Dynamic personalized human body energy expenditure: Prediction using time series forecasting LSTM models
•Dynamic modeling of energy expenditure can capture transient thermoregulation and food intake effect.•LSTM networks promise high accuracy of time-series data prediction and capturing patterns.•Adequate accuracy of dynamic EE prediction should be within 5–10 % of MAPE.•The ensemble of CNN-LSTM and L...
Saved in:
| Published in: | Biomedical signal processing and control Vol. 87; p. 105381 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.01.2024
|
| Subjects: | |
| ISSN: | 1746-8094, 1746-8108 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Dynamic modeling of energy expenditure can capture transient thermoregulation and food intake effect.•LSTM networks promise high accuracy of time-series data prediction and capturing patterns.•Adequate accuracy of dynamic EE prediction should be within 5–10 % of MAPE.•The ensemble of CNN-LSTM and LGBM models can lead to the high accuracy of personalized EE prediction.•Personalized modeling architecture and features selection can lead to capturing transient EE effects in individuals.
Dynamic human energy expenditure (EE) consists of energy costs for resting metabolism, food digestion, physical activity, and thermoregulation. Currently, multiple models predict EE mainly concerning physical activity, thus, discarding other factors contributing to the dynamic variation of EE. This paper aimed to demonstrate that (i) a dynamic human body EE prediction requires the time series approach, (ii) personalization of input features and models can outperform the generalized approach. To achieve these objectives, data were collected from 3 sets of experiments with 6 test subjects wearing multiple sensors. The analysis of features' importance showed that the selection of features varies for activity-dominated and non-activity-dominated cases and also varies between individuals. Long-Short Term Memory (LSTM) networks were used to develop personalized models such as a simple LSTM, a convolutional LSTM (CNN-LSTM), and also an ensemble model combining CNN-LSTM with a Gradient Boosting algorithm (LSTM-LGBM). A personalized autoregressive linear model and a generalized approach of the LSTM-LGBM method were also developed to have a base of comparison. The results show that the personalized models provide good prediction accuracy, with the mean absolute percentage error (MAPE) mostly lying in the range of 5–15 %. The CNN-LSTM outperforms a simple LSTM model by 3–5 % in MAPE values, and the ensemble model outperforms the by 5–8 % the simple LSTM. The personalized modeling approach with LSTM has shown the potential to improve the prediction accuracy of dynamic EE and capture the non-activity-related effects such as thermoregulation and postprandial thermogenesis. |
|---|---|
| AbstractList | •Dynamic modeling of energy expenditure can capture transient thermoregulation and food intake effect.•LSTM networks promise high accuracy of time-series data prediction and capturing patterns.•Adequate accuracy of dynamic EE prediction should be within 5–10 % of MAPE.•The ensemble of CNN-LSTM and LGBM models can lead to the high accuracy of personalized EE prediction.•Personalized modeling architecture and features selection can lead to capturing transient EE effects in individuals.
Dynamic human energy expenditure (EE) consists of energy costs for resting metabolism, food digestion, physical activity, and thermoregulation. Currently, multiple models predict EE mainly concerning physical activity, thus, discarding other factors contributing to the dynamic variation of EE. This paper aimed to demonstrate that (i) a dynamic human body EE prediction requires the time series approach, (ii) personalization of input features and models can outperform the generalized approach. To achieve these objectives, data were collected from 3 sets of experiments with 6 test subjects wearing multiple sensors. The analysis of features' importance showed that the selection of features varies for activity-dominated and non-activity-dominated cases and also varies between individuals. Long-Short Term Memory (LSTM) networks were used to develop personalized models such as a simple LSTM, a convolutional LSTM (CNN-LSTM), and also an ensemble model combining CNN-LSTM with a Gradient Boosting algorithm (LSTM-LGBM). A personalized autoregressive linear model and a generalized approach of the LSTM-LGBM method were also developed to have a base of comparison. The results show that the personalized models provide good prediction accuracy, with the mean absolute percentage error (MAPE) mostly lying in the range of 5–15 %. The CNN-LSTM outperforms a simple LSTM model by 3–5 % in MAPE values, and the ensemble model outperforms the by 5–8 % the simple LSTM. The personalized modeling approach with LSTM has shown the potential to improve the prediction accuracy of dynamic EE and capture the non-activity-related effects such as thermoregulation and postprandial thermogenesis. |
| ArticleNumber | 105381 |
| Author | Chatterjee, Arnab Khovalyg, Dolaana Perez Cortes, Victoria M. |
| Author_xml | – sequence: 1 givenname: Victoria M. surname: Perez Cortes fullname: Perez Cortes, Victoria M. – sequence: 2 givenname: Arnab orcidid: 0000-0001-6593-8479 surname: Chatterjee fullname: Chatterjee, Arnab – sequence: 3 givenname: Dolaana orcidid: 0000-0001-6064-2513 surname: Khovalyg fullname: Khovalyg, Dolaana email: dolaana.khovalyg@epfl.ch |
| BookMark | eNp9kF1LwzAUhoNMcJv-Aa_yBzqTpk0z8UbmJ0wUnNchTU63jDYpSSfOX2_L9MaLXb2HF54D7zNBI-cdIHRJyYwSyq-2szK2epaSlPVFzgQ9QWNaZDwRlIjR303m2RmaxLglJBMFzcZoc7d3qrEatxCid6q232DwZtcoh0tv9hgchHUfXy04Y7tdgGv8FsBY3Vnv8C5at8adbQBHCBYirnwArWI39Mv31QtuvIE6nqPTStURLn5zij4e7leLp2T5-vi8uF0mmmVZl8CccaILpkVKlQCmOFOUlmAKbXJaMW14yTjjJScsZZqmPM-oznllWClKzdkUpYe_OvgYA1SyDbZRYS8pkYMruZWDKzm4kgdXPST-Qdp2ahjYBWXr4-jNAe03wqeFIKO24HRvqPfQSePtMfwHFpGI_w |
| CitedBy_id | crossref_primary_10_1016_j_rineng_2025_106512 crossref_primary_10_1108_AEAT_12_2024_0358 crossref_primary_10_3390_su17020500 crossref_primary_10_1016_j_buildenv_2025_112944 |
| Cites_doi | 10.1053/beem.2002.0227 10.1109/HealthCom.2015.7454554 10.20463/jenb.2018.0013 10.1038/s41598-022-23975-3 10.1080/02640414.2020.1746088 10.1113/jphysiol.1949.sp004363 10.1097/00005768-200009001-00008 10.1109/POWERCON53785.2021.9697619 10.1016/j.clnu.2018.05.026 10.1016/j.bspc.2007.09.001 10.1097/00005768-200009001-00003 10.3390/electronics5030048 10.1002/oby.23454 10.1109/JSEN.2020.3000772 10.1016/j.buildenv.2023.110114 10.1007/s00421-017-3670-5 10.1016/j.neucom.2021.02.046 10.1007/s00421-010-1672-7 10.1016/j.engappai.2023.106310 10.1016/j.jtherbio.2018.12.014 10.1088/0967-3334/37/10/1770 10.1109/JBHI.2015.2432911 10.1136/bjsports-2018-099643 10.1111/obr.12505 10.1109/I-SMAC49090.2020.9243376 10.1210/clinem/dgab654 10.1097/00005768-200009001-00002 10.1249/MSS.0b013e318299d2eb |
| ContentType | Journal Article |
| Copyright | 2023 The Author(s) |
| Copyright_xml | – notice: 2023 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.bspc.2023.105381 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1746-8108 |
| ExternalDocumentID | 10_1016_j_bspc_2023_105381 S1746809423008145 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6I. 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c344t-e9360c73c821a8e3a63a11bed7cd51f3cd6b3636b60323c126541c56fd3b8bc63 |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001074799100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1746-8094 |
| IngestDate | Tue Nov 18 22:32:20 EST 2025 Sat Nov 29 06:59:40 EST 2025 Fri Feb 23 02:33:54 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Recurrent neural networks Machine learning Time series Human energy expenditure Wearable sensing Dynamic metabolism Personalized model |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c344t-e9360c73c821a8e3a63a11bed7cd51f3cd6b3636b60323c126541c56fd3b8bc63 |
| ORCID | 0000-0001-6064-2513 0000-0001-6593-8479 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.bspc.2023.105381 |
| ParticipantIDs | crossref_primary_10_1016_j_bspc_2023_105381 crossref_citationtrail_10_1016_j_bspc_2023_105381 elsevier_sciencedirect_doi_10_1016_j_bspc_2023_105381 |
| PublicationCentury | 2000 |
| PublicationDate | January 2024 2024-01-00 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: January 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Biomedical signal processing and control |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Welk, Blair, Wood, Jones, Thompson (b0065) 2000; 32 Pallubinsky, Schellen, van Marken Lichtenbelt (b0030) 2019; 79 Kenny, Notley, Gagnon (b0035) 2017; 117 Hendelman, Miller, Baggett, Debold, Freedson (b0060) 2000; 32 REHVA HVAC World Congress Proceedings, 2022. Hegde, Bries, Sazonov (b0050) 2016; 5 Dannecker, Sazonova, Melanson, Sazonov, Browning (b0080) 2013; 45 Heidari, Khovalyg (b0135) 2023; 123 Qian Wei, GU, Chunlei, ZHU, Congxi et al., Short-Term Load Forecasting Based on Multi-model Fusion of CNN-LSTM-LGBM, in: 2021 International Conference on Power Systerm Technology (POWERCON), IEEE, 2021, p. 934–939. O’Driscoll, Turicchi, Beaulieu, Scott, Matu, Deighton, Finlayson, Stubbs (b0055) 2020; 54 Khovalyg, Ravussin (b0130) 2022; 30 Chang, Ko, Lien, Chou (b0160) 2010; 22 Cvetkovic, Milic, Lustrek (b0090) 2016; 20 N. Pai and V. Ilango, LSTM neural network model with feature selection for financial time series prediction, in: 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 2020, pp. 672-677. Weir (b0150) 1949; 109 D. Khovalyg and J. Kwak, Dynamics of metabolic rate in male individuals due to the meal and regular office activities, in: CLIMA 2022 The 14 Martinez-Tellez, Ortiz-Alvarez (b0165) 2019; 38 Source Code - Github Repository, 2023 O'Driscoll, Turicchi, Hopkins, Horgan, Finlayson, Stubbs (b0100) Jul; 2020,; 38 Zhou, Hu (b0045) 2008; 3 Ruddick-Collins, Flanagan, Johnston, Morgan, Johnstone (b0005) 2022; 107 Dulloo, Miles-Chan, Montani, Schutz (b0015) 2017; 18 Chung, Park, Kim, Park, Hwang, Lee, Han, So, Park, Lim (b0020) 2018; 22 Mtaweh, Tuira, Floh, Parshuram (b0040) 2018; 6 . Sevil, Rashid, Maloney, Hajizadeh (b0105) 2020; 20 Montoye, Pivarnik, Mudd, Biswas, Pfeiffer (b0095) 2016; 37 Mohamed, Refaat Shady (b0110) 2021; 214 Swartz, Strath, Bassett, O'Brien, King, Ainsworth (b0070) 2000 Sellers, Khovalyg, Plasqui, Lichtenbelt (b0025) 2022; 12 Rahiminejad, Khovalyg (b0140) 2023; 233 Levine (b0010) 2002; 16 Spierer, Hagins, Rundle, Pappas (b0075) 2011; 111 J. Zhu, A. Pande, P. Mohapatra and J. J. Han, Using Deep Learning for Energy Expenditure Estimation with wearable sensors, in: 2015 17th International Conference on E-health Networking, Application & Services (HealthCom), Boston, MA, USA, 2015, pp. 501-506. Weerakody, Wong, Wang, Ela (b0120) 2021; 441 Kenny (10.1016/j.bspc.2023.105381_b0035) 2017; 117 Heidari (10.1016/j.bspc.2023.105381_b0135) 2023; 123 10.1016/j.bspc.2023.105381_b0155 Weerakody (10.1016/j.bspc.2023.105381_b0120) 2021; 441 Chung (10.1016/j.bspc.2023.105381_b0020) 2018; 22 Weir (10.1016/j.bspc.2023.105381_b0150) 1949; 109 Ruddick-Collins (10.1016/j.bspc.2023.105381_b0005) 2022; 107 O’Driscoll (10.1016/j.bspc.2023.105381_b0055) 2020; 54 Swartz (10.1016/j.bspc.2023.105381_b0070) 2000 Zhou (10.1016/j.bspc.2023.105381_b0045) 2008; 3 Mohamed (10.1016/j.bspc.2023.105381_b0110) 2021; 214 Rahiminejad (10.1016/j.bspc.2023.105381_b0140) 2023; 233 Sellers (10.1016/j.bspc.2023.105381_b0025) 2022; 12 Pallubinsky (10.1016/j.bspc.2023.105381_b0030) 2019; 79 O'Driscoll (10.1016/j.bspc.2023.105381_b0100) 2020; 38 10.1016/j.bspc.2023.105381_b0145 10.1016/j.bspc.2023.105381_b0125 Levine (10.1016/j.bspc.2023.105381_b0010) 2002; 16 10.1016/j.bspc.2023.105381_b0085 Khovalyg (10.1016/j.bspc.2023.105381_b0130) 2022; 30 Dulloo (10.1016/j.bspc.2023.105381_b0015) 2017; 18 Cvetkovic (10.1016/j.bspc.2023.105381_b0090) 2016; 20 Sevil (10.1016/j.bspc.2023.105381_b0105) 2020; 20 Hegde (10.1016/j.bspc.2023.105381_b0050) 2016; 5 Montoye (10.1016/j.bspc.2023.105381_b0095) 2016; 37 Mtaweh (10.1016/j.bspc.2023.105381_b0040) 2018; 6 Welk (10.1016/j.bspc.2023.105381_b0065) 2000; 32 Chang (10.1016/j.bspc.2023.105381_b0160) 2010; 22 Hendelman (10.1016/j.bspc.2023.105381_b0060) 2000; 32 Dannecker (10.1016/j.bspc.2023.105381_b0080) 2013; 45 10.1016/j.bspc.2023.105381_b0115 Spierer (10.1016/j.bspc.2023.105381_b0075) 2011; 111 Martinez-Tellez (10.1016/j.bspc.2023.105381_b0165) 2019; 38 |
| References_xml | – volume: 18 start-page: 56 year: 2017 end-page: 64 ident: b0015 article-title: Isometric thermogenesis at rest and during movement: a neglected variable in energy expenditure and obesity predisposition publication-title: Obes. Rev. – volume: 37 start-page: 1770 year: 2016 end-page: 1784 ident: b0095 article-title: Wrist-independent energy expenditure prediction models from raw accelerometer data publication-title: Physiol. Measur. – volume: 5 start-page: 48 year: 2016 ident: b0050 article-title: A comparative review of footwear-based wearable systems publication-title: Electronics – volume: 32 start-page: 442 year: 2000 end-page: 449 ident: b0060 article-title: Validity of accelerometry for the assessment of moderate intensity physical activity in the field publication-title: Med. Sci. Sports Exer. – volume: 233 year: 2023 ident: b0140 article-title: Experimental study of the hydrodynamic and thermal performances of ventilated wall structures publication-title: Build. Environ. – volume: 441 start-page: 161 year: 2021 end-page: 178 ident: b0120 article-title: A review of irregular time series data handling with gated recurrent neural networks publication-title: Neurocomputing – volume: 20 start-page: 1081 year: 2016 end-page: 1087 ident: b0090 article-title: Estimating energy expenditure with multiple models using different wearable sensors publication-title: IEEE J. Biomed. Health Informat. – volume: 22 start-page: 546 year: 2010 end-page: 551 ident: b0160 article-title: Varying postprandial abdominovagal and cardiovagal activity in normal subjects publication-title: Neurogastroenterol Motil – reference: N. Pai and V. Ilango, LSTM neural network model with feature selection for financial time series prediction, in: 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 2020, pp. 672-677. – volume: 45 start-page: 2105 year: 2013 end-page: 2112 ident: b0080 article-title: A comparison of energy expenditure estimation of several physical activity monitors publication-title: Med. Sci. Sports Exer. – volume: 16 start-page: 679 year: 2002 end-page: 702 ident: b0010 article-title: Non-exercise activity thermogenesis (NEAT) publication-title: Best Pract. Res. Clin. Endocr. Metabol. – reference: Source Code - Github Repository, 2023, – volume: 214 year: 2021 ident: b0110 article-title: A novel stacked generalization ensemble-based hybridLGBM-XGB-MLP model for Short-Term Forecasting publication-title: Energy – volume: 54 start-page: 332 year: 2020 end-page: 340 ident: b0055 article-title: How well do activity monitors estimate energy expenditure? A systematic review and meta-analysis of the validity of current technologies publication-title: British J. Sport Med. – start-page: 450 year: 2000 end-page: 456 ident: b0070 article-title: Estimation of energy expenditure using CSA accelerometers at hip and wrist sites publication-title: Med. Sci. Sports Exer. – volume: 20 start-page: 12859 year: 2020 end-page: 12870 ident: b0105 article-title: Determining physical activity characteristics from wristband data for use in automated insulin delivery systems publication-title: IEEE Sens J – volume: 109 start-page: 1 year: 1949 end-page: 9 ident: b0150 article-title: New methods for calculating metabolic rate with special reference to protein metabolism publication-title: The Journal of Physiology – volume: 111 start-page: 659 year: 2011 end-page: 667 ident: b0075 article-title: A comparison of energy expenditure estimates from the Actiheart and Actical physical activity monitors during low intensity activities, walking, and jogging publication-title: Eur. J. Appl. Physiol. – reference: J. Zhu, A. Pande, P. Mohapatra and J. J. Han, Using Deep Learning for Energy Expenditure Estimation with wearable sensors, in: 2015 17th International Conference on E-health Networking, Application & Services (HealthCom), Boston, MA, USA, 2015, pp. 501-506. – volume: 6 start-page: pp year: 2018 ident: b0040 article-title: Indirect calorimetry: History, technology, and application publication-title: Front. Pediatr. – volume: 38 start-page: 1496 year: Jul; 2020, end-page: 1505 ident: b0100 article-title: Improving energy expenditure estimates from wearable devices: A machine learning approach publication-title: J Sports Sci. – reference: D. Khovalyg and J. Kwak, Dynamics of metabolic rate in male individuals due to the meal and regular office activities, in: CLIMA 2022 The 14 – volume: 38 start-page: 1339 year: 2019 end-page: 1347 ident: b0165 article-title: Skin temperature response to a liquid meal intake is different in men than in women publication-title: Clin Nutr. – volume: 3 start-page: 1 year: 2008 end-page: 18 ident: b0045 article-title: Human motion tracking for rehabilitation—A survey publication-title: Biomed. Signal Process. Control – reference: REHVA HVAC World Congress Proceedings, 2022. – reference: . – volume: 32 start-page: 489 year: 2000 end-page: 497 ident: b0065 article-title: A comparative evaluation of three accelerometry-based physical activity monitors publication-title: Med. Sci. Sports Exer. – volume: 79 start-page: 199 year: 2019 end-page: 208 ident: b0030 article-title: Exploring the human thermoneutral zone – A dynamic approach publication-title: J. Therm. Biol. – reference: Qian Wei, GU, Chunlei, ZHU, Congxi et al., Short-Term Load Forecasting Based on Multi-model Fusion of CNN-LSTM-LGBM, in: 2021 International Conference on Power Systerm Technology (POWERCON), IEEE, 2021, p. 934–939. – volume: 30 start-page: 234 year: 2022 end-page: 254 ident: b0130 article-title: Inter-individual variability of human thermoregulation: towards personalized ergonomics of the indoor thermal environment publication-title: Obesity – volume: 107 start-page: 708 year: 2022 end-page: 715 ident: b0005 article-title: Circadian Rhythms in resting metabolic rate account for apparent daily rhythms in the thermic effect of food publication-title: J. Clin. Endocrinol. Metabol. – volume: 12 year: 2022 ident: b0025 article-title: High daily energy expenditure of Tuvan nomadic pastoralists living in an extreme cold environment publication-title: Sci. Rep. – volume: 117 start-page: 1765 year: 2017 end-page: 1785 ident: b0035 article-title: Direct calorimetry: a brief historical review of its use in the study of human metabolism and thermoregulation publication-title: Eur. J. Appl. Physiol. – volume: 123 year: 2023 ident: b0135 article-title: DeepValve: Development and experimental testing of a Reinforcement Learning control framework for occupant-centric heating in offices publication-title: Eng. Applicat. Artif. Intel. – volume: 22 start-page: 023 year: 2018 end-page: 030 ident: b0020 article-title: Non-exercise activity thermogenesis (NEAT): a component of total daily energy expenditure publication-title: J. Exer. Nutr. Biochem. – volume: 16 start-page: 679 issue: 4 year: 2002 ident: 10.1016/j.bspc.2023.105381_b0010 article-title: Non-exercise activity thermogenesis (NEAT) publication-title: Best Pract. Res. Clin. Endocr. Metabol. doi: 10.1053/beem.2002.0227 – ident: 10.1016/j.bspc.2023.105381_b0085 doi: 10.1109/HealthCom.2015.7454554 – volume: 22 start-page: 023 issue: 2 year: 2018 ident: 10.1016/j.bspc.2023.105381_b0020 article-title: Non-exercise activity thermogenesis (NEAT): a component of total daily energy expenditure publication-title: J. Exer. Nutr. Biochem. doi: 10.20463/jenb.2018.0013 – volume: 12 year: 2022 ident: 10.1016/j.bspc.2023.105381_b0025 article-title: High daily energy expenditure of Tuvan nomadic pastoralists living in an extreme cold environment publication-title: Sci. Rep. doi: 10.1038/s41598-022-23975-3 – volume: 38 start-page: 1496 issue: 13 year: 2020 ident: 10.1016/j.bspc.2023.105381_b0100 article-title: Improving energy expenditure estimates from wearable devices: A machine learning approach publication-title: J Sports Sci. doi: 10.1080/02640414.2020.1746088 – volume: 109 start-page: 1 issue: 1–2 year: 1949 ident: 10.1016/j.bspc.2023.105381_b0150 article-title: New methods for calculating metabolic rate with special reference to protein metabolism publication-title: The Journal of Physiology doi: 10.1113/jphysiol.1949.sp004363 – volume: 6 start-page: pp issue: 257 year: 2018 ident: 10.1016/j.bspc.2023.105381_b0040 article-title: Indirect calorimetry: History, technology, and application publication-title: Front. Pediatr. – volume: 32 start-page: 489 issue: 9 year: 2000 ident: 10.1016/j.bspc.2023.105381_b0065 article-title: A comparative evaluation of three accelerometry-based physical activity monitors publication-title: Med. Sci. Sports Exer. doi: 10.1097/00005768-200009001-00008 – ident: 10.1016/j.bspc.2023.105381_b0155 – ident: 10.1016/j.bspc.2023.105381_b0115 doi: 10.1109/POWERCON53785.2021.9697619 – volume: 38 start-page: 1339 issue: 3 year: 2019 ident: 10.1016/j.bspc.2023.105381_b0165 article-title: Skin temperature response to a liquid meal intake is different in men than in women publication-title: Clin Nutr. doi: 10.1016/j.clnu.2018.05.026 – volume: 3 start-page: 1 issue: 1 year: 2008 ident: 10.1016/j.bspc.2023.105381_b0045 article-title: Human motion tracking for rehabilitation—A survey publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2007.09.001 – start-page: 450 year: 2000 ident: 10.1016/j.bspc.2023.105381_b0070 article-title: Estimation of energy expenditure using CSA accelerometers at hip and wrist sites publication-title: Med. Sci. Sports Exer. doi: 10.1097/00005768-200009001-00003 – volume: 5 start-page: 48 issue: 3 year: 2016 ident: 10.1016/j.bspc.2023.105381_b0050 article-title: A comparative review of footwear-based wearable systems publication-title: Electronics doi: 10.3390/electronics5030048 – volume: 30 start-page: 234 issue: 7 year: 2022 ident: 10.1016/j.bspc.2023.105381_b0130 article-title: Inter-individual variability of human thermoregulation: towards personalized ergonomics of the indoor thermal environment publication-title: Obesity doi: 10.1002/oby.23454 – volume: 20 start-page: 12859 issue: 21 year: 2020 ident: 10.1016/j.bspc.2023.105381_b0105 article-title: Determining physical activity characteristics from wristband data for use in automated insulin delivery systems publication-title: IEEE Sens J doi: 10.1109/JSEN.2020.3000772 – volume: 22 start-page: 546 issue: 5 year: 2010 ident: 10.1016/j.bspc.2023.105381_b0160 article-title: Varying postprandial abdominovagal and cardiovagal activity in normal subjects publication-title: Neurogastroenterol Motil – volume: 233 year: 2023 ident: 10.1016/j.bspc.2023.105381_b0140 article-title: Experimental study of the hydrodynamic and thermal performances of ventilated wall structures publication-title: Build. Environ. doi: 10.1016/j.buildenv.2023.110114 – volume: 117 start-page: 1765 issue: 9 year: 2017 ident: 10.1016/j.bspc.2023.105381_b0035 article-title: Direct calorimetry: a brief historical review of its use in the study of human metabolism and thermoregulation publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-017-3670-5 – volume: 214 year: 2021 ident: 10.1016/j.bspc.2023.105381_b0110 article-title: A novel stacked generalization ensemble-based hybridLGBM-XGB-MLP model for Short-Term Forecasting publication-title: Energy – volume: 441 start-page: 161 year: 2021 ident: 10.1016/j.bspc.2023.105381_b0120 article-title: A review of irregular time series data handling with gated recurrent neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.02.046 – volume: 111 start-page: 659 issue: 4 year: 2011 ident: 10.1016/j.bspc.2023.105381_b0075 article-title: A comparison of energy expenditure estimates from the Actiheart and Actical physical activity monitors during low intensity activities, walking, and jogging publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-010-1672-7 – volume: 123 year: 2023 ident: 10.1016/j.bspc.2023.105381_b0135 article-title: DeepValve: Development and experimental testing of a Reinforcement Learning control framework for occupant-centric heating in offices publication-title: Eng. Applicat. Artif. Intel. doi: 10.1016/j.engappai.2023.106310 – volume: 79 start-page: 199 year: 2019 ident: 10.1016/j.bspc.2023.105381_b0030 article-title: Exploring the human thermoneutral zone – A dynamic approach publication-title: J. Therm. Biol. doi: 10.1016/j.jtherbio.2018.12.014 – volume: 37 start-page: 1770 year: 2016 ident: 10.1016/j.bspc.2023.105381_b0095 article-title: Wrist-independent energy expenditure prediction models from raw accelerometer data publication-title: Physiol. Measur. doi: 10.1088/0967-3334/37/10/1770 – volume: 20 start-page: 1081 issue: 4 year: 2016 ident: 10.1016/j.bspc.2023.105381_b0090 article-title: Estimating energy expenditure with multiple models using different wearable sensors publication-title: IEEE J. Biomed. Health Informat. doi: 10.1109/JBHI.2015.2432911 – volume: 54 start-page: 332 year: 2020 ident: 10.1016/j.bspc.2023.105381_b0055 article-title: How well do activity monitors estimate energy expenditure? A systematic review and meta-analysis of the validity of current technologies publication-title: British J. Sport Med. doi: 10.1136/bjsports-2018-099643 – ident: 10.1016/j.bspc.2023.105381_b0145 – volume: 18 start-page: 56 issue: S1 year: 2017 ident: 10.1016/j.bspc.2023.105381_b0015 article-title: Isometric thermogenesis at rest and during movement: a neglected variable in energy expenditure and obesity predisposition publication-title: Obes. Rev. doi: 10.1111/obr.12505 – ident: 10.1016/j.bspc.2023.105381_b0125 doi: 10.1109/I-SMAC49090.2020.9243376 – volume: 107 start-page: 708 issue: 2 year: 2022 ident: 10.1016/j.bspc.2023.105381_b0005 article-title: Circadian Rhythms in resting metabolic rate account for apparent daily rhythms in the thermic effect of food publication-title: J. Clin. Endocrinol. Metabol. doi: 10.1210/clinem/dgab654 – volume: 32 start-page: 442 issue: 9 year: 2000 ident: 10.1016/j.bspc.2023.105381_b0060 article-title: Validity of accelerometry for the assessment of moderate intensity physical activity in the field publication-title: Med. Sci. Sports Exer. doi: 10.1097/00005768-200009001-00002 – volume: 45 start-page: 2105 issue: 11 year: 2013 ident: 10.1016/j.bspc.2023.105381_b0080 article-title: A comparison of energy expenditure estimation of several physical activity monitors publication-title: Med. Sci. Sports Exer. doi: 10.1249/MSS.0b013e318299d2eb |
| SSID | ssj0048714 |
| Score | 2.4296148 |
| Snippet | •Dynamic modeling of energy expenditure can capture transient thermoregulation and food intake effect.•LSTM networks promise high accuracy of time-series data... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 105381 |
| SubjectTerms | Dynamic metabolism Human energy expenditure Machine learning Personalized model Recurrent neural networks Time series Wearable sensing |
| Title | Dynamic personalized human body energy expenditure: Prediction using time series forecasting LSTM models |
| URI | https://dx.doi.org/10.1016/j.bspc.2023.105381 |
| Volume | 87 |
| WOSCitedRecordID | wos001074799100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1746-8108 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0048714 issn: 1746-8094 databaseCode: AIEXJ dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2FlgMcEJ-iFNAeuEWOYq-9trlFUASIVpUIKDdrd71uE0VO5CRV25_RX8zMju24BSp64GJFlr1xPC8zs7sz7zH2zkqIEqFUXhEFhRfaUHoa4ohnhAUAaH-ok9yJTcRHR8lkkh73eldNL8zZPC7L5Pw8Xf5XU8M5MDa2zt7B3O2gcAI-g9HhCGaH4z8Z_iNpzCMhMaXZl5BTkhSfXuQXfUvdfkjtj9vVm8p1px9XuGPjwLBxywcoOt_HB7aOscEatXIV0t--jw9JP2d1bUPYtfFTj-X0BFPcJbUgNE2QdU381hVX9hK8UbUmP_VzirsHU9U_HHQqDrDVaEalQiP45boND6cLeGUXJzQFmCtFGuDN8kUQdpYvyOPGITIik9Jx45LrGEw-FTJAQbIuv7l7WnmYDfRqiXSUgRhsL77OrX0j5rWViE2R2yzDMTIcI6Mx7rHdII5S8JS7oy8Hk69NfIcZnmOMbx-8bsWiqsGbT_LndKeTwowfs0f13IOPCDNPWM-WT9nDDiPlM3Zao4d30cMdejiihxN6eAc97_kWO9xhhyN2OGGHd7DDETucsPOc_fh0MP7w2avFOOBvG4Zrz6ZCDk0sTBL4KrFCSaF8X9s8NnnkF8LkUgsppJZDEQjjBygwbyJZ5EIn2kjxgu2Ui9K-ZDyO8iAvhqnONdLnJYkKC22EKVJdKBWZPeY37ywzNVM9CqbMs79ba4_123uWxNNy69VRY4qszjQpg8wAWbfc9-pO37LPHmwR_5rtrKuNfcPum7P1dFW9rWH1C0VJpEI |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+personalized+human+body+energy+expenditure%3A+Prediction+using+time+series+forecasting+LSTM+models&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Perez+Cortes%2C+Victoria+M.&rft.au=Chatterjee%2C+Arnab&rft.au=Khovalyg%2C+Dolaana&rft.date=2024-01-01&rft.issn=1746-8094&rft.volume=87&rft.spage=105381&rft_id=info:doi/10.1016%2Fj.bspc.2023.105381&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2023_105381 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |