Approximating fixed points of enriched contractions in Banach spaces
We introduce a large class of contractive mappings, called enriched contractions, a class which includes, amongst many other contractive type mappings, the Picard–Banach contractions and some nonexpansive mappings. We show that any enriched contraction has a unique fixed point and that this fixed po...
Uloženo v:
| Vydáno v: | Fixed point theory and algorithms for sciences and engineering Ročník 22; číslo 2; s. 38 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.06.2020
Springer Nature B.V |
| Témata: | |
| ISSN: | 1661-7738, 1661-7746, 2730-5422 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We introduce a large class of contractive mappings, called enriched contractions, a class which includes, amongst many other contractive type mappings, the Picard–Banach contractions and some nonexpansive mappings. We show that any enriched contraction has a unique fixed point and that this fixed point can be approximated by means of an appropriate Krasnoselskij iterative scheme. Several important results in fixed point theory are shown to be corollaries or consequences of the main results of this paper. We also study the fixed points of local enriched contractions, asymptotic enriched contractions and Maia-type enriched contractions. Examples to illustrate the generality of our new concepts and the corresponding fixed point theorems are also given. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1661-7738 1661-7746 2730-5422 |
| DOI: | 10.1007/s11784-020-0769-9 |