Approximating fixed points of enriched contractions in Banach spaces

We introduce a large class of contractive mappings, called enriched contractions, a class which includes, amongst many other contractive type mappings, the Picard–Banach contractions and some nonexpansive mappings. We show that any enriched contraction has a unique fixed point and that this fixed po...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Fixed point theory and algorithms for sciences and engineering Ročník 22; číslo 2; s. 38
Hlavní autori: Berinde, Vasile, Păcurar, Mădălina
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.06.2020
Springer Nature B.V
Predmet:
ISSN:1661-7738, 1661-7746, 2730-5422
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We introduce a large class of contractive mappings, called enriched contractions, a class which includes, amongst many other contractive type mappings, the Picard–Banach contractions and some nonexpansive mappings. We show that any enriched contraction has a unique fixed point and that this fixed point can be approximated by means of an appropriate Krasnoselskij iterative scheme. Several important results in fixed point theory are shown to be corollaries or consequences of the main results of this paper. We also study the fixed points of local enriched contractions, asymptotic enriched contractions and Maia-type enriched contractions. Examples to illustrate the generality of our new concepts and the corresponding fixed point theorems are also given.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1661-7738
1661-7746
2730-5422
DOI:10.1007/s11784-020-0769-9