Automated construction of Wi-Fi-based indoor logical location predictor using crowd-sourced photos with Wi-Fi signals

Owing to the recent proliferation of smartphones and the SNS, a large number of images taken by smartphones at various places have been uploaded to SNSs. In addition, smartphones are equipped with various sensors such as Wi-Fi modules that enable us to generate an image associated with the sensory i...

Full description

Saved in:
Bibliographic Details
Published in:Pervasive and mobile computing Vol. 89; p. 101742
Main Authors: Kumrai, Teerawat, Korpela, Joseph, Zhang, Yizhe, Ohara, Kazuya, Murakami, Tomoki, Abeysekera, Hirantha, Maekawa, Takuya
Format: Journal Article
Language:English
Published: Elsevier B.V 01.02.2023
Subjects:
ISSN:1574-1192, 1873-1589
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Owing to the recent proliferation of smartphones and the SNS, a large number of images taken by smartphones at various places have been uploaded to SNSs. In addition, smartphones are equipped with various sensors such as Wi-Fi modules that enable us to generate an image associated with the sensory information that represents the context in which the image was captured. This study demonstrates the benefits of images associated with Wi-Fi signals in the automated construction of a Wi-Fi-based indoor logical location classifier that predicts a semantic location label of a user’s position for shopping complexes. In this study, a logical location class refers to the store class label in a shopping complex, such as Starbucks and H&M. Given a collection of images associated with Wi-Fi signals taken at a shopping complex and the complex’s floor plan, the proposed method first estimates the store label at which an image was taken by analyzing the image and crawled online images of branch stores. Then, the 2D coordinates of the images taken at branch stores on the floor coordinate system can be estimated using the floor plan. Subsequently, by using the Wi-Fi signals of the branch store images and their estimated 2D coordinates, we construct a transformation function that maps Wi-Fi signals onto the 2D coordinates, and we adopt this function to predict an indoor location class of an observed Wi-Fi scan from a smartphone possessed by an end user. The proposed transformation function comprises an ensemble of sub-functions designed based on CVAEs. Finally, we demonstrate the effectiveness of the proposed method for three actual shopping complexes.
AbstractList Owing to the recent proliferation of smartphones and the SNS, a large number of images taken by smartphones at various places have been uploaded to SNSs. In addition, smartphones are equipped with various sensors such as Wi-Fi modules that enable us to generate an image associated with the sensory information that represents the context in which the image was captured. This study demonstrates the benefits of images associated with Wi-Fi signals in the automated construction of a Wi-Fi-based indoor logical location classifier that predicts a semantic location label of a user’s position for shopping complexes. In this study, a logical location class refers to the store class label in a shopping complex, such as Starbucks and H&M. Given a collection of images associated with Wi-Fi signals taken at a shopping complex and the complex’s floor plan, the proposed method first estimates the store label at which an image was taken by analyzing the image and crawled online images of branch stores. Then, the 2D coordinates of the images taken at branch stores on the floor coordinate system can be estimated using the floor plan. Subsequently, by using the Wi-Fi signals of the branch store images and their estimated 2D coordinates, we construct a transformation function that maps Wi-Fi signals onto the 2D coordinates, and we adopt this function to predict an indoor location class of an observed Wi-Fi scan from a smartphone possessed by an end user. The proposed transformation function comprises an ensemble of sub-functions designed based on CVAEs. Finally, we demonstrate the effectiveness of the proposed method for three actual shopping complexes.
ArticleNumber 101742
Author Korpela, Joseph
Zhang, Yizhe
Murakami, Tomoki
Kumrai, Teerawat
Maekawa, Takuya
Ohara, Kazuya
Abeysekera, Hirantha
Author_xml – sequence: 1
  givenname: Teerawat
  orcidid: 0000-0002-0094-9545
  surname: Kumrai
  fullname: Kumrai, Teerawat
  organization: Osaka University, Suita, Osaka, Japan
– sequence: 2
  givenname: Joseph
  surname: Korpela
  fullname: Korpela, Joseph
  organization: Osaka University, Suita, Osaka, Japan
– sequence: 3
  givenname: Yizhe
  surname: Zhang
  fullname: Zhang, Yizhe
  organization: Osaka University, Suita, Osaka, Japan
– sequence: 4
  givenname: Kazuya
  surname: Ohara
  fullname: Ohara, Kazuya
  organization: NTT Communication Science Laboratories, Kyoto, Japan
– sequence: 5
  givenname: Tomoki
  surname: Murakami
  fullname: Murakami, Tomoki
  organization: NTT Access Network Service Systems Laboratories, Yokosuka, Japan
– sequence: 6
  givenname: Hirantha
  surname: Abeysekera
  fullname: Abeysekera, Hirantha
  organization: NTT Access Network Service Systems Laboratories, Yokosuka, Japan
– sequence: 7
  givenname: Takuya
  orcidid: 0000-0002-7227-580X
  surname: Maekawa
  fullname: Maekawa, Takuya
  email: takuya.maekawa@acm.org
  organization: Osaka University, Suita, Osaka, Japan
BookMark eNp9kMtKAzEUhoNUsK2-gKt5gam5zC3gphSrQsGN4jKkJ5k2w3QyJBmLb2-m48qFqz_kz3c4-RZo1tlOI3RP8IpgUjw0q_4EzYpiSseLMqNXaE6qkqUkr_gsnvMySwnh9AYtvG8wzkhW4jka1kOwJxm0SsB2PrgBgrFdYuvk06Rbk-6lj53plLUuae3BgGxjgrw8651WBkKsBm-6QwLOnlXq7eAgUv3RBuuTswnHaVrizaGTrb9F13UMffebS_SxfXrfvKS7t-fXzXqXAsuykGrOVFXUbE8lVjlRXCsOQEDiXBbAi5xyySlhVNOqpFDviaxYwXKQsSE1ZktUTXPjXt47XQsw4bJ5cNK0gmAx6hONGPWJUZ-Y9EWU_kF7Z07Sff8PPU6Qjp_6MtoJD0Z30YVxGoJQ1vyH_wAOgY2W
CitedBy_id crossref_primary_10_1016_j_adhoc_2024_103634
crossref_primary_10_3390_s23083952
Cites_doi 10.1109/TWC.2019.2957363
10.1145/2971648.2971710
10.1186/s41044-018-0031-2
10.1613/jair.953
10.1145/3264930
10.1145/3139243.3139254
10.1109/ACCESS.2019.2933921
10.3390/s20185182
10.1145/2971648.2971684
10.1145/3131903
10.1109/TVT.2014.2363842
10.1145/3284555
10.1109/LSENS.2017.2787651
10.1109/JSEN.2020.2980966
10.1109/TNSE.2018.2871165
10.1371/journal.pone.0090375
10.1145/1614320.1614350
10.1109/JSEN.2017.2660522
10.1145/2348543.2348580
10.1145/2750858.2804254
10.1145/3380979
10.1145/2370216.2370288
10.1016/j.buildenv.2018.05.026
10.3390/s17010147
10.1145/2634317.2634320
10.1145/2493432.2493504
10.1145/2667226
10.1109/JSEN.2021.3128517
10.1109/TWC.2021.3053582
10.3390/info12050180
10.1007/s12652-017-0549-6
10.1109/JSEN.2018.2885958
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.pmcj.2022.101742
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-1589
ExternalDocumentID 10_1016_j_pmcj_2022_101742
S1574119222001559
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c344t-e93d86f3b2a0d51d9ed9cc1ca05a6c96529a92132e2872cfb1a83635ca5291f03
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000962954900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1574-1192
IngestDate Tue Nov 18 21:54:01 EST 2025
Sat Nov 29 06:59:58 EST 2025
Tue Jul 16 04:30:59 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Convolutional variational autoencoder (CVAE)
Indoor logical location classifier
Wi-Fi RSS information
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-e93d86f3b2a0d51d9ed9cc1ca05a6c96529a92132e2872cfb1a83635ca5291f03
ORCID 0000-0002-0094-9545
0000-0002-7227-580X
OpenAccessLink https://dx.doi.org/10.1016/j.pmcj.2022.101742
ParticipantIDs crossref_citationtrail_10_1016_j_pmcj_2022_101742
crossref_primary_10_1016_j_pmcj_2022_101742
elsevier_sciencedirect_doi_10_1016_j_pmcj_2022_101742
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationTitle Pervasive and mobile computing
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wu, Chen, Lv, Han, Chen (b23) 2017; 1
Association (b4) 2010
Ha, Kim, Park, Kim (b10) 2018; 140
A. Rai, K.K. Chintalapudi, V.N. Padmanabhan, R. Sen, Zee: Zero-effort Crowdsourcing for Indoor Localization, in: 18th Annual International Conference on Mobile Computing and Networking, 2012, pp. 293–304.
Chawla, Bowyer, Hall, Kegelmeyer (b45) 2002; 16
Niu, Li, He, Gao, Gary Chan, Luo (b12) 2019; 15
Gunawan, Li, Gallagher, Dempster, Retscher (b40) 2012
Song, Fan, Xiang, Ye, Liu, Wang, He, Yang, Fang (b48) 2019; 7
Zhang, Pei, Deng (b33) 2016
Abbas, Elhamshary, Rizk, Torki, Youssef (b49) 2019
J.G. Rodrigues, J.P. Pereira, A. Aguiar, Impact of crowdsourced data quality on travel pattern estimation, in: First ACM Workshop on Mobile Crowdsensing Systems and Applications, 2017, pp. 38–43.
Mirowski, Ho, Yi, MacDonald (b30) 2013
Zhao, Wong, Feng, Garg (b38) 2019; 19
M. Azizyan, I. Constandache, R. Roy Choudhury, SurroundSense: mobile phone localization via ambience fingerprinting, in: MobiCom 2009, 2009, pp. 261–272.
Celik, Incel (b24) 2018; 9
Jedari, Wu, Rashidzadeh, Saif (b1) 2015
Gu, Blankenbach, Khoshelham, Grottke, Valaee (b35) 2019
Taniuchi, Maekawa (b39) 2015; 14
Zhou, Lapedriza, Khosla, Oliva, Torralba (b42) 2017
M. Fan, A.T. Adams, K.N. Truong, Public restroom detection on mobile phone via active probing, in: International Symposium on Wearable Computers (ISWC 2014), 2014, pp. 27–34.
Li, Zhao, Zhao, Braun (b37) 2021; 20
Nov, Arazy, Anderson (b5) 2014; 9
Yang, Qiu, Han, Yang (b22) 2020
Wang, Wang, Mao (b19) 2018; 7
Chidlovskii, Antsfeld (b46) 2019
Liang, Corso, Turner, Zakhor (b11) 2013
Rajab, Wang (b54) 2021; 22
Kim, Lee, Huang (b16) 2018; 3
M. Tachikawa, T. Maekawa, Y. Matsushita, Predicting location semantics combining active and passive sensing with environment-independent classifier, in: 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2016, pp. 220–231.
Zhou, Lapedriza, Xiao, Torralba, Oliva (b43) 2014; 27
Gong, Shroff (b50) 2018
Górak, Luckner (b2) 2016
Y. Chon, N.D. Lane, F. Li, H. Cha, F. Zhao, Automatically characterizing places with opportunistic crowdsensing using smartphones, in: 2012 ACM Conference on Ubiquitous Computing, 2012, pp. 481–490.
Lee, Moon, Lee, Han (b31) 2020; 20
Pérez-Penichet, Moreira (b52) 2014
Rizk, Torki, Youssef (b15) 2018; 19
Chan, Wu, Fu (b32) 2018
Li, Liu, Niu, Liu, Chan, Gao (b13) 2018; 2
Yang, Guo, Guo, Zhao, Zhao (b21) 2020; 20
Elbakly, Youssef (b28) 2020; 4
Hernández, Ocaña, Alonso, Kim (b36) 2017; 17
Jiang, He, Xi, Zeng (b7) 2021; 12
R. Palaniappan, P. Mirowski, T.K. Ho, H. Steck, P. Whiting, M. MacDonald, Autonomous RF Surveying Robot for Indoor Localization and Tracking, in: International Conference on Indoor Positioning and Indoor Navigation, 2011.
M. Shimosaka, O. Saisho, Efficient Calibration for RSSI-based Indoor Localization by Bayesian Experimental Design on Multi-task Classification, in: 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2016, pp. 244–249.
S. He, S.-H.G. Chan, L. Yu, N. Liu, Calibration-free Fusion of Step Counter and Wireless Fingerprints for Indoor Localization, in: 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2015, pp. 897–908.
Wang, Wang, Mao (b18) 2017
Khatab, Hajihoseini, Ghorashi (b14) 2017; 2
Xue, Qiu, Hua, Yu (b27) 2017; 17
Wen, Shi, Zhang, Tian, Huang, Yu, Cheng, Shen (b51) 2014; 64
Salamah, Tamazin, Sharkas, Khedr (b3) 2016
J. Krumm, D. Rouhana, Placer: semantic place labels from diary data, in: 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2013, pp. 163–172.
Dissanayake, Maekawa, Hara, Miyanishi, Kawanabe (b9) 2021
Kingma, Ba (b44) 2017
Turgut, Üstebay, Aydın, Sertbaş (b47) 2019
Liang (10.1016/j.pmcj.2022.101742_b11) 2013
Chan (10.1016/j.pmcj.2022.101742_b32) 2018
Lee (10.1016/j.pmcj.2022.101742_b31) 2020; 20
Zhou (10.1016/j.pmcj.2022.101742_b42) 2017
Turgut (10.1016/j.pmcj.2022.101742_b47) 2019
Celik (10.1016/j.pmcj.2022.101742_b24) 2018; 9
Yang (10.1016/j.pmcj.2022.101742_b22) 2020
10.1016/j.pmcj.2022.101742_b41
Ha (10.1016/j.pmcj.2022.101742_b10) 2018; 140
Rajab (10.1016/j.pmcj.2022.101742_b54) 2021; 22
Jedari (10.1016/j.pmcj.2022.101742_b1) 2015
Wang (10.1016/j.pmcj.2022.101742_b18) 2017
Yang (10.1016/j.pmcj.2022.101742_b21) 2020; 20
Chawla (10.1016/j.pmcj.2022.101742_b45) 2002; 16
Niu (10.1016/j.pmcj.2022.101742_b12) 2019; 15
Górak (10.1016/j.pmcj.2022.101742_b2) 2016
Hernández (10.1016/j.pmcj.2022.101742_b36) 2017; 17
Zhao (10.1016/j.pmcj.2022.101742_b38) 2019; 19
Pérez-Penichet (10.1016/j.pmcj.2022.101742_b52) 2014
Gong (10.1016/j.pmcj.2022.101742_b50) 2018
Zhou (10.1016/j.pmcj.2022.101742_b43) 2014; 27
Mirowski (10.1016/j.pmcj.2022.101742_b30) 2013
10.1016/j.pmcj.2022.101742_b34
Nov (10.1016/j.pmcj.2022.101742_b5) 2014; 9
10.1016/j.pmcj.2022.101742_b8
Wu (10.1016/j.pmcj.2022.101742_b23) 2017; 1
Association (10.1016/j.pmcj.2022.101742_b4) 2010
10.1016/j.pmcj.2022.101742_b6
Xue (10.1016/j.pmcj.2022.101742_b27) 2017; 17
Kingma (10.1016/j.pmcj.2022.101742_b44) 2017
Wen (10.1016/j.pmcj.2022.101742_b51) 2014; 64
Li (10.1016/j.pmcj.2022.101742_b37) 2021; 20
Gunawan (10.1016/j.pmcj.2022.101742_b40) 2012
Zhang (10.1016/j.pmcj.2022.101742_b33) 2016
Gu (10.1016/j.pmcj.2022.101742_b35) 2019
Chidlovskii (10.1016/j.pmcj.2022.101742_b46) 2019
Li (10.1016/j.pmcj.2022.101742_b13) 2018; 2
Khatab (10.1016/j.pmcj.2022.101742_b14) 2017; 2
Song (10.1016/j.pmcj.2022.101742_b48) 2019; 7
10.1016/j.pmcj.2022.101742_b20
Salamah (10.1016/j.pmcj.2022.101742_b3) 2016
10.1016/j.pmcj.2022.101742_b25
Elbakly (10.1016/j.pmcj.2022.101742_b28) 2020; 4
10.1016/j.pmcj.2022.101742_b29
Kim (10.1016/j.pmcj.2022.101742_b16) 2018; 3
10.1016/j.pmcj.2022.101742_b26
Abbas (10.1016/j.pmcj.2022.101742_b49) 2019
Wang (10.1016/j.pmcj.2022.101742_b19) 2018; 7
10.1016/j.pmcj.2022.101742_b53
Dissanayake (10.1016/j.pmcj.2022.101742_b9) 2021
10.1016/j.pmcj.2022.101742_b17
Taniuchi (10.1016/j.pmcj.2022.101742_b39) 2015; 14
Rizk (10.1016/j.pmcj.2022.101742_b15) 2018; 19
Jiang (10.1016/j.pmcj.2022.101742_b7) 2021; 12
References_xml – volume: 2
  start-page: 1
  year: 2017
  end-page: 4
  ident: b14
  article-title: A fingerprint method for indoor localization using autoencoder based deep extreme learning machine
  publication-title: IEEE Sens. Lett.
– reference: M. Shimosaka, O. Saisho, Efficient Calibration for RSSI-based Indoor Localization by Bayesian Experimental Design on Multi-task Classification, in: 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2016, pp. 244–249.
– start-page: 161
  year: 2018
  end-page: 170
  ident: b50
  article-title: Incentivizing truthful data quality for quality-aware mobile data crowdsourcing
  publication-title: Eighteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing
– volume: 17
  start-page: 147
  year: 2017
  ident: b36
  article-title: Continuous space estimation: Increasing WiFi-based indoor localization resolution without increasing the site-survey effort
  publication-title: Sensors
– start-page: 1
  year: 2012
  end-page: 6
  ident: b40
  article-title: A new method to generate and maintain a WiFi fingerprinting database automatically by using RFID
  publication-title: 2012 International Conference on Indoor Positioning and Indoor Navigation
– reference: Y. Chon, N.D. Lane, F. Li, H. Cha, F. Zhao, Automatically characterizing places with opportunistic crowdsensing using smartphones, in: 2012 ACM Conference on Ubiquitous Computing, 2012, pp. 481–490.
– volume: 27
  year: 2014
  ident: b43
  article-title: Learning deep features for scene recognition using places database
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 2
  year: 2018
  ident: b13
  article-title: SweepLoc: Automatic video-based indoor localization by camera sweeping
  publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
– year: 2017
  ident: b42
  article-title: Places: A 10 million image database for scene recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: R. Palaniappan, P. Mirowski, T.K. Ho, H. Steck, P. Whiting, M. MacDonald, Autonomous RF Surveying Robot for Indoor Localization and Tracking, in: International Conference on Indoor Positioning and Indoor Navigation, 2011.
– reference: M. Azizyan, I. Constandache, R. Roy Choudhury, SurroundSense: mobile phone localization via ambience fingerprinting, in: MobiCom 2009, 2009, pp. 261–272.
– volume: 4
  year: 2020
  ident: b28
  article-title: The StoryTeller: Scalable building- and AP-independent deep learning-based floor prediction
  publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
– year: 2010
  ident: b4
  article-title: Exchangeable image file format for digital still cameras: Exif version 2.3
  publication-title: CIPA DC-008 Translation-2010
– reference: S. He, S.-H.G. Chan, L. Yu, N. Liu, Calibration-free Fusion of Step Counter and Wireless Fingerprints for Indoor Localization, in: 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2015, pp. 897–908.
– volume: 7
  start-page: 110698
  year: 2019
  end-page: 110709
  ident: b48
  article-title: A novel convolutional neural network based indoor localization framework with WiFi fingerprinting
  publication-title: IEEE Access
– start-page: 1
  year: 2013
  end-page: 10
  ident: b30
  article-title: SignalSLAM: Simultaneous localization and mapping with mixed WiFi, bluetooth, LTE and magnetic signals
  publication-title: International Conference on Indoor Positioning and Indoor Navigation
– volume: 1
  year: 2017
  ident: b23
  article-title: Cost-sensitive semi-supervised personalized semantic place label recognition using multi-context data
  publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
– volume: 15
  start-page: 1
  year: 2019
  end-page: 31
  ident: b12
  article-title: Resource-efficient and automated image-based indoor localization
  publication-title: ACM Trans. Sensor Netw.
– volume: 20
  start-page: 5182
  year: 2020
  ident: b31
  article-title: Fusion of the SLAM with Wi-Fi-based positioning methods for mobile robot-based learning data collection, localization, and tracking in indoor spaces
  publication-title: Sensors
– start-page: 101
  year: 2019
  end-page: 110
  ident: b47
  article-title: Deep learning in indoor localization using WiFi
  publication-title: International Telecommunications Conference
– volume: 7
  start-page: 316
  year: 2018
  end-page: 327
  ident: b19
  article-title: Deep convolutional neural networks for indoor localization with CSI images
  publication-title: IEEE Trans. Netw. Sci. Eng.
– start-page: 272
  year: 2014
  end-page: 277
  ident: b52
  article-title: Analyzing the quality of crowd sensed WiFi data
  publication-title: 2014 IEEE International Conference on Pervasive Computing and Communication Workshops (PERCOM WORKSHOPS)
– start-page: 61
  year: 2016
  end-page: 67
  ident: b33
  article-title: GraphSLAM-based crowdsourcing framework for indoor Wi-Fi fingerprinting
  publication-title: 2016 Fourth International Conference on Ubiquitous Positioning, Indoor Navigation and Location Based Services
– volume: 20
  start-page: 3785
  year: 2021
  end-page: 3799
  ident: b37
  article-title: WiFi-RITA positioning: Enhanced crowdsourcing positioning based on massive noisy user traces
  publication-title: IEEE Trans. Wireless Commun.
– reference: M. Tachikawa, T. Maekawa, Y. Matsushita, Predicting location semantics combining active and passive sensing with environment-independent classifier, in: 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2016, pp. 220–231.
– year: 2017
  ident: b44
  article-title: Adam: A method for stochastic optimization
– volume: 9
  start-page: 2109
  year: 2018
  end-page: 2124
  ident: b24
  article-title: Semantic place prediction from crowd-sensed mobile phone data
  publication-title: J. Ambient Intell. Humaniz. Comput.
– reference: J.G. Rodrigues, J.P. Pereira, A. Aguiar, Impact of crowdsourced data quality on travel pattern estimation, in: First ACM Workshop on Mobile Crowdsensing Systems and Applications, 2017, pp. 38–43.
– reference: M. Fan, A.T. Adams, K.N. Truong, Public restroom detection on mobile phone via active probing, in: International Symposium on Wearable Computers (ISWC 2014), 2014, pp. 27–34.
– start-page: 1263
  year: 2018
  end-page: 1268
  ident: b32
  article-title: Robust 2D indoor localization through laser SLAM and visual slam fusion
  publication-title: 2018 IEEE International Conference on Systems, Man, and Cybernetics
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: b45
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: J. Artificial Intelligence Res.
– volume: 19
  start-page: 1770
  year: 2019
  end-page: 1785
  ident: b38
  article-title: Calibration-free indoor positioning using crowdsourced data and multidimensional scaling
  publication-title: IEEE Trans. Wireless Commun.
– volume: 140
  start-page: 23
  year: 2018
  end-page: 31
  ident: b10
  article-title: Image retrieval using BIM and features from pretrained VGG network for indoor localization
  publication-title: Build. Environ.
– volume: 14
  start-page: 1
  year: 2015
  end-page: 23
  ident: b39
  article-title: Automatic update of indoor location fingerprints with pedestrian dead reckoning
  publication-title: ACM Trans. Embedded Comput. Syst.
– start-page: 1
  year: 2019
  end-page: 10
  ident: b49
  article-title: Wideep: WiFi-based accurate and robust indoor localization system using deep learning
  publication-title: 2019 IEEE International Conference on Pervasive Computing and Communications (PerCom)
– year: 2021
  ident: b9
  article-title: IndoLabel: Predicting indoor location class by discovering location-specific sensor data motifs
  publication-title: IEEE Sens. J.
– volume: 19
  start-page: 2305
  year: 2018
  end-page: 2312
  ident: b15
  article-title: CellinDeep: Robust and accurate cellular-based indoor localization via deep learning
  publication-title: IEEE Sens. J.
– year: 2020
  ident: b22
  article-title: Received signal strength indicator-based indoor localization using distributed set-membership filtering
  publication-title: IEEE Trans. Cybern.
– volume: 12
  start-page: 180
  year: 2021
  ident: b7
  article-title: Machine-learning-based user position prediction and behavior analysis for location services
  publication-title: Information
– volume: 9
  year: 2014
  ident: b5
  article-title: Scientists@ Home: what drives the quantity and quality of online citizen science participation?
  publication-title: PLoS One
– volume: 20
  start-page: 8164
  year: 2020
  end-page: 8172
  ident: b21
  article-title: A novel trilateration algorithm for RSSI-based indoor localization
  publication-title: IEEE Sens. J.
– start-page: 147
  year: 2016
  end-page: 157
  ident: b2
  article-title: Modified random forest algorithm for wi–fi indoor localization system
  publication-title: International Conference on Computational Collective Intelligence
– volume: 64
  start-page: 4203
  year: 2014
  end-page: 4214
  ident: b51
  article-title: Quality-driven auction-based incentive mechanism for mobile crowd sensing
  publication-title: IEEE Trans. Veh. Technol.
– start-page: 1
  year: 2019
  end-page: 6
  ident: b35
  article-title: ZeeFi: Zero-effort floor identification with deep learning for indoor localization
  publication-title: 2019 IEEE Global Communications Conference
– reference: J. Krumm, D. Rouhana, Placer: semantic place labels from diary data, in: 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2013, pp. 163–172.
– start-page: 1
  year: 2015
  end-page: 5
  ident: b1
  article-title: Wi-Fi based indoor location positioning employing random forest classifier
  publication-title: 2015 International Conference on Indoor Positioning and Indoor Navigation
– start-page: 70
  year: 2013
  end-page: 75
  ident: b11
  article-title: Image based localization in indoor environments
  publication-title: 2013 Fourth International Conference on Computing for Geospatial Research and Application
– volume: 22
  start-page: 575
  year: 2021
  end-page: 588
  ident: b54
  article-title: Automatic radio map database maintenance and updating based on crowdsourced samples for indoor localization
  publication-title: IEEE Sens. J.
– start-page: 1
  year: 2017
  end-page: 6
  ident: b18
  article-title: CiFi: Deep convolutional neural networks for indoor localization with 5 GHz Wi-Fi
  publication-title: 2017 IEEE International Conference on Communications
– reference: A. Rai, K.K. Chintalapudi, V.N. Padmanabhan, R. Sen, Zee: Zero-effort Crowdsourcing for Indoor Localization, in: 18th Annual International Conference on Mobile Computing and Networking, 2012, pp. 293–304.
– start-page: 1
  year: 2016
  end-page: 8
  ident: b3
  article-title: An enhanced WiFi indoor localization system based on machine learning
  publication-title: 2016 International Conference on Indoor Positioning and Indoor Navigation
– volume: 3
  start-page: 1
  year: 2018
  end-page: 17
  ident: b16
  article-title: A scalable deep neural network architecture for multi-building and multi-floor indoor localization based on Wi-Fi fingerprinting
  publication-title: Big Data Anal.
– start-page: 1
  year: 2019
  end-page: 8
  ident: b46
  article-title: Semi-supervised variational autoencoder for Wifi indoor localization
  publication-title: 2019 International Conference on Indoor Positioning and Indoor Navigation
– volume: 17
  start-page: 2224
  year: 2017
  end-page: 2230
  ident: b27
  article-title: Improved Wi-Fi RSSI measurement for indoor localization
  publication-title: IEEE Sens. J.
– volume: 27
  year: 2014
  ident: 10.1016/j.pmcj.2022.101742_b43
  article-title: Learning deep features for scene recognition using places database
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 1
  year: 2019
  ident: 10.1016/j.pmcj.2022.101742_b49
  article-title: Wideep: WiFi-based accurate and robust indoor localization system using deep learning
– start-page: 1
  year: 2015
  ident: 10.1016/j.pmcj.2022.101742_b1
  article-title: Wi-Fi based indoor location positioning employing random forest classifier
– volume: 19
  start-page: 1770
  issue: 3
  year: 2019
  ident: 10.1016/j.pmcj.2022.101742_b38
  article-title: Calibration-free indoor positioning using crowdsourced data and multidimensional scaling
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2019.2957363
– ident: 10.1016/j.pmcj.2022.101742_b17
  doi: 10.1145/2971648.2971710
– volume: 3
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.pmcj.2022.101742_b16
  article-title: A scalable deep neural network architecture for multi-building and multi-floor indoor localization based on Wi-Fi fingerprinting
  publication-title: Big Data Anal.
  doi: 10.1186/s41044-018-0031-2
– year: 2020
  ident: 10.1016/j.pmcj.2022.101742_b22
  article-title: Received signal strength indicator-based indoor localization using distributed set-membership filtering
  publication-title: IEEE Trans. Cybern.
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.pmcj.2022.101742_b45
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: J. Artificial Intelligence Res.
  doi: 10.1613/jair.953
– volume: 2
  issue: 3
  year: 2018
  ident: 10.1016/j.pmcj.2022.101742_b13
  article-title: SweepLoc: Automatic video-based indoor localization by camera sweeping
  publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
  doi: 10.1145/3264930
– ident: 10.1016/j.pmcj.2022.101742_b53
  doi: 10.1145/3139243.3139254
– volume: 7
  start-page: 110698
  year: 2019
  ident: 10.1016/j.pmcj.2022.101742_b48
  article-title: A novel convolutional neural network based indoor localization framework with WiFi fingerprinting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2933921
– volume: 20
  start-page: 5182
  issue: 18
  year: 2020
  ident: 10.1016/j.pmcj.2022.101742_b31
  article-title: Fusion of the SLAM with Wi-Fi-based positioning methods for mobile robot-based learning data collection, localization, and tracking in indoor spaces
  publication-title: Sensors
  doi: 10.3390/s20185182
– ident: 10.1016/j.pmcj.2022.101742_b8
  doi: 10.1145/2971648.2971684
– start-page: 1
  year: 2012
  ident: 10.1016/j.pmcj.2022.101742_b40
  article-title: A new method to generate and maintain a WiFi fingerprinting database automatically by using RFID
– volume: 1
  issue: 3
  year: 2017
  ident: 10.1016/j.pmcj.2022.101742_b23
  article-title: Cost-sensitive semi-supervised personalized semantic place label recognition using multi-context data
  publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
  doi: 10.1145/3131903
– volume: 64
  start-page: 4203
  issue: 9
  year: 2014
  ident: 10.1016/j.pmcj.2022.101742_b51
  article-title: Quality-driven auction-based incentive mechanism for mobile crowd sensing
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2014.2363842
– year: 2021
  ident: 10.1016/j.pmcj.2022.101742_b9
  article-title: IndoLabel: Predicting indoor location class by discovering location-specific sensor data motifs
  publication-title: IEEE Sens. J.
– start-page: 61
  year: 2016
  ident: 10.1016/j.pmcj.2022.101742_b33
  article-title: GraphSLAM-based crowdsourcing framework for indoor Wi-Fi fingerprinting
– volume: 15
  start-page: 1
  issue: 2
  year: 2019
  ident: 10.1016/j.pmcj.2022.101742_b12
  article-title: Resource-efficient and automated image-based indoor localization
  publication-title: ACM Trans. Sensor Netw.
  doi: 10.1145/3284555
– volume: 2
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.pmcj.2022.101742_b14
  article-title: A fingerprint method for indoor localization using autoencoder based deep extreme learning machine
  publication-title: IEEE Sens. Lett.
  doi: 10.1109/LSENS.2017.2787651
– volume: 20
  start-page: 8164
  issue: 14
  year: 2020
  ident: 10.1016/j.pmcj.2022.101742_b21
  article-title: A novel trilateration algorithm for RSSI-based indoor localization
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.2980966
– volume: 7
  start-page: 316
  issue: 1
  year: 2018
  ident: 10.1016/j.pmcj.2022.101742_b19
  article-title: Deep convolutional neural networks for indoor localization with CSI images
  publication-title: IEEE Trans. Netw. Sci. Eng.
  doi: 10.1109/TNSE.2018.2871165
– year: 2017
  ident: 10.1016/j.pmcj.2022.101742_b44
– volume: 9
  issue: 4
  year: 2014
  ident: 10.1016/j.pmcj.2022.101742_b5
  article-title: Scientists@ Home: what drives the quantity and quality of online citizen science participation?
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0090375
– ident: 10.1016/j.pmcj.2022.101742_b6
  doi: 10.1145/1614320.1614350
– volume: 17
  start-page: 2224
  issue: 7
  year: 2017
  ident: 10.1016/j.pmcj.2022.101742_b27
  article-title: Improved Wi-Fi RSSI measurement for indoor localization
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2017.2660522
– start-page: 147
  year: 2016
  ident: 10.1016/j.pmcj.2022.101742_b2
  article-title: Modified random forest algorithm for wi–fi indoor localization system
– ident: 10.1016/j.pmcj.2022.101742_b34
  doi: 10.1145/2348543.2348580
– ident: 10.1016/j.pmcj.2022.101742_b20
  doi: 10.1145/2750858.2804254
– year: 2010
  ident: 10.1016/j.pmcj.2022.101742_b4
  article-title: Exchangeable image file format for digital still cameras: Exif version 2.3
– volume: 4
  issue: 1
  year: 2020
  ident: 10.1016/j.pmcj.2022.101742_b28
  article-title: The StoryTeller: Scalable building- and AP-independent deep learning-based floor prediction
  publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
  doi: 10.1145/3380979
– start-page: 70
  year: 2013
  ident: 10.1016/j.pmcj.2022.101742_b11
  article-title: Image based localization in indoor environments
– start-page: 1
  year: 2019
  ident: 10.1016/j.pmcj.2022.101742_b35
  article-title: ZeeFi: Zero-effort floor identification with deep learning for indoor localization
– ident: 10.1016/j.pmcj.2022.101742_b41
  doi: 10.1145/2370216.2370288
– volume: 140
  start-page: 23
  year: 2018
  ident: 10.1016/j.pmcj.2022.101742_b10
  article-title: Image retrieval using BIM and features from pretrained VGG network for indoor localization
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.05.026
– start-page: 1
  year: 2017
  ident: 10.1016/j.pmcj.2022.101742_b18
  article-title: CiFi: Deep convolutional neural networks for indoor localization with 5 GHz Wi-Fi
– volume: 17
  start-page: 147
  issue: 1
  year: 2017
  ident: 10.1016/j.pmcj.2022.101742_b36
  article-title: Continuous space estimation: Increasing WiFi-based indoor localization resolution without increasing the site-survey effort
  publication-title: Sensors
  doi: 10.3390/s17010147
– ident: 10.1016/j.pmcj.2022.101742_b26
  doi: 10.1145/2634317.2634320
– ident: 10.1016/j.pmcj.2022.101742_b25
  doi: 10.1145/2493432.2493504
– ident: 10.1016/j.pmcj.2022.101742_b29
– start-page: 1
  year: 2013
  ident: 10.1016/j.pmcj.2022.101742_b30
  article-title: SignalSLAM: Simultaneous localization and mapping with mixed WiFi, bluetooth, LTE and magnetic signals
– volume: 14
  start-page: 1
  issue: 2
  year: 2015
  ident: 10.1016/j.pmcj.2022.101742_b39
  article-title: Automatic update of indoor location fingerprints with pedestrian dead reckoning
  publication-title: ACM Trans. Embedded Comput. Syst.
  doi: 10.1145/2667226
– start-page: 101
  year: 2019
  ident: 10.1016/j.pmcj.2022.101742_b47
  article-title: Deep learning in indoor localization using WiFi
– volume: 22
  start-page: 575
  issue: 1
  year: 2021
  ident: 10.1016/j.pmcj.2022.101742_b54
  article-title: Automatic radio map database maintenance and updating based on crowdsourced samples for indoor localization
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3128517
– start-page: 1263
  year: 2018
  ident: 10.1016/j.pmcj.2022.101742_b32
  article-title: Robust 2D indoor localization through laser SLAM and visual slam fusion
– start-page: 161
  year: 2018
  ident: 10.1016/j.pmcj.2022.101742_b50
  article-title: Incentivizing truthful data quality for quality-aware mobile data crowdsourcing
– volume: 20
  start-page: 3785
  issue: 6
  year: 2021
  ident: 10.1016/j.pmcj.2022.101742_b37
  article-title: WiFi-RITA positioning: Enhanced crowdsourcing positioning based on massive noisy user traces
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2021.3053582
– volume: 12
  start-page: 180
  issue: 5
  year: 2021
  ident: 10.1016/j.pmcj.2022.101742_b7
  article-title: Machine-learning-based user position prediction and behavior analysis for location services
  publication-title: Information
  doi: 10.3390/info12050180
– year: 2017
  ident: 10.1016/j.pmcj.2022.101742_b42
  article-title: Places: A 10 million image database for scene recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 272
  year: 2014
  ident: 10.1016/j.pmcj.2022.101742_b52
  article-title: Analyzing the quality of crowd sensed WiFi data
– start-page: 1
  year: 2019
  ident: 10.1016/j.pmcj.2022.101742_b46
  article-title: Semi-supervised variational autoencoder for Wifi indoor localization
– volume: 9
  start-page: 2109
  issue: 6
  year: 2018
  ident: 10.1016/j.pmcj.2022.101742_b24
  article-title: Semantic place prediction from crowd-sensed mobile phone data
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-017-0549-6
– start-page: 1
  year: 2016
  ident: 10.1016/j.pmcj.2022.101742_b3
  article-title: An enhanced WiFi indoor localization system based on machine learning
– volume: 19
  start-page: 2305
  issue: 6
  year: 2018
  ident: 10.1016/j.pmcj.2022.101742_b15
  article-title: CellinDeep: Robust and accurate cellular-based indoor localization via deep learning
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2885958
SSID ssj0041470
Score 2.335979
Snippet Owing to the recent proliferation of smartphones and the SNS, a large number of images taken by smartphones at various places have been uploaded to SNSs. In...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101742
SubjectTerms Convolutional variational autoencoder (CVAE)
Indoor logical location classifier
Wi-Fi RSS information
Title Automated construction of Wi-Fi-based indoor logical location predictor using crowd-sourced photos with Wi-Fi signals
URI https://dx.doi.org/10.1016/j.pmcj.2022.101742
Volume 89
WOSCitedRecordID wos000962954900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-1589
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0041470
  issn: 1574-1192
  databaseCode: AIEXJ
  dateStart: 20050301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb5wwFLamSQ_toeqqppt86A0RYWMG-ziqEnWR0hym6vSEjG2UGU0AEUjT_JT-2j5jYJhpGzWHXhBizAPN-3ib34LQ24xJbuJU-jKl2mc81T7XhMHnngkNGhvc3KwdNhGfnPDFQpxOJj_7WpjLdZzn_OpKlP-V1XANmG1LZ2_B7oEoXIBzYDocge1w_CfGz5q6ADPU2HK1TXtYaxR-XfrH4AqD3rINl3RRVF4v-axKa5eVld25AUfca1w9Lrjp2nchfu2VZ0VddAVxLTXP5n_I9cXYxj21cd42K94G5c-LFARPm7re1L2edLndlRuFPTemkt_lkH_zqbBbQnK0P7Eb3P62vD4bAPnZtpx2iSHXzQ85DmPQsM983kjemPmEiC3R7KYLdbLVCg_Xies3se8iEKvD8lytwOen9HCzeLvH9o7uGzIS-2S3VWJpJJZG4mjcQfs0jgRIzP3Zh6PFx17PM8LaUYTDi3clWS57cPdN_mz2jEyZ-UP0oPNB8Mxh5xGamPwxuj_qTPkENQOK8BhFuMjwCEXYoQh3KMI9ivCAItyiCG-hCDsUYYsiRw13KHqKvhwfzd-997sJHb4KGat9I0LNp1mYUhnoiGhhtFCKKBlEcqrENKJCCkpCasAxpypLieQhmLhKwi8kC8JnaC8vcvMc4SkH19kISZSmLOKBCERmjWuuwelmWh4g0v-Biera19spKuvk76w7QN5wT-mat9y4Our5knTmpzMrE4DZDfe9uNVTXqJ7G_i_QnvAQPMa3VWX9fKietNh7BdcOqql
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+construction+of+Wi-Fi-based+indoor+logical+location+predictor+using+crowd-sourced+photos+with+Wi-Fi+signals&rft.jtitle=Pervasive+and+mobile+computing&rft.au=Kumrai%2C+Teerawat&rft.au=Korpela%2C+Joseph&rft.au=Zhang%2C+Yizhe&rft.au=Ohara%2C+Kazuya&rft.date=2023-02-01&rft.issn=1574-1192&rft.volume=89&rft.spage=101742&rft_id=info:doi/10.1016%2Fj.pmcj.2022.101742&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_pmcj_2022_101742
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-1192&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-1192&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-1192&client=summon