Topological Recursion and Uncoupled BPS Structures II: Voros Symbols and the τ-Function

We continue our study of the correspondence between BPS structures and topological recursion in the uncoupled case, this time from the viewpoint of quantum curves. For spectral curves of hypergeometric type, we show the Borel-resummed Voros symbols of the corresponding quantum curves solve Bridgelan...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Communications in mathematical physics Ročník 399; číslo 1; s. 519 - 572
Hlavní autoři: Iwaki, Kohei, Kidwai, Omar
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2023
Springer Nature B.V
Témata:
ISSN:0010-3616, 1432-0916
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We continue our study of the correspondence between BPS structures and topological recursion in the uncoupled case, this time from the viewpoint of quantum curves. For spectral curves of hypergeometric type, we show the Borel-resummed Voros symbols of the corresponding quantum curves solve Bridgeland’s “BPS Riemann–Hilbert problem”. In particular, they satisfy the required jump property in agreement with the generalized definition of BPS indices Ω in our previous work. Furthermore, we observe the Voros coefficients define a closed one-form on the parameter space, and show that (log of) Bridgeland’s τ -function encoding the solution is none other than the corresponding potential, up to a constant. When the quantization parameter is set to a special value, this agrees with the Borel sum of the topological recursion partition function Z TR , up to a simple factor.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-022-04563-y