Dynamic personalized human body energy expenditure: Prediction using time series forecasting LSTM models

•Dynamic modeling of energy expenditure can capture transient thermoregulation and food intake effect.•LSTM networks promise high accuracy of time-series data prediction and capturing patterns.•Adequate accuracy of dynamic EE prediction should be within 5–10 % of MAPE.•The ensemble of CNN-LSTM and L...

Full description

Saved in:
Bibliographic Details
Published in:Biomedical signal processing and control Vol. 87; p. 105381
Main Authors: Perez Cortes, Victoria M., Chatterjee, Arnab, Khovalyg, Dolaana
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.01.2024
Subjects:
ISSN:1746-8094, 1746-8108
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Dynamic modeling of energy expenditure can capture transient thermoregulation and food intake effect.•LSTM networks promise high accuracy of time-series data prediction and capturing patterns.•Adequate accuracy of dynamic EE prediction should be within 5–10 % of MAPE.•The ensemble of CNN-LSTM and LGBM models can lead to the high accuracy of personalized EE prediction.•Personalized modeling architecture and features selection can lead to capturing transient EE effects in individuals. Dynamic human energy expenditure (EE) consists of energy costs for resting metabolism, food digestion, physical activity, and thermoregulation. Currently, multiple models predict EE mainly concerning physical activity, thus, discarding other factors contributing to the dynamic variation of EE. This paper aimed to demonstrate that (i) a dynamic human body EE prediction requires the time series approach, (ii) personalization of input features and models can outperform the generalized approach. To achieve these objectives, data were collected from 3 sets of experiments with 6 test subjects wearing multiple sensors. The analysis of features' importance showed that the selection of features varies for activity-dominated and non-activity-dominated cases and also varies between individuals. Long-Short Term Memory (LSTM) networks were used to develop personalized models such as a simple LSTM, a convolutional LSTM (CNN-LSTM), and also an ensemble model combining CNN-LSTM with a Gradient Boosting algorithm (LSTM-LGBM). A personalized autoregressive linear model and a generalized approach of the LSTM-LGBM method were also developed to have a base of comparison. The results show that the personalized models provide good prediction accuracy, with the mean absolute percentage error (MAPE) mostly lying in the range of 5–15 %. The CNN-LSTM outperforms a simple LSTM model by 3–5 % in MAPE values, and the ensemble model outperforms the by 5–8 % the simple LSTM. The personalized modeling approach with LSTM has shown the potential to improve the prediction accuracy of dynamic EE and capture the non-activity-related effects such as thermoregulation and postprandial thermogenesis.
AbstractList •Dynamic modeling of energy expenditure can capture transient thermoregulation and food intake effect.•LSTM networks promise high accuracy of time-series data prediction and capturing patterns.•Adequate accuracy of dynamic EE prediction should be within 5–10 % of MAPE.•The ensemble of CNN-LSTM and LGBM models can lead to the high accuracy of personalized EE prediction.•Personalized modeling architecture and features selection can lead to capturing transient EE effects in individuals. Dynamic human energy expenditure (EE) consists of energy costs for resting metabolism, food digestion, physical activity, and thermoregulation. Currently, multiple models predict EE mainly concerning physical activity, thus, discarding other factors contributing to the dynamic variation of EE. This paper aimed to demonstrate that (i) a dynamic human body EE prediction requires the time series approach, (ii) personalization of input features and models can outperform the generalized approach. To achieve these objectives, data were collected from 3 sets of experiments with 6 test subjects wearing multiple sensors. The analysis of features' importance showed that the selection of features varies for activity-dominated and non-activity-dominated cases and also varies between individuals. Long-Short Term Memory (LSTM) networks were used to develop personalized models such as a simple LSTM, a convolutional LSTM (CNN-LSTM), and also an ensemble model combining CNN-LSTM with a Gradient Boosting algorithm (LSTM-LGBM). A personalized autoregressive linear model and a generalized approach of the LSTM-LGBM method were also developed to have a base of comparison. The results show that the personalized models provide good prediction accuracy, with the mean absolute percentage error (MAPE) mostly lying in the range of 5–15 %. The CNN-LSTM outperforms a simple LSTM model by 3–5 % in MAPE values, and the ensemble model outperforms the by 5–8 % the simple LSTM. The personalized modeling approach with LSTM has shown the potential to improve the prediction accuracy of dynamic EE and capture the non-activity-related effects such as thermoregulation and postprandial thermogenesis.
ArticleNumber 105381
Author Chatterjee, Arnab
Khovalyg, Dolaana
Perez Cortes, Victoria M.
Author_xml – sequence: 1
  givenname: Victoria M.
  surname: Perez Cortes
  fullname: Perez Cortes, Victoria M.
– sequence: 2
  givenname: Arnab
  orcidid: 0000-0001-6593-8479
  surname: Chatterjee
  fullname: Chatterjee, Arnab
– sequence: 3
  givenname: Dolaana
  orcidid: 0000-0001-6064-2513
  surname: Khovalyg
  fullname: Khovalyg, Dolaana
  email: dolaana.khovalyg@epfl.ch
BookMark eNp9kF1LwzAUhoNMcJv-Aa_yBzqTpk0z8UbmJ0wUnNchTU63jDYpSSfOX2_L9MaLXb2HF54D7zNBI-cdIHRJyYwSyq-2szK2epaSlPVFzgQ9QWNaZDwRlIjR303m2RmaxLglJBMFzcZoc7d3qrEatxCid6q232DwZtcoh0tv9hgchHUfXy04Y7tdgGv8FsBY3Vnv8C5at8adbQBHCBYirnwArWI39Mv31QtuvIE6nqPTStURLn5zij4e7leLp2T5-vi8uF0mmmVZl8CccaILpkVKlQCmOFOUlmAKbXJaMW14yTjjJScsZZqmPM-oznllWClKzdkUpYe_OvgYA1SyDbZRYS8pkYMruZWDKzm4kgdXPST-Qdp2ahjYBWXr4-jNAe03wqeFIKO24HRvqPfQSePtMfwHFpGI_w
CitedBy_id crossref_primary_10_1016_j_rineng_2025_106512
crossref_primary_10_1108_AEAT_12_2024_0358
crossref_primary_10_3390_su17020500
crossref_primary_10_1016_j_buildenv_2025_112944
Cites_doi 10.1053/beem.2002.0227
10.1109/HealthCom.2015.7454554
10.20463/jenb.2018.0013
10.1038/s41598-022-23975-3
10.1080/02640414.2020.1746088
10.1113/jphysiol.1949.sp004363
10.1097/00005768-200009001-00008
10.1109/POWERCON53785.2021.9697619
10.1016/j.clnu.2018.05.026
10.1016/j.bspc.2007.09.001
10.1097/00005768-200009001-00003
10.3390/electronics5030048
10.1002/oby.23454
10.1109/JSEN.2020.3000772
10.1016/j.buildenv.2023.110114
10.1007/s00421-017-3670-5
10.1016/j.neucom.2021.02.046
10.1007/s00421-010-1672-7
10.1016/j.engappai.2023.106310
10.1016/j.jtherbio.2018.12.014
10.1088/0967-3334/37/10/1770
10.1109/JBHI.2015.2432911
10.1136/bjsports-2018-099643
10.1111/obr.12505
10.1109/I-SMAC49090.2020.9243376
10.1210/clinem/dgab654
10.1097/00005768-200009001-00002
10.1249/MSS.0b013e318299d2eb
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.bspc.2023.105381
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
ExternalDocumentID 10_1016_j_bspc_2023_105381
S1746809423008145
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6I.
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c344t-e9360c73c821a8e3a63a11bed7cd51f3cd6b3636b60323c126541c56fd3b8bc63
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001074799100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1746-8094
IngestDate Tue Nov 18 22:32:20 EST 2025
Sat Nov 29 06:59:40 EST 2025
Fri Feb 23 02:33:54 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Recurrent neural networks
Machine learning
Time series
Human energy expenditure
Wearable sensing
Dynamic metabolism
Personalized model
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-e9360c73c821a8e3a63a11bed7cd51f3cd6b3636b60323c126541c56fd3b8bc63
ORCID 0000-0001-6064-2513
0000-0001-6593-8479
OpenAccessLink https://dx.doi.org/10.1016/j.bspc.2023.105381
ParticipantIDs crossref_primary_10_1016_j_bspc_2023_105381
crossref_citationtrail_10_1016_j_bspc_2023_105381
elsevier_sciencedirect_doi_10_1016_j_bspc_2023_105381
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Welk, Blair, Wood, Jones, Thompson (b0065) 2000; 32
Pallubinsky, Schellen, van Marken Lichtenbelt (b0030) 2019; 79
Kenny, Notley, Gagnon (b0035) 2017; 117
Hendelman, Miller, Baggett, Debold, Freedson (b0060) 2000; 32
REHVA HVAC World Congress Proceedings, 2022.
Hegde, Bries, Sazonov (b0050) 2016; 5
Dannecker, Sazonova, Melanson, Sazonov, Browning (b0080) 2013; 45
Heidari, Khovalyg (b0135) 2023; 123
Qian Wei, GU, Chunlei, ZHU, Congxi et al., Short-Term Load Forecasting Based on Multi-model Fusion of CNN-LSTM-LGBM, in: 2021 International Conference on Power Systerm Technology (POWERCON), IEEE, 2021, p. 934–939.
O’Driscoll, Turicchi, Beaulieu, Scott, Matu, Deighton, Finlayson, Stubbs (b0055) 2020; 54
Khovalyg, Ravussin (b0130) 2022; 30
Chang, Ko, Lien, Chou (b0160) 2010; 22
Cvetkovic, Milic, Lustrek (b0090) 2016; 20
N. Pai and V. Ilango, LSTM neural network model with feature selection for financial time series prediction, in: 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 2020, pp. 672-677.
Weir (b0150) 1949; 109
D. Khovalyg and J. Kwak, Dynamics of metabolic rate in male individuals due to the meal and regular office activities, in: CLIMA 2022 The 14
Martinez-Tellez, Ortiz-Alvarez (b0165) 2019; 38
Source Code - Github Repository, 2023
O'Driscoll, Turicchi, Hopkins, Horgan, Finlayson, Stubbs (b0100) Jul; 2020,; 38
Zhou, Hu (b0045) 2008; 3
Ruddick-Collins, Flanagan, Johnston, Morgan, Johnstone (b0005) 2022; 107
Dulloo, Miles-Chan, Montani, Schutz (b0015) 2017; 18
Chung, Park, Kim, Park, Hwang, Lee, Han, So, Park, Lim (b0020) 2018; 22
Mtaweh, Tuira, Floh, Parshuram (b0040) 2018; 6
.
Sevil, Rashid, Maloney, Hajizadeh (b0105) 2020; 20
Montoye, Pivarnik, Mudd, Biswas, Pfeiffer (b0095) 2016; 37
Mohamed, Refaat Shady (b0110) 2021; 214
Swartz, Strath, Bassett, O'Brien, King, Ainsworth (b0070) 2000
Sellers, Khovalyg, Plasqui, Lichtenbelt (b0025) 2022; 12
Rahiminejad, Khovalyg (b0140) 2023; 233
Levine (b0010) 2002; 16
Spierer, Hagins, Rundle, Pappas (b0075) 2011; 111
J. Zhu, A. Pande, P. Mohapatra and J. J. Han, Using Deep Learning for Energy Expenditure Estimation with wearable sensors, in: 2015 17th International Conference on E-health Networking, Application & Services (HealthCom), Boston, MA, USA, 2015, pp. 501-506.
Weerakody, Wong, Wang, Ela (b0120) 2021; 441
Kenny (10.1016/j.bspc.2023.105381_b0035) 2017; 117
Heidari (10.1016/j.bspc.2023.105381_b0135) 2023; 123
10.1016/j.bspc.2023.105381_b0155
Weerakody (10.1016/j.bspc.2023.105381_b0120) 2021; 441
Chung (10.1016/j.bspc.2023.105381_b0020) 2018; 22
Weir (10.1016/j.bspc.2023.105381_b0150) 1949; 109
Ruddick-Collins (10.1016/j.bspc.2023.105381_b0005) 2022; 107
O’Driscoll (10.1016/j.bspc.2023.105381_b0055) 2020; 54
Swartz (10.1016/j.bspc.2023.105381_b0070) 2000
Zhou (10.1016/j.bspc.2023.105381_b0045) 2008; 3
Mohamed (10.1016/j.bspc.2023.105381_b0110) 2021; 214
Rahiminejad (10.1016/j.bspc.2023.105381_b0140) 2023; 233
Sellers (10.1016/j.bspc.2023.105381_b0025) 2022; 12
Pallubinsky (10.1016/j.bspc.2023.105381_b0030) 2019; 79
O'Driscoll (10.1016/j.bspc.2023.105381_b0100) 2020; 38
10.1016/j.bspc.2023.105381_b0145
10.1016/j.bspc.2023.105381_b0125
Levine (10.1016/j.bspc.2023.105381_b0010) 2002; 16
10.1016/j.bspc.2023.105381_b0085
Khovalyg (10.1016/j.bspc.2023.105381_b0130) 2022; 30
Dulloo (10.1016/j.bspc.2023.105381_b0015) 2017; 18
Cvetkovic (10.1016/j.bspc.2023.105381_b0090) 2016; 20
Sevil (10.1016/j.bspc.2023.105381_b0105) 2020; 20
Hegde (10.1016/j.bspc.2023.105381_b0050) 2016; 5
Montoye (10.1016/j.bspc.2023.105381_b0095) 2016; 37
Mtaweh (10.1016/j.bspc.2023.105381_b0040) 2018; 6
Welk (10.1016/j.bspc.2023.105381_b0065) 2000; 32
Chang (10.1016/j.bspc.2023.105381_b0160) 2010; 22
Hendelman (10.1016/j.bspc.2023.105381_b0060) 2000; 32
Dannecker (10.1016/j.bspc.2023.105381_b0080) 2013; 45
10.1016/j.bspc.2023.105381_b0115
Spierer (10.1016/j.bspc.2023.105381_b0075) 2011; 111
Martinez-Tellez (10.1016/j.bspc.2023.105381_b0165) 2019; 38
References_xml – volume: 18
  start-page: 56
  year: 2017
  end-page: 64
  ident: b0015
  article-title: Isometric thermogenesis at rest and during movement: a neglected variable in energy expenditure and obesity predisposition
  publication-title: Obes. Rev.
– volume: 37
  start-page: 1770
  year: 2016
  end-page: 1784
  ident: b0095
  article-title: Wrist-independent energy expenditure prediction models from raw accelerometer data
  publication-title: Physiol. Measur.
– volume: 5
  start-page: 48
  year: 2016
  ident: b0050
  article-title: A comparative review of footwear-based wearable systems
  publication-title: Electronics
– volume: 32
  start-page: 442
  year: 2000
  end-page: 449
  ident: b0060
  article-title: Validity of accelerometry for the assessment of moderate intensity physical activity in the field
  publication-title: Med. Sci. Sports Exer.
– volume: 233
  year: 2023
  ident: b0140
  article-title: Experimental study of the hydrodynamic and thermal performances of ventilated wall structures
  publication-title: Build. Environ.
– volume: 441
  start-page: 161
  year: 2021
  end-page: 178
  ident: b0120
  article-title: A review of irregular time series data handling with gated recurrent neural networks
  publication-title: Neurocomputing
– volume: 20
  start-page: 1081
  year: 2016
  end-page: 1087
  ident: b0090
  article-title: Estimating energy expenditure with multiple models using different wearable sensors
  publication-title: IEEE J. Biomed. Health Informat.
– volume: 22
  start-page: 546
  year: 2010
  end-page: 551
  ident: b0160
  article-title: Varying postprandial abdominovagal and cardiovagal activity in normal subjects
  publication-title: Neurogastroenterol Motil
– reference: N. Pai and V. Ilango, LSTM neural network model with feature selection for financial time series prediction, in: 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 2020, pp. 672-677.
– volume: 45
  start-page: 2105
  year: 2013
  end-page: 2112
  ident: b0080
  article-title: A comparison of energy expenditure estimation of several physical activity monitors
  publication-title: Med. Sci. Sports Exer.
– volume: 16
  start-page: 679
  year: 2002
  end-page: 702
  ident: b0010
  article-title: Non-exercise activity thermogenesis (NEAT)
  publication-title: Best Pract. Res. Clin. Endocr. Metabol.
– reference: Source Code - Github Repository, 2023,
– volume: 214
  year: 2021
  ident: b0110
  article-title: A novel stacked generalization ensemble-based hybridLGBM-XGB-MLP model for Short-Term Forecasting
  publication-title: Energy
– volume: 54
  start-page: 332
  year: 2020
  end-page: 340
  ident: b0055
  article-title: How well do activity monitors estimate energy expenditure? A systematic review and meta-analysis of the validity of current technologies
  publication-title: British J. Sport Med.
– start-page: 450
  year: 2000
  end-page: 456
  ident: b0070
  article-title: Estimation of energy expenditure using CSA accelerometers at hip and wrist sites
  publication-title: Med. Sci. Sports Exer.
– volume: 20
  start-page: 12859
  year: 2020
  end-page: 12870
  ident: b0105
  article-title: Determining physical activity characteristics from wristband data for use in automated insulin delivery systems
  publication-title: IEEE Sens J
– volume: 109
  start-page: 1
  year: 1949
  end-page: 9
  ident: b0150
  article-title: New methods for calculating metabolic rate with special reference to protein metabolism
  publication-title: The Journal of Physiology
– volume: 111
  start-page: 659
  year: 2011
  end-page: 667
  ident: b0075
  article-title: A comparison of energy expenditure estimates from the Actiheart and Actical physical activity monitors during low intensity activities, walking, and jogging
  publication-title: Eur. J. Appl. Physiol.
– reference: J. Zhu, A. Pande, P. Mohapatra and J. J. Han, Using Deep Learning for Energy Expenditure Estimation with wearable sensors, in: 2015 17th International Conference on E-health Networking, Application & Services (HealthCom), Boston, MA, USA, 2015, pp. 501-506.
– volume: 6
  start-page: pp
  year: 2018
  ident: b0040
  article-title: Indirect calorimetry: History, technology, and application
  publication-title: Front. Pediatr.
– volume: 38
  start-page: 1496
  year: Jul; 2020,
  end-page: 1505
  ident: b0100
  article-title: Improving energy expenditure estimates from wearable devices: A machine learning approach
  publication-title: J Sports Sci.
– reference: D. Khovalyg and J. Kwak, Dynamics of metabolic rate in male individuals due to the meal and regular office activities, in: CLIMA 2022 The 14
– volume: 38
  start-page: 1339
  year: 2019
  end-page: 1347
  ident: b0165
  article-title: Skin temperature response to a liquid meal intake is different in men than in women
  publication-title: Clin Nutr.
– volume: 3
  start-page: 1
  year: 2008
  end-page: 18
  ident: b0045
  article-title: Human motion tracking for rehabilitation—A survey
  publication-title: Biomed. Signal Process. Control
– reference: REHVA HVAC World Congress Proceedings, 2022.
– reference: .
– volume: 32
  start-page: 489
  year: 2000
  end-page: 497
  ident: b0065
  article-title: A comparative evaluation of three accelerometry-based physical activity monitors
  publication-title: Med. Sci. Sports Exer.
– volume: 79
  start-page: 199
  year: 2019
  end-page: 208
  ident: b0030
  article-title: Exploring the human thermoneutral zone – A dynamic approach
  publication-title: J. Therm. Biol.
– reference: Qian Wei, GU, Chunlei, ZHU, Congxi et al., Short-Term Load Forecasting Based on Multi-model Fusion of CNN-LSTM-LGBM, in: 2021 International Conference on Power Systerm Technology (POWERCON), IEEE, 2021, p. 934–939.
– volume: 30
  start-page: 234
  year: 2022
  end-page: 254
  ident: b0130
  article-title: Inter-individual variability of human thermoregulation: towards personalized ergonomics of the indoor thermal environment
  publication-title: Obesity
– volume: 107
  start-page: 708
  year: 2022
  end-page: 715
  ident: b0005
  article-title: Circadian Rhythms in resting metabolic rate account for apparent daily rhythms in the thermic effect of food
  publication-title: J. Clin. Endocrinol. Metabol.
– volume: 12
  year: 2022
  ident: b0025
  article-title: High daily energy expenditure of Tuvan nomadic pastoralists living in an extreme cold environment
  publication-title: Sci. Rep.
– volume: 117
  start-page: 1765
  year: 2017
  end-page: 1785
  ident: b0035
  article-title: Direct calorimetry: a brief historical review of its use in the study of human metabolism and thermoregulation
  publication-title: Eur. J. Appl. Physiol.
– volume: 123
  year: 2023
  ident: b0135
  article-title: DeepValve: Development and experimental testing of a Reinforcement Learning control framework for occupant-centric heating in offices
  publication-title: Eng. Applicat. Artif. Intel.
– volume: 22
  start-page: 023
  year: 2018
  end-page: 030
  ident: b0020
  article-title: Non-exercise activity thermogenesis (NEAT): a component of total daily energy expenditure
  publication-title: J. Exer. Nutr. Biochem.
– volume: 16
  start-page: 679
  issue: 4
  year: 2002
  ident: 10.1016/j.bspc.2023.105381_b0010
  article-title: Non-exercise activity thermogenesis (NEAT)
  publication-title: Best Pract. Res. Clin. Endocr. Metabol.
  doi: 10.1053/beem.2002.0227
– ident: 10.1016/j.bspc.2023.105381_b0085
  doi: 10.1109/HealthCom.2015.7454554
– volume: 22
  start-page: 023
  issue: 2
  year: 2018
  ident: 10.1016/j.bspc.2023.105381_b0020
  article-title: Non-exercise activity thermogenesis (NEAT): a component of total daily energy expenditure
  publication-title: J. Exer. Nutr. Biochem.
  doi: 10.20463/jenb.2018.0013
– volume: 12
  year: 2022
  ident: 10.1016/j.bspc.2023.105381_b0025
  article-title: High daily energy expenditure of Tuvan nomadic pastoralists living in an extreme cold environment
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-23975-3
– volume: 38
  start-page: 1496
  issue: 13
  year: 2020
  ident: 10.1016/j.bspc.2023.105381_b0100
  article-title: Improving energy expenditure estimates from wearable devices: A machine learning approach
  publication-title: J Sports Sci.
  doi: 10.1080/02640414.2020.1746088
– volume: 109
  start-page: 1
  issue: 1–2
  year: 1949
  ident: 10.1016/j.bspc.2023.105381_b0150
  article-title: New methods for calculating metabolic rate with special reference to protein metabolism
  publication-title: The Journal of Physiology
  doi: 10.1113/jphysiol.1949.sp004363
– volume: 6
  start-page: pp
  issue: 257
  year: 2018
  ident: 10.1016/j.bspc.2023.105381_b0040
  article-title: Indirect calorimetry: History, technology, and application
  publication-title: Front. Pediatr.
– volume: 32
  start-page: 489
  issue: 9
  year: 2000
  ident: 10.1016/j.bspc.2023.105381_b0065
  article-title: A comparative evaluation of three accelerometry-based physical activity monitors
  publication-title: Med. Sci. Sports Exer.
  doi: 10.1097/00005768-200009001-00008
– ident: 10.1016/j.bspc.2023.105381_b0155
– ident: 10.1016/j.bspc.2023.105381_b0115
  doi: 10.1109/POWERCON53785.2021.9697619
– volume: 38
  start-page: 1339
  issue: 3
  year: 2019
  ident: 10.1016/j.bspc.2023.105381_b0165
  article-title: Skin temperature response to a liquid meal intake is different in men than in women
  publication-title: Clin Nutr.
  doi: 10.1016/j.clnu.2018.05.026
– volume: 3
  start-page: 1
  issue: 1
  year: 2008
  ident: 10.1016/j.bspc.2023.105381_b0045
  article-title: Human motion tracking for rehabilitation—A survey
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2007.09.001
– start-page: 450
  year: 2000
  ident: 10.1016/j.bspc.2023.105381_b0070
  article-title: Estimation of energy expenditure using CSA accelerometers at hip and wrist sites
  publication-title: Med. Sci. Sports Exer.
  doi: 10.1097/00005768-200009001-00003
– volume: 5
  start-page: 48
  issue: 3
  year: 2016
  ident: 10.1016/j.bspc.2023.105381_b0050
  article-title: A comparative review of footwear-based wearable systems
  publication-title: Electronics
  doi: 10.3390/electronics5030048
– volume: 30
  start-page: 234
  issue: 7
  year: 2022
  ident: 10.1016/j.bspc.2023.105381_b0130
  article-title: Inter-individual variability of human thermoregulation: towards personalized ergonomics of the indoor thermal environment
  publication-title: Obesity
  doi: 10.1002/oby.23454
– volume: 20
  start-page: 12859
  issue: 21
  year: 2020
  ident: 10.1016/j.bspc.2023.105381_b0105
  article-title: Determining physical activity characteristics from wristband data for use in automated insulin delivery systems
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2020.3000772
– volume: 22
  start-page: 546
  issue: 5
  year: 2010
  ident: 10.1016/j.bspc.2023.105381_b0160
  article-title: Varying postprandial abdominovagal and cardiovagal activity in normal subjects
  publication-title: Neurogastroenterol Motil
– volume: 233
  year: 2023
  ident: 10.1016/j.bspc.2023.105381_b0140
  article-title: Experimental study of the hydrodynamic and thermal performances of ventilated wall structures
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2023.110114
– volume: 117
  start-page: 1765
  issue: 9
  year: 2017
  ident: 10.1016/j.bspc.2023.105381_b0035
  article-title: Direct calorimetry: a brief historical review of its use in the study of human metabolism and thermoregulation
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-017-3670-5
– volume: 214
  year: 2021
  ident: 10.1016/j.bspc.2023.105381_b0110
  article-title: A novel stacked generalization ensemble-based hybridLGBM-XGB-MLP model for Short-Term Forecasting
  publication-title: Energy
– volume: 441
  start-page: 161
  year: 2021
  ident: 10.1016/j.bspc.2023.105381_b0120
  article-title: A review of irregular time series data handling with gated recurrent neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.02.046
– volume: 111
  start-page: 659
  issue: 4
  year: 2011
  ident: 10.1016/j.bspc.2023.105381_b0075
  article-title: A comparison of energy expenditure estimates from the Actiheart and Actical physical activity monitors during low intensity activities, walking, and jogging
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-010-1672-7
– volume: 123
  year: 2023
  ident: 10.1016/j.bspc.2023.105381_b0135
  article-title: DeepValve: Development and experimental testing of a Reinforcement Learning control framework for occupant-centric heating in offices
  publication-title: Eng. Applicat. Artif. Intel.
  doi: 10.1016/j.engappai.2023.106310
– volume: 79
  start-page: 199
  year: 2019
  ident: 10.1016/j.bspc.2023.105381_b0030
  article-title: Exploring the human thermoneutral zone – A dynamic approach
  publication-title: J. Therm. Biol.
  doi: 10.1016/j.jtherbio.2018.12.014
– volume: 37
  start-page: 1770
  year: 2016
  ident: 10.1016/j.bspc.2023.105381_b0095
  article-title: Wrist-independent energy expenditure prediction models from raw accelerometer data
  publication-title: Physiol. Measur.
  doi: 10.1088/0967-3334/37/10/1770
– volume: 20
  start-page: 1081
  issue: 4
  year: 2016
  ident: 10.1016/j.bspc.2023.105381_b0090
  article-title: Estimating energy expenditure with multiple models using different wearable sensors
  publication-title: IEEE J. Biomed. Health Informat.
  doi: 10.1109/JBHI.2015.2432911
– volume: 54
  start-page: 332
  year: 2020
  ident: 10.1016/j.bspc.2023.105381_b0055
  article-title: How well do activity monitors estimate energy expenditure? A systematic review and meta-analysis of the validity of current technologies
  publication-title: British J. Sport Med.
  doi: 10.1136/bjsports-2018-099643
– ident: 10.1016/j.bspc.2023.105381_b0145
– volume: 18
  start-page: 56
  issue: S1
  year: 2017
  ident: 10.1016/j.bspc.2023.105381_b0015
  article-title: Isometric thermogenesis at rest and during movement: a neglected variable in energy expenditure and obesity predisposition
  publication-title: Obes. Rev.
  doi: 10.1111/obr.12505
– ident: 10.1016/j.bspc.2023.105381_b0125
  doi: 10.1109/I-SMAC49090.2020.9243376
– volume: 107
  start-page: 708
  issue: 2
  year: 2022
  ident: 10.1016/j.bspc.2023.105381_b0005
  article-title: Circadian Rhythms in resting metabolic rate account for apparent daily rhythms in the thermic effect of food
  publication-title: J. Clin. Endocrinol. Metabol.
  doi: 10.1210/clinem/dgab654
– volume: 32
  start-page: 442
  issue: 9
  year: 2000
  ident: 10.1016/j.bspc.2023.105381_b0060
  article-title: Validity of accelerometry for the assessment of moderate intensity physical activity in the field
  publication-title: Med. Sci. Sports Exer.
  doi: 10.1097/00005768-200009001-00002
– volume: 45
  start-page: 2105
  issue: 11
  year: 2013
  ident: 10.1016/j.bspc.2023.105381_b0080
  article-title: A comparison of energy expenditure estimation of several physical activity monitors
  publication-title: Med. Sci. Sports Exer.
  doi: 10.1249/MSS.0b013e318299d2eb
SSID ssj0048714
Score 2.4296148
Snippet •Dynamic modeling of energy expenditure can capture transient thermoregulation and food intake effect.•LSTM networks promise high accuracy of time-series data...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105381
SubjectTerms Dynamic metabolism
Human energy expenditure
Machine learning
Personalized model
Recurrent neural networks
Time series
Wearable sensing
Title Dynamic personalized human body energy expenditure: Prediction using time series forecasting LSTM models
URI https://dx.doi.org/10.1016/j.bspc.2023.105381
Volume 87
WOSCitedRecordID wos001074799100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1746-8108
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0048714
  issn: 1746-8094
  databaseCode: AIEXJ
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2FlgMcEJ-iFNAeuEWOYq-9trlFUASIVpUIKDdrd71uE0VO5CRV25_RX8zMju24BSp64GJFlr1xPC8zs7sz7zH2zkqIEqFUXhEFhRfaUHoa4ohnhAUAaH-ok9yJTcRHR8lkkh73eldNL8zZPC7L5Pw8Xf5XU8M5MDa2zt7B3O2gcAI-g9HhCGaH4z8Z_iNpzCMhMaXZl5BTkhSfXuQXfUvdfkjtj9vVm8p1px9XuGPjwLBxywcoOt_HB7aOscEatXIV0t--jw9JP2d1bUPYtfFTj-X0BFPcJbUgNE2QdU381hVX9hK8UbUmP_VzirsHU9U_HHQqDrDVaEalQiP45boND6cLeGUXJzQFmCtFGuDN8kUQdpYvyOPGITIik9Jx45LrGEw-FTJAQbIuv7l7WnmYDfRqiXSUgRhsL77OrX0j5rWViE2R2yzDMTIcI6Mx7rHdII5S8JS7oy8Hk69NfIcZnmOMbx-8bsWiqsGbT_LndKeTwowfs0f13IOPCDNPWM-WT9nDDiPlM3Zao4d30cMdejiihxN6eAc97_kWO9xhhyN2OGGHd7DDETucsPOc_fh0MP7w2avFOOBvG4Zrz6ZCDk0sTBL4KrFCSaF8X9s8NnnkF8LkUgsppJZDEQjjBygwbyJZ5EIn2kjxgu2Ui9K-ZDyO8iAvhqnONdLnJYkKC22EKVJdKBWZPeY37ywzNVM9CqbMs79ba4_123uWxNNy69VRY4qszjQpg8wAWbfc9-pO37LPHmwR_5rtrKuNfcPum7P1dFW9rWH1C0VJpEI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+personalized+human+body+energy+expenditure%3A+Prediction+using+time+series+forecasting+LSTM+models&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Perez+Cortes%2C+Victoria+M.&rft.au=Chatterjee%2C+Arnab&rft.au=Khovalyg%2C+Dolaana&rft.date=2024-01-01&rft.issn=1746-8094&rft.volume=87&rft.spage=105381&rft_id=info:doi/10.1016%2Fj.bspc.2023.105381&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2023_105381
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon