A strong convergence result involving an inertial forward–backward algorithm for monotone inclusions

Our interest in this paper is to prove a strong convergence result for finding a zero of the sum of two monotone operators, with one of the two operators being co-coercive using an iterative method which is a combination of Nesterov’s acceleration scheme and Haugazeau’s algorithm in real Hilbert spa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Fixed point theory and algorithms for sciences and engineering Ročník 19; číslo 4; s. 3097 - 3118
Hlavní autoři: Dong, Qiaoli, Jiang, Dan, Cholamjiak, Prasit, Shehu, Yekini
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.12.2017
Springer Nature B.V
Témata:
ISSN:1661-7738, 1661-7746, 2730-5422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Our interest in this paper is to prove a strong convergence result for finding a zero of the sum of two monotone operators, with one of the two operators being co-coercive using an iterative method which is a combination of Nesterov’s acceleration scheme and Haugazeau’s algorithm in real Hilbert spaces. Our numerical results show that the proposed algorithm converges faster than the un-accelerated Haugazeau’s algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1661-7738
1661-7746
2730-5422
DOI:10.1007/s11784-017-0472-7