226
– ident: e_1_2_10_3_1
  doi: 10.1175/JCLI3774.1
– ident: e_1_2_10_26_1
  doi: 10.1126/science.1202131
– ident: e_1_2_10_35_1
  doi: 10.5194/acp‐18‐1091‐2018
– volume-title: Global stratospheric temperature bias and other stratospheric aspects of ERA5 and ERA5.1
  year: 2020
  ident: e_1_2_10_45_1
– ident: e_1_2_10_19_1
  doi: 10.1029/2018ms001603
– ident: e_1_2_10_18_1
  doi: 10.1002/grl.50249
– ident: e_1_2_10_60_1
  doi: 10.2151/jmsj.2019‐051
– ident: e_1_2_10_50_1
  doi: 10.5194/gmd‐12‐4823‐2019
– ident: e_1_2_10_25_1
  doi: 10.1175/1520‐0477(1996)077⟨0437:TNYRP⟩2.0.CO;2
– ident: e_1_2_10_22_1
  doi: 10.5194/acp‐19‐3417‐2019
– ident: e_1_2_10_57_1
  doi: 10.5194/gmd‐12‐1573‐2019
SSID ssj0000803454
Score 2.2123926
Snippet I analyze trends in the Southern Annular Mode (SAM) in CMIP6 simulations. For the period 1957–2014, simulated linear trends are generally consistent with two...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms attribution
CMIP6
greenhouse gases
ozone
SAM
Southern Annular Mode
Title The Southern Annular Mode in 6th Coupled Model Intercomparison Project Models
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020JD034161
Volume 126
WOSCitedRecordID wos000629772000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2169-8996
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000803454
  issn: 2169-897X
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2169-8996
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000803454
  issn: 2169-897X
  databaseCode: DRFUL
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA6iHrz4W5w_Rg7qRYNLmjTJUTanjm2M4XC3kaYpDko3us2_3yStZR4UxGPb11KS95Lvvb5-HwBXItGO10shGjGNKGMJkoRrhEnMQomFVLGf6S7v98V4LAdlwc39C1PwQ1QFNxcZfr12Aa6iRUk24Dgybdbe6LQagUPodgnG1Mfl20u_KrFYMBRQr4NGcCiRkHxctr7bJ9yv3_9tU1oHqX6Xae_99_32wW6JL-FD4RAHYMNkh6DWs9B4lvsKOryBzXRqcao_OgI96yjQC-mZPIOObt_mutBJpMFpBsPlO2zOVvPUxP5cCn0JUVfqhXBQlHKKq4tjMGo_vjafUamxgLQdG44oIVowbfNrgzVTJqHCKYjZGRJS85BbfEBiiUkSY4JNIBinWicJVVoYTFUUnIDNbJaZUwBjrQIVNCKeyIjimKjAmkqqJCeGGZnUwO3XIE90SUDudDDSif8QTuRkfchq4LqynhfEGz_Y3flZ-NVo0nkatljIJT_7m_k52CGuicU18IUXYHOZr8wl2NYfy-kir4Ot1rA96ta9230C1IfTqQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT8IwFD5RMNEX70a89kF90UXatev6aEBEBEIIJLwtpesiCRmEi7_ftpsEHzQxPm47aZZzTtevp2ffB3ATJsryekmPDpnyKGOJJwhXHiYxCwQOhYxdpJu83Q4HA9HJdU7tvzAZP8Sq4GZnhvte2wluC9I524AlyTTb9nKjWvYtRN-EIjWZxApQrHZr_eaqzGIAkU-dFhrBgfBCwQd5-7sZ5HF9iG8L0zpQdStNbe_f77gPuznIRE9ZVhzAhk4PodQy-Hgyc2V0dIcq45EBq-7qCFomW5BT09OzFFnOfbPhRVYnDY1SFCzeUWWynI517O6NkasjqpWEIepk9Zzs6fwY-rXnXqXu5UILnjLO4R4lRIVMmU22xopJndDQyoiZMIVC8YAbkEBigUkSY4K1cTOnSiUJlSrUmMqhfwKFdJLqU0Cxkr70y0OeiCHFMZG-MRVUCk400yIpwf2XlyOVs5BbMYxx5E7DiYjWXVaC25X1NGPf-MHuwYXhV6Oo8dKtsoALfvY382vYrvdazaj52n47hx1iu1psR19wAYXFbKkvYUt9LEbz2VWefZ_8ENdV
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4UjPHibyP-7EG96CLt2rU9GhAVgRAiCbeldG0kIYMM8O-37SbBgybG47aXZmnfW7_3-vZ9AFxxoxyvlwzIkKqAUGoCgZkKEE5oJBAXMvEr3WKdDh8MRLfQOXX_wuT8EMuCm4sM_712Aa6niSnYBhxJpk3bq816NXQQfR2UCRWRjcxyvdfot5ZlFguIQuK10DCKRMAFGxTt73aQ-9Uhvm1Mq0DV7zSNnX-_4y7YLkAmfMi9Yg-s6XQfVNoWH08yX0aHN7A2Hlmw6q8OQNt6C_RqejpLoePctwkvdDppcJTCaP4Oa5PFdKwTf28MfR1RLSUMYTev5-RPZ4eg33h8qz0HhdBCoOzksIBgrDhVNsnWSFGpDeFORswuExeKRcyCBJwIhE2CMNIhp4woZQyRimtE5DA8AqV0kupjABMlQxlWh8yIIUEJlqE1FUQKhjXVwlTA7dcsx6pgIXdiGOPYn4ZjEa9OWQVcL62nOfvGD3Z3fhl-NYqbT706jZhgJ38zvwSb3Xojbr10Xk_BFnZNLa6hLzoDpXm20OdgQ33MR7PsonC-T7-51tA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Southern+Annular+Mode+in+6th+Coupled+Model+Intercomparison+Project+Models&rft.jtitle=Journal+of+geophysical+research.+Atmospheres&rft.au=Morgenstern%2C+O.&rft.date=2021-03-16&rft.issn=2169-897X&rft.eissn=2169-8996&rft.volume=126&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2020JD034161&rft.externalDBID=10.1029%252F2020JD034161&rft.externalDocID=JGRD56797
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-897X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-897X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-897X&client=summon