The Southern Annular Mode in 6th Coupled Model Intercomparison Project Models
I analyze trends in the Southern Annular Mode (SAM) in CMIP6 simulations. For the period 1957–2014, simulated linear trends are generally consistent with two observational references but seasonally in disagreement with two other representations of the SAM. Using a regression analysis applied to mode...
Uloženo v:
| Vydáno v: | Journal of geophysical research. Atmospheres Ročník 126; číslo 5 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
16.03.2021
|
| Témata: | |
| ISSN: | 2169-897X, 2169-8996 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | I analyze trends in the Southern Annular Mode (SAM) in CMIP6 simulations. For the period 1957–2014, simulated linear trends are generally consistent with two observational references but seasonally in disagreement with two other representations of the SAM. Using a regression analysis applied to model simulations with interactive ozone chemistry, a strengthening of the SAM in summer is attributed nearly completely to ozone depletion because a further strengthening influence due to long‐lived greenhouse gases is almost fully counterbalanced by a weakening influence due to stratospheric ozone increases associated with these greenhouse gas increases. Ignoring such ozone feedbacks would yield comparable contributions from these two influences, an incorrect result. In winter, trends are smaller but an influence of greenhouse gas‐mediated ozone feedbacks is also identified. The regression analysis furthermore yields significant differences in the attribution of SAM changes to the two influences between models with and without interactive ozone chemistry, with ozone depletion and GHG increases playing seasonally a stronger and weaker, respectively, role in the chemistry models versus the no‐chemistry ones.
Plain Language Summary
The Southern Annular Mode consists of a see‐saw of atmospheric mass between southern middle and high latitudes. It is subject to human influences due to ozone loss (esp. the ozone hole) and global warming. Here I show, using a regression analysis performed on simulations recently produced by present‐generation climate models, that the ozone loss influence is dominant in summer because the influence of global warming is largely offset by the impact on the mode of stratospheric mid‐ and high‐latitude ozone increases caused by greenhouse gas increases, causing a weakening. Models simulating ozone as part of chemistry schemes on average show a larger influence on the mode due to ozone loss and a smaller influence of greenhouse gases than models that prescribe ozone. The results suggest that only relying on such “no‐chemistry” models for the attribution of trends in the mode can lead to incorrect results.
Key Points
The influences of ozone changes and greenhouses gases on the Southern Annular Mode are analyzed in CMIP6 simulations
Ozone depletion exerts a stronger and GHGs a weaker influence on the Southern Annular Mode (SAM) in chemistry versus no‐chemistry models
Three sensitivity experiments are explained considering an impact of GHGs onto the SAM resulting from ozone changes |
|---|---|
| AbstractList | I analyze trends in the Southern Annular Mode (SAM) in CMIP6 simulations. For the period 1957–2014, simulated linear trends are generally consistent with two observational references but seasonally in disagreement with two other representations of the SAM. Using a regression analysis applied to model simulations with interactive ozone chemistry, a strengthening of the SAM in summer is attributed nearly completely to ozone depletion because a further strengthening influence due to long‐lived greenhouse gases is almost fully counterbalanced by a weakening influence due to stratospheric ozone increases associated with these greenhouse gas increases. Ignoring such ozone feedbacks would yield comparable contributions from these two influences, an incorrect result. In winter, trends are smaller but an influence of greenhouse gas‐mediated ozone feedbacks is also identified. The regression analysis furthermore yields significant differences in the attribution of SAM changes to the two influences between models with and without interactive ozone chemistry, with ozone depletion and GHG increases playing seasonally a stronger and weaker, respectively, role in the chemistry models versus the no‐chemistry ones.
The Southern Annular Mode consists of a see‐saw of atmospheric mass between southern middle and high latitudes. It is subject to human influences due to ozone loss (esp. the ozone hole) and global warming. Here I show, using a regression analysis performed on simulations recently produced by present‐generation climate models, that the ozone loss influence is dominant in summer because the influence of global warming is largely offset by the impact on the mode of stratospheric mid‐ and high‐latitude ozone increases caused by greenhouse gas increases, causing a weakening. Models simulating ozone as part of chemistry schemes on average show a larger influence on the mode due to ozone loss and a smaller influence of greenhouse gases than models that prescribe ozone. The results suggest that only relying on such “no‐chemistry” models for the attribution of trends in the mode can lead to incorrect results.
The influences of ozone changes and greenhouses gases on the Southern Annular Mode are analyzed in CMIP6 simulations
Ozone depletion exerts a stronger and GHGs a weaker influence on the Southern Annular Mode (SAM) in chemistry versus no‐chemistry models
Three sensitivity experiments are explained considering an impact of GHGs onto the SAM resulting from ozone changes I analyze trends in the Southern Annular Mode (SAM) in CMIP6 simulations. For the period 1957–2014, simulated linear trends are generally consistent with two observational references but seasonally in disagreement with two other representations of the SAM. Using a regression analysis applied to model simulations with interactive ozone chemistry, a strengthening of the SAM in summer is attributed nearly completely to ozone depletion because a further strengthening influence due to long‐lived greenhouse gases is almost fully counterbalanced by a weakening influence due to stratospheric ozone increases associated with these greenhouse gas increases. Ignoring such ozone feedbacks would yield comparable contributions from these two influences, an incorrect result. In winter, trends are smaller but an influence of greenhouse gas‐mediated ozone feedbacks is also identified. The regression analysis furthermore yields significant differences in the attribution of SAM changes to the two influences between models with and without interactive ozone chemistry, with ozone depletion and GHG increases playing seasonally a stronger and weaker, respectively, role in the chemistry models versus the no‐chemistry ones. Plain Language Summary The Southern Annular Mode consists of a see‐saw of atmospheric mass between southern middle and high latitudes. It is subject to human influences due to ozone loss (esp. the ozone hole) and global warming. Here I show, using a regression analysis performed on simulations recently produced by present‐generation climate models, that the ozone loss influence is dominant in summer because the influence of global warming is largely offset by the impact on the mode of stratospheric mid‐ and high‐latitude ozone increases caused by greenhouse gas increases, causing a weakening. Models simulating ozone as part of chemistry schemes on average show a larger influence on the mode due to ozone loss and a smaller influence of greenhouse gases than models that prescribe ozone. The results suggest that only relying on such “no‐chemistry” models for the attribution of trends in the mode can lead to incorrect results. Key Points The influences of ozone changes and greenhouses gases on the Southern Annular Mode are analyzed in CMIP6 simulations Ozone depletion exerts a stronger and GHGs a weaker influence on the Southern Annular Mode (SAM) in chemistry versus no‐chemistry models Three sensitivity experiments are explained considering an impact of GHGs onto the SAM resulting from ozone changes |
| Author | Morgenstern, O. |
| Author_xml | – sequence: 1 givenname: O. orcidid: 0000-0002-9967-9740 surname: Morgenstern fullname: Morgenstern, O. email: olaf.morgenstern@niwa.co.nz organization: National Institute of Water and Atmospheric Research (NIWA) |
| BookMark | eNp9kNFKAzEQRYNUsNa--QH5AFeTbHY3eSyt1pYWRSv4tqTZWZqyTUqSIv17V1dEBJ2XGWbOnQv3HPWss4DQJSXXlDB5wwgj8wlJOc3pCeozmstESJn3vufi9QwNQ9iStkQLZryPlqsN4Gd3iBvwFo-sPTTK46WrABuL87jBY3fYN1B97ho8sxG8dru98iY4ix-924KO3TVcoNNaNQGGX32AXu5uV-P7ZPEwnY1Hi0S3rkXCGdMi07BmQHWmoOZCA0lVlQupi7xghLJKUlZXlFFIRVZwreuaKy2AcrVOB-iq-6u9C8FDXe692Sl_LCkpP9Iof6bR4uwXrk1U0TgbvTLNX6K0E72ZBo7_GpTz6dMkywtZpO-MvHJJ |
| CitedBy_id | crossref_primary_10_1029_2022AV000833 crossref_primary_10_5194_acp_21_5777_2021 crossref_primary_10_5194_gmd_18_4399_2025 crossref_primary_10_1029_2021GL095376 crossref_primary_10_1002_joc_7447 crossref_primary_10_1029_2022JD036452 crossref_primary_10_1007_s00376_024_4350_0 crossref_primary_10_1029_2022GL098252 crossref_primary_10_1071_ES22015 |
| Cites_doi | 10.5194/esd‐9‐1235‐2018 10.5194/gmd‐2019‐378 10.1002/wcc.652 10.1029/2019MS001916 10.5194/acp‐7‐4537‐2007 10.1007/s13351‐019‐8074‐5 10.1029/2019MS001791 10.1029/2019MS002010 10.1029/2017MS001217 10.1007/s13143-019-00144-7 10.5194/gmd‐13‐3465‐2020 10.5194/gmd‐10‐639‐2017 10.1029/2009GL038671 10.1038/ngeo1296 10.1029/2020GL088295 10.1029/2019MS001739 10.1002/qj.3598 10.1175/JCLI3937.1 10.1029/2018MS001273 10.1175/JCLI‐D‐17‐0879.1 10.5194/gmd‐10‐2057‐2017 10.1175/JCLI‐D‐15‐0334.1 10.1029/2019MS002009 10.1002/2014GL062140 10.1071/ES19035 10.1029/2019MS001829 10.22033/ESGF/CMIP6.10894 10.1002/2014JD023009 10.1029/2019JC016036 10.1002/2017GL076770 10.1175/2009JCLI2786.1 10.1029/2019JD030943 10.5194/gmd‐13‐2197‐2020 10.1029/2019MS002015 10.1088/1748‐9326/aabf21 10.1002/jgrd.50316 10.1029/2019MS001683 10.12006/j.issn.1673‐1719.2019.166 10.5194/gmd‐13‐977‐2020 10.1175/1520‐0442(2003)016⟨4134:TITSAM⟩2.0.CO;2 10.1029/2010JD014271 10.1029/2019MS002025 10.1029/1999GL900003 10.1002/2017MS001115 10.5194/acp-20-14043-2020 10.5194/gmd‐12‐2727‐2019 10.5194/gmd‐9‐1937‐2016 10.1002/2017GL076226 10.1175/JCLI3774.1 10.1126/science.1202131 10.5194/acp‐18‐1091‐2018 10.1029/2018ms001603 10.1002/grl.50249 10.2151/jmsj.2019‐051 10.5194/gmd‐12‐4823‐2019 10.1175/1520‐0477(1996)077⟨0437:TNYRP⟩2.0.CO;2 10.5194/acp‐19‐3417‐2019 10.5194/gmd‐12‐1573‐2019 |
| ContentType | Journal Article |
| Copyright | 2021. American Geophysical Union. All Rights Reserved. |
| Copyright_xml | – notice: 2021. American Geophysical Union. All Rights Reserved. |
| DBID | AAYXX CITATION |
| DOI | 10.1029/2020JD034161 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| EISSN | 2169-8996 |
| EndPage | n/a |
| ExternalDocumentID | 10_1029_2020JD034161 JGRD56797 |
| Genre | article |
| GrantInformation_xml | – fundername: Ministry for Business Innovation and Employment (MBIE) funderid: CACV2105 |
| GroupedDBID | 05W 0R~ 1OC 24P 33P 50Y 52M 5VS 702 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZFZN AZVAB BFHJK BMXJE BRXPI DPXWK DRFUL DRSTM EBS G-S HGLYW HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- P2W R.K RNS ROL SUPJJ WBKPD WIN WXSBR WYJ ~OA AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION |
| ID | FETCH-LOGICAL-c3457-422c85ceb2e1c5aef48ce03ad689c7672012d912fd121e38574ccff4ac8e14ab3 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000629772000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-897X |
| IngestDate | Tue Nov 18 21:00:07 EST 2025 Sat Nov 29 05:39:08 EST 2025 Wed Jan 22 16:29:49 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3457-422c85ceb2e1c5aef48ce03ad689c7672012d912fd121e38574ccff4ac8e14ab3 |
| ORCID | 0000-0002-9967-9740 |
| PageCount | 20 |
| ParticipantIDs | crossref_primary_10_1029_2020JD034161 crossref_citationtrail_10_1029_2020JD034161 wiley_primary_10_1029_2020JD034161_JGRD56797 |
| PublicationCentury | 2000 |
| PublicationDate | 16 March 2021 |
| PublicationDateYYYYMMDD | 2021-03-16 |
| PublicationDate_xml | – month: 03 year: 2021 text: 16 March 2021 day: 16 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of geophysical research. Atmospheres |
| PublicationYear | 2021 |
| References | 2009; 22 2020; 20 2019; 97 2019; 33 2019; 11 2013; 40 2019; 12 2015; 120 1999; 26 2019; 15 2019; 124 2019; 19 2006; 19 2003; 16 2020; 13 2020; 12 2020; 56 2020; 11 2020; 125 2018; 45 2014; 41 2011; 4 2011; 332 2019; 145 1996; 77 2018; 18 2009; 36 2018; 9 2015; 28 2020; 2020 2020 2017; 10 2010; 115 2020; 70 2013; 118 2019 2020; 47 2007; 7 2013 2018; 10 2018; 31 2016; 9 2018; 13 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 Simmons A. (e_1_2_10_45_1) 2020 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_60_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
| References_xml | – volume: 12 year: 2020 article-title: The Community Earth System Model version 2 (CESM2) publication-title: Journal of Advances in Modeling Earth Systems – volume: 10 start-page: 1172 issue: 5 year: 2018 end-page: 1195 article-title: CERA‐20C: A coupled reanalysis of the twentieth century publication-title: Journal of Advances in Modeling Earth Systems – volume: 70 start-page: 193 issue: 1 year: 2020 end-page: 214 article-title: The Australian earth system model: ACCESS‐ESM1.5 publication-title: Journal of Southern Hemisphere Earth Systems Science – volume: 26 start-page: 459 issue: 4 year: 1999 end-page: 462 article-title: Definition of Antarctic oscillation index publication-title: Geophysical Research Letters – volume: 11 issue: 4 year: 2020 article-title: The Southern Annular Mode: Variability, trends, and climate impacts across the Southern Hemisphere publication-title: WIREs Climate Change – volume: 28 start-page: 8840 year: 2015 end-page: 8859 article-title: Comparing trends in the Southern Annular Mode and surface westerly jet publication-title: Journal of Climate – volume: 77 start-page: 437 issue: 3 year: 1996 end-page: 472 article-title: The NCEP/NCAR 40‐year reanalysis project publication-title: Bulletin of the American Meteorological Society – volume: 11 start-page: 4182 issue: 12 year: 2019 end-page: 4227 article-title: Evaluation of CNRM Earth System Model, CNRM‐ESM2‐1: Role of Earth system processes in present‐day and future climate publication-title: Journal of Advances in Modeling Earth Systems – volume: 45 start-page: 3264 issue: 7 year: 2018 end-page: 3273 article-title: Historical tropospheric and stratospheric ozone radiative forcing using the CMIP6 database publication-title: Geophysical Research Letters – volume: 12 start-page: 4823 issue: 11 year: 2019 end-page: 4873 article-title: The Canadian earth system model version 5 (CanESM5.0.3) publication-title: Geoscientific Model Development – volume: 31 start-page: 3865 issue: 10 year: 2018 end-page: 3874 article-title: A new monthly pressure dataset poleward of 60S since 1957 publication-title: Journal of Climate – volume: 118 start-page: 5029 issue: 10 year: 2013 end-page: 5060 article-title: Long‐term ozone changes and associated climate impacts in CMIP5 simulations publication-title: Journal of Geophysical Research: Atmosphere – volume: 9 start-page: 1235 year: 2018 end-page: 1242 article-title: Simulation of observed climate changes in 18502014 with climate model INM‐CM5 publication-title: Earth System Dynamics – volume: 15 start-page: 545 year: 2019 end-page: 550 article-title: The Community Integrated Earth System Model (CIESM) from Tsinghua University and its plan for CMIP6 experiments publication-title: Climate Change Research – volume: 13 start-page: 3465 issue: 8 year: 2020 end-page: 3474 article-title: On the increased climate sensitivity in the EC‐Earth model from CMIP5 to CMIP6 publication-title: Geoscientific Model Development – volume: 20 start-page: 14043 year: 2020 end-page: 14061 article-title: Sensitivity of the Southern Hemisphere circumpolar jet response to Antarctic ozone depletion: prescribed versus interactive chemistry publication-title: Atmospheric Chemistry and Physics – volume: 332 start-page: 951 issue: 6032 year: 2011 end-page: 954 article-title: Impact of polar ozone depletion on subtropical precipitation publication-title: Science – volume: 13 start-page: 977 year: 2020 end-page: 1005 article-title: Beijing climate center earth system model version 1 (BCC‐ESM1): Model description and evaluation of aerosol simulations publication-title: Geoscientific Model Development – volume: 124 start-page: 12380 issue: 23 year: 2019 end-page: 12403 article-title: The Whole Atmosphere Community Climate Model version 6 (WACCM6) publication-title: Journal of Geophysical Research: Atmosphere – volume: 12 issue: 9 year: 2020 article-title: Simulations for CMIP6 with the AWI climate model AWI‐CM‐1‐1 publication-title: Journal of Advances in Modeling Earth Systems – volume: 12 year: 2020 article-title: The GFDL Earth System Model version 4.1 (GFDL‐ESM4.1): Overall coupled model description and simulation characteristics publication-title: Journal of Advances in Modeling Earth Systems – volume: 12 issue: 7 year: 2020 article-title: Presentation and evaluation of the IPSL‐CM6A‐LR climate model publication-title: Journal of Advances in Modeling Earth Systems – volume: 40 start-page: 1189 issue: 6 year: 2013 end-page: 1193 article-title: Annular mode changes in the CMIP5 simulations publication-title: Geophysical Research Letters – year: 2019 article-title: NCC NorCPM1 model output prepared for CMIP6 CMIP historical publication-title: Earth System Grid Federation – volume: 10 start-page: 357 issue: 2 year: 2018 end-page: 380 article-title: The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) configurations publication-title: Journal of Advances in Modeling Earth Systems – volume: 47 issue: 20 year: 2020 article-title: Reappraisal of the climate impacts of ozone‐depleting substances publication-title: Geophysical Research Letters – volume: 11 start-page: 3691 year: 2019 end-page: 3727 article-title: Structure and performance of GFDL's CM4.0 climate model publication-title: Journal of Advances in Modeling Earth Systems – volume: 2020 start-page: 1 year: 2020 end-page: 68 article-title: The Norwegian Earth System Model, NorESM2 evaluation of the CMIP6 DECK and historical simulations publication-title: Geoscientific Model Development – volume: 13 issue: 5 year: 2018 article-title: Tropospheric jet response to Antarctic ozone depletion: An update with chemistry‐climate model initiative (CCMI) models publication-title: Environmental Research Letters – volume: 41 start-page: 9050 issue: 24 year: 2014 end-page: 9057 article-title: Direct and ozone‐mediated forcing of the southern annular mode by greenhouse gases publication-title: Geophysical Research Letters – volume: 10 start-page: 1383 issue: 7 year: 2018 end-page: 1413 article-title: A higher‐resolution version of the Max Planck Institute Earth System Model (MPI‐ESM1.2‐HR) publication-title: Journal of Advances in Modeling Earth Systems – volume: 18 start-page: 1091 year: 2018 end-page: 1114 article-title: Ozone sensitivity to varying greenhouse gases and ozone‐depleting substances in CCMI‐1 simulations publication-title: Atmospheric Chemistry and Physics – volume: 11 start-page: 2089 year: 2019 end-page: 2129 article-title: The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution publication-title: Journal of Advances in Modeling Earth Systems – volume: 56 start-page: 381 year: 2020 end-page: 395 article-title: Evaluation of the Korea Meteorological Administration Advanced Community Earth‐system model (K‐ACE) publication-title: Asia‐Pacific Journal of Atmosspheric Science – volume: 16 start-page: 4134 issue: 24 year: 2003 end-page: 4143 article-title: Trends in the Southern Annular Mode from observations and reanalyses publication-title: Journal of Climate – volume: 97 year: 2019 article-title: The Meteorological Research Institute Earth System Model Version 2.0, MRI‐ESM2.0: Description and basic evaluation of the physical component publication-title: Journal of the Meteorological Society of Japan – volume: 10 start-page: 639 year: 2017 end-page: 671 article-title: Review of the global models used within phase 1 of the Chemistry‐Climate Model Initiative (CCMI) publication-title: Geoscientific Model Development – volume: 19 start-page: 5816 year: 2006 end-page: 5842 article-title: A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004 publication-title: Journal of Climate – volume: 33 start-page: 31 year: 2019 end-page: 45 article-title: Climate sensitivity and feedbacks of a new coupled model CAMS‐CSM to idealized CO forcing: A comparison with CMIP5 models publication-title: Journal of Meteorological Research – volume: 9 start-page: 1937 issue: 5 year: 2016 end-page: 1958 article-title: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization publication-title: Geoscientific Model Development – volume: 120 start-page: 6305 issue: 13 year: 2015 end-page: 6312 article-title: The effect of ozone depletion on the Southern Annular Mode and stratosphere‐troposphere coupling publication-title: Journal of Geophysical Research: Atmosphere – volume: 145 start-page: 2876 issue: 724 year: 2019 end-page: 2908 article-title: Towards a more reliable historical reanalysis: Improvements for version 3 of the twentieth century reanalysis system publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 12 start-page: 1573 year: 2019 end-page: 1600 article-title: The Beijing climate center climate system model (BCC‐CSM): the main progress from CMIP5 to CMIP6 publication-title: Geoscientific Model Development – volume: 12 start-page: 2727 issue: 7 year: 2019 end-page: 2765 article-title: Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6 publication-title: Geoscientific Model Development – volume: 11 start-page: 4513 issue: 12 year: 2019 end-page: 4558 article-title: UKESM1: Description and evaluation of the U.K. Earth System Model publication-title: Journal of Advances in Modeling Earth Systems – volume: 125 year: 2020 article-title: FIO‐ESM version 2.0: Model description and evaluation publication-title: Journal of Geophysical Research: Oceans – volume: 13 start-page: 2197 year: 2020 end-page: 2244 article-title: Development of the MIROC‐ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks publication-title: Geoscientific Model Development – volume: 19 start-page: 3417 issue: 5 year: 2019 end-page: 3432 article-title: The importance of interactive chemistry for stratosphere–troposphere coupling publication-title: Atmospheric Chemistry and Physics – year: 2020 – volume: 22 start-page: 5346 issue: 20 year: 2009 end-page: 5365 article-title: Historical SAM variability. Part II: Twentieth‐century variability and trends from reconstructions, observations, and the IPCC AR4 models publication-title: Journal of Climate – volume: 36 issue: 15 year: 2009 article-title: Ozone hole and Southern Hemisphere climate change publication-title: Geophysical Research Letters – volume: 45 start-page: 964 issue: 2 year: 2018 end-page: 973 article-title: Artifacts in century‐length atmospheric and coupled reanalyzes over Antarctica due to historical data availability publication-title: Geophysical Research Letters – volume: 11 start-page: 2177 year: 2019 end-page: 2213 article-title: Evaluation of CMIP6 DECK experiments with CNRMCM61 publication-title: Journal of Advances in Modeling Earth Systems – volume: 19 start-page: 2896 issue: 12 year: 2006 end-page: 2905 article-title: Contributions of external forcings to Southern Annular Mode trends publication-title: Journal of Climate – volume: 12 year: 2020 article-title: GISS‐E2.1: Configurations and climatology publication-title: Journal of Advances in Modelling Earth Systems – volume: 7 start-page: 4537 issue: 17 year: 2007 end-page: 4552 article-title: A new formulation of equivalent effective stratospheric chlorine (EESC) publication-title: Atmospheric Chemistry and Physics – volume: 115 issue: D3 year: 2010 article-title: Impact of stratospheric ozone on southern hemisphere circulation change: A multimodel assessment publication-title: Journal of Geophysical Research: Atmosphere – volume: 10 start-page: 2057 year: 2017 end-page: 2116 article-title: Historical greenhouse gas concentrations for climate modelling (CMIP6) publication-title: Geoscientific Model Development – volume: 4 start-page: 741 year: 2011 end-page: 749 article-title: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change publication-title: Nature Geoscience – year: 2013 – ident: e_1_2_10_55_1 doi: 10.5194/esd‐9‐1235‐2018 – ident: e_1_2_10_41_1 doi: 10.5194/gmd‐2019‐378 – ident: e_1_2_10_15_1 doi: 10.1002/wcc.652 – ident: e_1_2_10_9_1 doi: 10.1029/2019MS001916 – ident: e_1_2_10_39_1 doi: 10.5194/acp‐7‐4537‐2007 – ident: e_1_2_10_8_1 doi: 10.1007/s13351‐019‐8074‐5 – ident: e_1_2_10_44_1 doi: 10.1029/2019MS001791 – ident: e_1_2_10_6_1 doi: 10.1029/2019MS002010 – ident: e_1_2_10_37_1 doi: 10.1029/2017MS001217 – ident: e_1_2_10_29_1 doi: 10.1007/s13143-019-00144-7 – ident: e_1_2_10_59_1 doi: 10.5194/gmd‐13‐3465‐2020 – ident: e_1_2_10_33_1 doi: 10.5194/gmd‐10‐639‐2017 – ident: e_1_2_10_49_1 doi: 10.1029/2009GL038671 – ident: e_1_2_10_53_1 doi: 10.1038/ngeo1296 – ident: e_1_2_10_34_1 doi: 10.1029/2020GL088295 – ident: e_1_2_10_42_1 doi: 10.1029/2019MS001739 – ident: e_1_2_10_46_1 doi: 10.1002/qj.3598 – ident: e_1_2_10_2_1 doi: 10.1175/JCLI3937.1 – ident: e_1_2_10_28_1 doi: 10.1029/2018MS001273 – ident: e_1_2_10_14_1 doi: 10.1175/JCLI‐D‐17‐0879.1 – ident: e_1_2_10_32_1 doi: 10.5194/gmd‐10‐2057‐2017 – ident: e_1_2_10_51_1 doi: 10.1175/JCLI‐D‐15‐0334.1 – ident: e_1_2_10_43_1 doi: 10.1029/2019MS002009 – ident: e_1_2_10_36_1 doi: 10.1002/2014GL062140 – ident: e_1_2_10_61_1 doi: 10.1071/ES19035 – ident: e_1_2_10_24_1 doi: 10.1029/2019MS001829 – ident: e_1_2_10_5_1 doi: 10.22033/ESGF/CMIP6.10894 – ident: e_1_2_10_10_1 doi: 10.1002/2014JD023009 – ident: e_1_2_10_4_1 doi: 10.1029/2019JC016036 – ident: e_1_2_10_7_1 doi: 10.1002/2017GL076770 – ident: e_1_2_10_16_1 doi: 10.1175/2009JCLI2786.1 – ident: e_1_2_10_17_1 doi: 10.1029/2019JD030943 – ident: e_1_2_10_23_1 doi: 10.5194/gmd‐13‐2197‐2020 – ident: e_1_2_10_11_1 doi: 10.1029/2019MS002015 – ident: e_1_2_10_48_1 doi: 10.1088/1748‐9326/aabf21 – ident: e_1_2_10_12_1 doi: 10.1002/jgrd.50316 – ident: e_1_2_10_54_1 doi: 10.1029/2019MS001683 – ident: e_1_2_10_30_1 doi: 10.12006/j.issn.1673‐1719.2019.166 – ident: e_1_2_10_58_1 doi: 10.5194/gmd‐13‐977‐2020 – ident: e_1_2_10_31_1 doi: 10.1175/1520‐0442(2003)016⟨4134:TITSAM⟩2.0.CO;2 – ident: e_1_2_10_47_1 doi: 10.1029/2010JD014271 – ident: e_1_2_10_27_1 doi: 10.1029/2019MS002025 – ident: e_1_2_10_20_1 doi: 10.1029/1999GL900003 – ident: e_1_2_10_38_1 – ident: e_1_2_10_56_1 doi: 10.1002/2017MS001115 – ident: e_1_2_10_21_1 doi: 10.5194/acp-20-14043-2020 – ident: e_1_2_10_52_1 doi: 10.5194/gmd‐12‐2727‐2019 – ident: e_1_2_10_13_1 doi: 10.5194/gmd‐9‐1937‐2016 – ident: e_1_2_10_40_1 doi: 10.1002/2017GL076226 – ident: e_1_2_10_3_1 doi: 10.1175/JCLI3774.1 – ident: e_1_2_10_26_1 doi: 10.1126/science.1202131 – ident: e_1_2_10_35_1 doi: 10.5194/acp‐18‐1091‐2018 – volume-title: Global stratospheric temperature bias and other stratospheric aspects of ERA5 and ERA5.1 year: 2020 ident: e_1_2_10_45_1 – ident: e_1_2_10_19_1 doi: 10.1029/2018ms001603 – ident: e_1_2_10_18_1 doi: 10.1002/grl.50249 – ident: e_1_2_10_60_1 doi: 10.2151/jmsj.2019‐051 – ident: e_1_2_10_50_1 doi: 10.5194/gmd‐12‐4823‐2019 – ident: e_1_2_10_25_1 doi: 10.1175/1520‐0477(1996)077⟨0437:TNYRP⟩2.0.CO;2 – ident: e_1_2_10_22_1 doi: 10.5194/acp‐19‐3417‐2019 – ident: e_1_2_10_57_1 doi: 10.5194/gmd‐12‐1573‐2019 |
| SSID | ssj0000803454 |
| Score | 2.2123926 |
| Snippet | I analyze trends in the Southern Annular Mode (SAM) in CMIP6 simulations. For the period 1957–2014, simulated linear trends are generally consistent with two... |
| SourceID | crossref wiley |
| SourceType | Enrichment Source Index Database Publisher |
| SubjectTerms | attribution CMIP6 greenhouse gases ozone SAM Southern Annular Mode |
| Title | The Southern Annular Mode in 6th Coupled Model Intercomparison Project Models |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020JD034161 |
| Volume | 126 |
| WOSCitedRecordID | wos000629772000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2169-8996 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000803454 issn: 2169-897X databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2169-8996 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000803454 issn: 2169-897X databaseCode: DRFUL dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA6iHrz4W5w_Rg7qRYNLmjTJUTanjm2M4XC3kaYpDko3us2_3yStZR4UxGPb11KS95Lvvb5-HwBXItGO10shGjGNKGMJkoRrhEnMQomFVLGf6S7v98V4LAdlwc39C1PwQ1QFNxcZfr12Aa6iRUk24Dgybdbe6LQagUPodgnG1Mfl20u_KrFYMBRQr4NGcCiRkHxctr7bJ9yv3_9tU1oHqX6Xae_99_32wW6JL-FD4RAHYMNkh6DWs9B4lvsKOryBzXRqcao_OgI96yjQC-mZPIOObt_mutBJpMFpBsPlO2zOVvPUxP5cCn0JUVfqhXBQlHKKq4tjMGo_vjafUamxgLQdG44oIVowbfNrgzVTJqHCKYjZGRJS85BbfEBiiUkSY4JNIBinWicJVVoYTFUUnIDNbJaZUwBjrQIVNCKeyIjimKjAmkqqJCeGGZnUwO3XIE90SUDudDDSif8QTuRkfchq4LqynhfEGz_Y3flZ-NVo0nkatljIJT_7m_k52CGuicU18IUXYHOZr8wl2NYfy-kir4Ot1rA96ta9230C1IfTqQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT8IwFD5RMNEX70a89kF90UXatev6aEBEBEIIJLwtpesiCRmEi7_ftpsEHzQxPm47aZZzTtevp2ffB3ATJsryekmPDpnyKGOJJwhXHiYxCwQOhYxdpJu83Q4HA9HJdU7tvzAZP8Sq4GZnhvte2wluC9I524AlyTTb9nKjWvYtRN-EIjWZxApQrHZr_eaqzGIAkU-dFhrBgfBCwQd5-7sZ5HF9iG8L0zpQdStNbe_f77gPuznIRE9ZVhzAhk4PodQy-Hgyc2V0dIcq45EBq-7qCFomW5BT09OzFFnOfbPhRVYnDY1SFCzeUWWynI517O6NkasjqpWEIepk9Zzs6fwY-rXnXqXu5UILnjLO4R4lRIVMmU22xopJndDQyoiZMIVC8YAbkEBigUkSY4K1cTOnSiUJlSrUmMqhfwKFdJLqU0Cxkr70y0OeiCHFMZG-MRVUCk400yIpwf2XlyOVs5BbMYxx5E7DiYjWXVaC25X1NGPf-MHuwYXhV6Oo8dKtsoALfvY382vYrvdazaj52n47hx1iu1psR19wAYXFbKkvYUt9LEbz2VWefZ_8ENdV |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4UjPHibyP-7EG96CLt2rU9GhAVgRAiCbeldG0kIYMM8O-37SbBgybG47aXZmnfW7_3-vZ9AFxxoxyvlwzIkKqAUGoCgZkKEE5oJBAXMvEr3WKdDh8MRLfQOXX_wuT8EMuCm4sM_712Aa6niSnYBhxJpk3bq816NXQQfR2UCRWRjcxyvdfot5ZlFguIQuK10DCKRMAFGxTt73aQ-9Uhvm1Mq0DV7zSNnX-_4y7YLkAmfMi9Yg-s6XQfVNoWH08yX0aHN7A2Hlmw6q8OQNt6C_RqejpLoePctwkvdDppcJTCaP4Oa5PFdKwTf28MfR1RLSUMYTev5-RPZ4eg33h8qz0HhdBCoOzksIBgrDhVNsnWSFGpDeFORswuExeKRcyCBJwIhE2CMNIhp4woZQyRimtE5DA8AqV0kupjABMlQxlWh8yIIUEJlqE1FUQKhjXVwlTA7dcsx6pgIXdiGOPYn4ZjEa9OWQVcL62nOfvGD3Z3fhl-NYqbT706jZhgJ38zvwSb3Xojbr10Xk_BFnZNLa6hLzoDpXm20OdgQ33MR7PsonC-T7-51tA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Southern+Annular+Mode+in+6th+Coupled+Model+Intercomparison+Project+Models&rft.jtitle=Journal+of+geophysical+research.+Atmospheres&rft.au=Morgenstern%2C+O.&rft.date=2021-03-16&rft.issn=2169-897X&rft.eissn=2169-8996&rft.volume=126&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2020JD034161&rft.externalDBID=10.1029%252F2020JD034161&rft.externalDocID=JGRD56797 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-897X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-897X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-897X&client=summon |