Optimizing IoT-driven smart grid stability prediction with dipper throated optimization algorithm for gradient boosting hyperparameters

With the surge in global population and economic expansion, there's been a marked increase in electricity demand. This necessitates the efficient distribution of electricity to both residential and industrial sectors to minimize energy loss. Smart Grids (SG) emerge as a promising solution to re...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energy reports Ročník 12; s. 305 - 320
Hlavní autoři: Alkanhel, Reem Ibrahim, El-Kenawy, El-Sayed M., Eid, Marwa M., Abualigah, Laith, Saeed, Mohammed A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.12.2024
Témata:
ISSN:2352-4847, 2352-4847
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the surge in global population and economic expansion, there's been a marked increase in electricity demand. This necessitates the efficient distribution of electricity to both residential and industrial sectors to minimize energy loss. Smart Grids (SG) emerge as a promising solution to reduce power dissipation in distribution networks. The application of machine learning and artificial intelligence in SGs has significantly improved the precision of predicting consumer electricity needs. This paper presents a novel approach to improving the stability prediction of Internet of Things (IOT)-driven SGs using different advanced machine learning models. This study explores multiple advanced machine-learning techniques, including Gradient Boosting (GB), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Neural Networks, and the Decision Tree classifier, focusing on the stability prediction of SGs. This study explores the efficiency of hyperparameter-optimized GB models in predicting SG dynamic stability that encompasses the ability of the system to return to a stable operating point following a disturbance. Focusing on various models, it identifies the Dipper Throated Optimization Algorithm DTO+GB model as the standout, exhibiting unparalleled accuracy and reliability across critical performance metrics such as accuracy (99.32 %), sensitivity (99.16 %), and specificity (99.54 %). Diagnostic and regression analyses further emphasize its better predictive power and the need for hyperparameter optimization to improve the model. This paper highlights the capabilities of advanced machine learning algorithms in conjunction with tactical hyperparameter optimization in enhancing SG stability prediction, introducing a new baseline for future technological and methodological developments in this application.
AbstractList With the surge in global population and economic expansion, there's been a marked increase in electricity demand. This necessitates the efficient distribution of electricity to both residential and industrial sectors to minimize energy loss. Smart Grids (SG) emerge as a promising solution to reduce power dissipation in distribution networks. The application of machine learning and artificial intelligence in SGs has significantly improved the precision of predicting consumer electricity needs. This paper presents a novel approach to improving the stability prediction of Internet of Things (IOT)-driven SGs using different advanced machine learning models. This study explores multiple advanced machine-learning techniques, including Gradient Boosting (GB), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Neural Networks, and the Decision Tree classifier, focusing on the stability prediction of SGs. This study explores the efficiency of hyperparameter-optimized GB models in predicting SG dynamic stability that encompasses the ability of the system to return to a stable operating point following a disturbance. Focusing on various models, it identifies the Dipper Throated Optimization Algorithm DTO+GB model as the standout, exhibiting unparalleled accuracy and reliability across critical performance metrics such as accuracy (99.32 %), sensitivity (99.16 %), and specificity (99.54 %). Diagnostic and regression analyses further emphasize its better predictive power and the need for hyperparameter optimization to improve the model. This paper highlights the capabilities of advanced machine learning algorithms in conjunction with tactical hyperparameter optimization in enhancing SG stability prediction, introducing a new baseline for future technological and methodological developments in this application.
Author Saeed, Mohammed A.
Abualigah, Laith
Alkanhel, Reem Ibrahim
Eid, Marwa M.
El-Kenawy, El-Sayed M.
Author_xml – sequence: 1
  givenname: Reem Ibrahim
  surname: Alkanhel
  fullname: Alkanhel, Reem Ibrahim
  organization: Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
– sequence: 2
  givenname: El-Sayed M.
  surname: El-Kenawy
  fullname: El-Kenawy, El-Sayed M.
  email: skenawy@ieee.org
  organization: Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology, Mansoura 35111, Egypt
– sequence: 3
  givenname: Marwa M.
  surname: Eid
  fullname: Eid, Marwa M.
  organization: Faculty of Artificial Intelligence, Delta University for Science and Technology, Mansoura 11152, Egypt
– sequence: 4
  givenname: Laith
  surname: Abualigah
  fullname: Abualigah, Laith
  organization: Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman 19328, Jordan
– sequence: 5
  givenname: Mohammed A.
  surname: Saeed
  fullname: Saeed, Mohammed A.
  organization: Electrical Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt
BookMark eNp9kMtqwzAQRUVpoenjB7rSD9iVLdlOoJsS-ggEumnXQpbGyYTEMiORkv5Af7tK0kXpIisNaM4d7rli573vgbG7QuSFKOr7VQ6LHeWlKFUu6lxIdcZGpazKTI1Vc_5nvmS3IayEEMWkFKqWI_b9NkTc4Bf2Cz7z75kj3ELPw8ZQ5AtCx0M0La4x7vhA4NBG9D3_xLjkDocBiMcleRPBcX-MMocNs154Slsb3nlKScYh9JG33oe4P7bcJXYwZDYQgcINu-jMOsDt73vNPp6f3qev2fztZTZ9nGdWKhUzaIwSZanqGqSBsbOtAjdx6bOaVK5patc4aURTFSDkpGuMcZVqi9ZIWynbjeU1K4-5lnwIBJ0eCFPZnS6E3tvUK723qfc2tah1spmg8T_IYjzUjGRwfRp9OKKQSm0RSAebRNhkksBG7Tyewn8AvZyYEg
CitedBy_id crossref_primary_10_62301_usmtd_1701938
crossref_primary_10_1007_s41024_025_00667_9
crossref_primary_10_1007_s00034_024_02919_4
crossref_primary_10_1016_j_suscom_2025_101175
crossref_primary_10_1038_s41598_025_02649_w
crossref_primary_10_1088_1742_6596_2872_1_012005
crossref_primary_10_1016_j_psep_2025_106816
crossref_primary_10_1016_j_egyr_2025_04_039
crossref_primary_10_1016_j_renene_2024_122330
Cites_doi 10.1109/ACCESS.2023.3281529
10.1007/s11356-022-21410-8
10.1002/tee.23075
10.1109/TIE.2014.2361493
10.54216/JAIM.060202
10.3390/pr11051502
10.14733/cadaps.2024.S16.178-198
10.1002/2050-7038.12706
10.3390/info14050272
10.1155/2023/9974409
10.3389/fenrg.2022.861571
10.1016/j.energy.2014.07.065
10.3390/smartcities4020029
10.32604/cmc.2023.038758
10.1007/978-3-030-03146-6_86
10.1109/ACCESS.2020.2991067
10.3389/fenrg.2023.1141374
10.1007/s00704-022-04166-6
10.1007/s00500-021-05590-y
10.1016/j.energy.2018.07.084
10.3390/math10234421
10.3390/diagnostics12112892
10.1007/s42979-021-00463-5
10.54216/JAIM.060204
10.1016/j.egyr.2022.10.402
10.3390/en11071636
10.1109/ACCESS.2020.2983091
10.1109/TII.2011.2166794
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.egyr.2024.06.034
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2352-4847
EndPage 320
ExternalDocumentID 10_1016_j_egyr_2024_06_034
S2352484724003871
GroupedDBID 0R~
4.4
457
5VS
6I.
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
KQ8
M41
M~E
O9-
OK1
ROL
SSZ
AAYXX
CITATION
ID FETCH-LOGICAL-c344t-e7a4022466e3ae8dcb4ed9dc34595d776d7d3a0751e039f7aad54b1ba3c54cf83
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001346781500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2352-4847
IngestDate Sat Nov 29 07:42:47 EST 2025
Tue Nov 18 21:52:59 EST 2025
Sat Aug 23 17:11:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Dipper throated optimization
Smart grid stability
Hyperparameter Optimization
Deep Learning
Machine learning
Gradient boosting
Language English
License This is an open access article under the CC BY-NC license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-e7a4022466e3ae8dcb4ed9dc34595d776d7d3a0751e039f7aad54b1ba3c54cf83
OpenAccessLink http://dx.doi.org/10.1016/j.egyr.2024.06.034
PageCount 16
ParticipantIDs crossref_primary_10_1016_j_egyr_2024_06_034
crossref_citationtrail_10_1016_j_egyr_2024_06_034
elsevier_sciencedirect_doi_10_1016_j_egyr_2024_06_034
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle Energy reports
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Khafaga, Ibrahim, El-Kenawy, Abdelhamid, Karim, Mirjalili, Ghoneim (bib22) 2022; 12
Gupta, Kambli, Wagh, Kazi (bib17) 2014; 62
Omitaomu, Niu (bib33) 2021; 4
Neelakandan, Prakash, Geetha, Mary Rexcy Asha, Roberts (bib31) 2022; 36
Pan, Lee (bib34) 2012; 1
Djaafari, Ibrahim, Bailek, Bouchouicha, Hassan, Kuriqi, El-Kenawy (bib13) 2022; 8
Parmar, A., Katariya, R., & Patel, V. (2019). A review on random forest: An ensemble classifier. In International Conference on Intelligent Data Communication Technologies and Internet of Things (ICICI) 2018 (pp. 758-763). Springer International Publishing. doi
Mohsen, Alharbi (bib26) 2021
Alazab, Khan, Krishnan, Pham, Reddy, Gadekallu (bib4) 2020; 8
Khafaga (bib21) 2022; 73
Zhao, Zeng, Li (bib40) 2020; 15
Mohsen, Bajaj, Kotb, Pushkarna, Alphonse, Ghoneim (bib28) 2023; 2023
Mohsen, Ghoneim, Alzaidi, Alzahrani, Hassan (bib29) 2023; 75
Rizk, Arkhstan, Zaki, Kandel, Towfek (bib36) 2023; 6
Bouktif, Fiaz, Ouni, Serhani (bib9) 2018; 11
Ahmad, William, Uike, Murgai, Bajaj, Deepak, Shrivastava (bib3) 2024; 12
Mittal, Iwendi, Khan, Javed (bib25) 2020; 1
Breviglieri, Erdem, Eken (bib10) 2021; 2
Al-Helali, Chen, Xue, Zhang (bib5) 2021; 25
Hernández, Baladrón, Aguiar, Carro, Sánchez-Esguevillas, Lloret (bib19) 2014; 75
Jiang, Lin, Yang, Tang, Zhang, Zhou, Xiao (bib20) 2023; 11
Ali, Azad (bib6) 2013
Li, S., Du, K., & Li, Z. (2024). Influence on Stability Analysis in Distributed Smart Grids Using Computer Aimed Digital Decision Trees.
Chebil, Wedyan, Alazab, Alturki, Elshaweesh (bib11) 2023; 14
Naeem, Ullah, Srivastava (bib30) 2024
Tian (bib38) 2018; 174
Hassan, Bailek, Bouchouicha, Ibrahim, Jamil, Kuriqi, El-Kenawy (bib18) 2022; 150
Mohsen, Ali, El-Rabaie, ElKaseer, Scholz, Hassan (bib27) 2023
Zaki, Towfek, Gee, Zhang, Soliman (bib39) 2023; 6
Ahmad, Chen (bib2) 2018; 160
Bashir, Khan, Prabadevi, Deepa, Alnumay, Gadekallu, Maddikunta (bib8) 2021; 31
.
Balouch, Abrar, Abdul Muqeet, Shahzad, Jamil, Hamdi, Hamam (bib7) 2022; 10
Smart Grid Stability. (n.d.). Retrieved May 26, 2024, from https://www.kaggle.com/datasets/pcbreviglieri/smart-grid-stability.
Deepa, N., Pham, Q.V., Nguyen, D.C., et al. (2020). A survey on blockchain for big data: Approaches, opportunities, and future directions. arXiv Preprint arXiv:2009.00858.
Mitchell, Bahadoorsingh, Ramsamooj, Sharma (bib24) 2017; 1
El-Kenawy, Khodadadi, Mirjalili, Makarovskikh, Abotaleb, Khalid Karim, Alkahtani (bib14) 2022; 10
El-Kenawy, Zerouali, Bailek, Bouchouich, Hassan, Almorox, Ibrahim (bib15) 2022; 29
Numan, Subhan, Khan (bib32) 2020; 8
Gungor, Sahin, Kocak (bib16) 2011; 7
Abdelhamid, Towfek, Khodadadi, Alhussan, Khafaga, Eid, Ibrahim (bib1) 2023; 11
Mohsen (10.1016/j.egyr.2024.06.034_bib28) 2023; 2023
Pan (10.1016/j.egyr.2024.06.034_bib34) 2012; 1
Abdelhamid (10.1016/j.egyr.2024.06.034_bib1) 2023; 11
Mohsen (10.1016/j.egyr.2024.06.034_bib26) 2021
Mohsen (10.1016/j.egyr.2024.06.034_bib29) 2023; 75
Bouktif (10.1016/j.egyr.2024.06.034_bib9) 2018; 11
10.1016/j.egyr.2024.06.034_bib37
10.1016/j.egyr.2024.06.034_bib35
10.1016/j.egyr.2024.06.034_bib12
Djaafari (10.1016/j.egyr.2024.06.034_bib13) 2022; 8
Breviglieri (10.1016/j.egyr.2024.06.034_bib10) 2021; 2
Mitchell (10.1016/j.egyr.2024.06.034_bib24) 2017; 1
Hernández (10.1016/j.egyr.2024.06.034_bib19) 2014; 75
Al-Helali (10.1016/j.egyr.2024.06.034_bib5) 2021; 25
Mittal (10.1016/j.egyr.2024.06.034_bib25) 2020; 1
Omitaomu (10.1016/j.egyr.2024.06.034_bib33) 2021; 4
El-Kenawy (10.1016/j.egyr.2024.06.034_bib14) 2022; 10
Ali (10.1016/j.egyr.2024.06.034_bib6) 2013
Zhao (10.1016/j.egyr.2024.06.034_bib40) 2020; 15
Jiang (10.1016/j.egyr.2024.06.034_bib20) 2023; 11
Tian (10.1016/j.egyr.2024.06.034_bib38) 2018; 174
Hassan (10.1016/j.egyr.2024.06.034_bib18) 2022; 150
Numan (10.1016/j.egyr.2024.06.034_bib32) 2020; 8
Ahmad (10.1016/j.egyr.2024.06.034_bib2) 2018; 160
Mohsen (10.1016/j.egyr.2024.06.034_bib27) 2023
Rizk (10.1016/j.egyr.2024.06.034_bib36) 2023; 6
Khafaga (10.1016/j.egyr.2024.06.034_bib21) 2022; 73
Neelakandan (10.1016/j.egyr.2024.06.034_bib31) 2022; 36
10.1016/j.egyr.2024.06.034_bib23
Naeem (10.1016/j.egyr.2024.06.034_bib30) 2024
El-Kenawy (10.1016/j.egyr.2024.06.034_bib15) 2022; 29
Bashir (10.1016/j.egyr.2024.06.034_bib8) 2021; 31
Zaki (10.1016/j.egyr.2024.06.034_bib39) 2023; 6
Gungor (10.1016/j.egyr.2024.06.034_bib16) 2011; 7
Gupta (10.1016/j.egyr.2024.06.034_bib17) 2014; 62
Chebil (10.1016/j.egyr.2024.06.034_bib11) 2023; 14
Balouch (10.1016/j.egyr.2024.06.034_bib7) 2022; 10
Ahmad (10.1016/j.egyr.2024.06.034_bib3) 2024; 12
Khafaga (10.1016/j.egyr.2024.06.034_bib22) 2022; 12
Alazab (10.1016/j.egyr.2024.06.034_bib4) 2020; 8
References_xml – volume: 160
  start-page: 1008
  year: 2018
  end-page: 1020
  ident: bib2
  article-title: Potential of three variant machine-learning models for forecasting district level medium-term and long-term energy demand in smart grid environment
  publication-title: Energy
– volume: 1
  start-page: 1
  year: 2017
  end-page: 4
  ident: bib24
  article-title: A comparison of artificial neural networks and support vector machines for short-term load forecasting using various load types
  publication-title: IEEE
– volume: 14
  start-page: 272
  year: 2023
  ident: bib11
  article-title: Improving semantic information retrieval using multinomial naive bayes classifier and Bayesian networks
  publication-title: Information
– year: 2023
  ident: bib27
  article-title: Brain tumor classification using hybrid single image super-resolution technique with ResNext101_32×8d and VGG19 pre-trained models
  publication-title: IEEE Access
– volume: 4
  start-page: 548
  year: 2021
  end-page: 568
  ident: bib33
  article-title: Artificial intelligence techniques in smart grid: a survey
  publication-title: Smart Cities
– volume: 1
  year: 2020
  ident: bib25
  article-title: Analysis of security and energy efficiency for shortest route discovery in low-energy adaptive clustering hierarchy protocol using Levenberg-Marquardt neural network and gated recurrent unit for intrusion detection system
  publication-title: Trans. Emerg. Telecommun. Technol.
– start-page: 458
  year: 2021
  end-page: 461
  ident: bib26
  article-title: EEG-based human emotion prediction using an LSTM model. In 2021
  publication-title: IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)
– volume: 12
  start-page: 581
  year: 2024
  end-page: 590
  ident: bib3
  article-title: Framework for sustainable energy management using smart grid panels integrated with machine learning and iot based approach
  publication-title: Int. J. Intell. Syst. Appl. Eng.
– volume: 8
  start-page: 85454
  year: 2020
  end-page: 85463
  ident: bib4
  article-title: A multidirectional LSTM model for predicting the stability of a smart grid
  publication-title: IEEE Access
– volume: 8
  start-page: 15548
  year: 2022
  end-page: 15562
  ident: bib13
  article-title: Hourly predictions of direct normal irradiation using an innovative hybrid LSTM model for concentrating solar power projects in hyper-arid regions
  publication-title: Energy Rep.
– volume: 25
  start-page: 5993
  year: 2021
  end-page: 6012
  ident: bib5
  article-title: A new imputation method based on genetic programming and weighted KNN for symbolic regression with incomplete data
  publication-title: Soft Comput.
– volume: 6
  start-page: 16
  year: 2023
  end-page: 25
  ident: bib39
  article-title: Advancing parking space surveillance using a neural network approach with feature extraction and dipper throated optimization integration
  publication-title: J. Artif. Intell. Metaheurist.
– volume: 62
  start-page: 2478
  year: 2014
  end-page: 2486
  ident: bib17
  article-title: Support-vector-machine-based proactive cascade prediction in smart grid using probabilistic framework
  publication-title: IEEE Trans. Ind. Electron.
– reference: Smart Grid Stability. (n.d.). Retrieved May 26, 2024, from https://www.kaggle.com/datasets/pcbreviglieri/smart-grid-stability.
– volume: 15
  start-page: 460
  year: 2020
  end-page: 468
  ident: bib40
  article-title: Collaborative control of thermostatically controlled appliances for balancing renewable generation in smart grid
  publication-title: IEEJ Trans. Electr. Electron. Eng.
– volume: 10
  year: 2022
  ident: bib7
  article-title: Optimal scheduling of demand side load management of smart grid considering energy efficiency
  publication-title: Front. Energy Res.
– volume: 2023
  year: 2023
  ident: bib28
  article-title: Efficient artificial neural network for smart grid stability prediction
  publication-title: Int. Trans. Electr. Energy Syst.
– volume: 6
  year: 2023
  ident: bib36
  article-title: Integrated CNN and waterwheel plant algorithm for enhanced global traffic detection
  publication-title: J. Artif. Intell. Metaheurist.
– volume: 174
  start-page: 02025
  year: 2018
  ident: bib38
  article-title: Review of smart grids and their future challenges. In: 173
  publication-title: Edp. Sci.
– volume: 10
  start-page: 4421
  year: 2022
  ident: bib14
  article-title: Metaheuristic optimization for improving weed detection in wheat images captured by drones
  publication-title: Mathematics
– volume: 11
  start-page: 1502
  year: 2023
  ident: bib1
  article-title: Waterwheel plant algorithm: a novel metaheuristic optimization method
  publication-title: Processes
– reference: Deepa, N., Pham, Q.V., Nguyen, D.C., et al. (2020). A survey on blockchain for big data: Approaches, opportunities, and future directions. arXiv Preprint arXiv:2009.00858.
– reference: Li, S., Du, K., & Li, Z. (2024). Influence on Stability Analysis in Distributed Smart Grids Using Computer Aimed Digital Decision Trees.
– volume: 75
  start-page: 5271
  year: 2023
  end-page: 5286
  ident: bib29
  article-title: Classification of electroencephalogram signals using LSTM and SVM based on fast Walsh-Hadamard transform
  publication-title: CMC-Comput. Mater. Continua
– start-page: 135
  year: 2013
  end-page: 150
  ident: bib6
  article-title: Demand Forecasting in Smart Grid
– volume: 36
  year: 2022
  ident: bib31
  article-title: Artificial humming bird with data science enabled stability prediction model for smart grids
  publication-title: Sustain. Comput.: Inform. Syst.
– volume: 31
  year: 2021
  ident: bib8
  article-title: Comparative analysis of machine learning algorithms for prediction of smart grid stability
  publication-title: Int. Trans. Electr. Energy Syst.
– volume: 150
  start-page: 715
  year: 2022
  end-page: 729
  ident: bib18
  article-title: Evaluation of energy extraction of PV systems affected by environmental factors under real outdoor conditions
  publication-title: Theor. Appl. Climatol.
– reference: .
– volume: 1
  start-page: 95
  year: 2012
  end-page: 101
  ident: bib34
  article-title: A comparison of support vector machines and artificial neural networks for mid-term load forecasting
  publication-title: IEEE
– volume: 11
  start-page: 1141374
  year: 2023
  ident: bib20
  article-title: An efficient user demand response framework based on load sensing in smart grid
  publication-title: Front. Energy Res.
– volume: 7
  start-page: 529
  year: 2011
  end-page: 539
  ident: bib16
  article-title: Smart grid technologies: communication technologies and standards
  publication-title: IEEE Trans. Ind. Inform.
– volume: 73
  start-page: 865
  year: 2022
  end-page: 881
  ident: bib21
  article-title: Improved prediction of metamaterial antenna bandwidth using adaptive optimization of LSTM
  publication-title: Comput., Mater. Contin.
– reference: Parmar, A., Katariya, R., & Patel, V. (2019). A review on random forest: An ensemble classifier. In International Conference on Intelligent Data Communication Technologies and Internet of Things (ICICI) 2018 (pp. 758-763). Springer International Publishing. doi:
– volume: 12
  start-page: 2892
  year: 2022
  ident: bib22
  article-title: An Al-Biruni earth radius optimization-based deep convolutional neural network for classifying monkeypox disease
  publication-title: Diagnostics
– volume: 8
  start-page: 65450
  year: 2020
  end-page: 65461
  ident: bib32
  article-title: A systematic review on clone node detection in static wireless sensor networks
  publication-title: IEEE Access
– volume: 29
  start-page: 81279
  year: 2022
  end-page: 81299
  ident: bib15
  article-title: Improved weighted ensemble learning for predicting the daily reference evapotranspiration under the semi-arid climate conditions
  publication-title: Environ. Sci. Pollut. Res.
– volume: 11
  start-page: 1636
  year: 2018
  ident: bib9
  article-title: Optimal deep learning LSTM model for electric load forecasting using feature selection and genetic algorithm: comparison with machine learning approaches
  publication-title: Energies
– year: 2024
  ident: bib30
  article-title: Classification of intrusion cyber-attacks in smart power grids using deep ensemble learning with metaheuristic-based optimization.
  publication-title: Expert Syst.
– volume: 75
  start-page: 252
  year: 2014
  end-page: 264
  ident: bib19
  article-title: Artificial neural networks for short-term load forecasting in microgrids environment
  publication-title: Energy
– volume: 2
  start-page: 1
  year: 2021
  end-page: 12
  ident: bib10
  article-title: Predicting smart grid stability with optimized deep models
  publication-title: SN Comput. Sci.
– volume: 1
  start-page: 95
  year: 2012
  ident: 10.1016/j.egyr.2024.06.034_bib34
  article-title: A comparison of support vector machines and artificial neural networks for mid-term load forecasting
  publication-title: IEEE
– year: 2023
  ident: 10.1016/j.egyr.2024.06.034_bib27
  article-title: Brain tumor classification using hybrid single image super-resolution technique with ResNext101_32×8d and VGG19 pre-trained models
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3281529
– volume: 29
  start-page: 81279
  issue: 54
  year: 2022
  ident: 10.1016/j.egyr.2024.06.034_bib15
  article-title: Improved weighted ensemble learning for predicting the daily reference evapotranspiration under the semi-arid climate conditions
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-022-21410-8
– volume: 15
  start-page: 460
  issue: 3
  year: 2020
  ident: 10.1016/j.egyr.2024.06.034_bib40
  article-title: Collaborative control of thermostatically controlled appliances for balancing renewable generation in smart grid
  publication-title: IEEJ Trans. Electr. Electron. Eng.
  doi: 10.1002/tee.23075
– volume: 62
  start-page: 2478
  issue: 4
  year: 2014
  ident: 10.1016/j.egyr.2024.06.034_bib17
  article-title: Support-vector-machine-based proactive cascade prediction in smart grid using probabilistic framework
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2014.2361493
– volume: 6
  start-page: 16
  issue: 2
  year: 2023
  ident: 10.1016/j.egyr.2024.06.034_bib39
  article-title: Advancing parking space surveillance using a neural network approach with feature extraction and dipper throated optimization integration
  publication-title: J. Artif. Intell. Metaheurist.
  doi: 10.54216/JAIM.060202
– volume: 11
  start-page: 1502
  issue: 5
  year: 2023
  ident: 10.1016/j.egyr.2024.06.034_bib1
  article-title: Waterwheel plant algorithm: a novel metaheuristic optimization method
  publication-title: Processes
  doi: 10.3390/pr11051502
– ident: 10.1016/j.egyr.2024.06.034_bib23
  doi: 10.14733/cadaps.2024.S16.178-198
– volume: 31
  issue: 9
  year: 2021
  ident: 10.1016/j.egyr.2024.06.034_bib8
  article-title: Comparative analysis of machine learning algorithms for prediction of smart grid stability
  publication-title: Int. Trans. Electr. Energy Syst.
  doi: 10.1002/2050-7038.12706
– volume: 14
  start-page: 272
  issue: 5
  year: 2023
  ident: 10.1016/j.egyr.2024.06.034_bib11
  article-title: Improving semantic information retrieval using multinomial naive bayes classifier and Bayesian networks
  publication-title: Information
  doi: 10.3390/info14050272
– volume: 174
  start-page: 02025
  year: 2018
  ident: 10.1016/j.egyr.2024.06.034_bib38
  article-title: Review of smart grids and their future challenges. In: 173
  publication-title: Edp. Sci.
– volume: 2023
  year: 2023
  ident: 10.1016/j.egyr.2024.06.034_bib28
  article-title: Efficient artificial neural network for smart grid stability prediction
  publication-title: Int. Trans. Electr. Energy Syst.
  doi: 10.1155/2023/9974409
– volume: 36
  year: 2022
  ident: 10.1016/j.egyr.2024.06.034_bib31
  article-title: Artificial humming bird with data science enabled stability prediction model for smart grids
  publication-title: Sustain. Comput.: Inform. Syst.
– ident: 10.1016/j.egyr.2024.06.034_bib37
– volume: 10
  year: 2022
  ident: 10.1016/j.egyr.2024.06.034_bib7
  article-title: Optimal scheduling of demand side load management of smart grid considering energy efficiency
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2022.861571
– volume: 75
  start-page: 252
  year: 2014
  ident: 10.1016/j.egyr.2024.06.034_bib19
  article-title: Artificial neural networks for short-term load forecasting in microgrids environment
  publication-title: Energy
  doi: 10.1016/j.energy.2014.07.065
– volume: 73
  start-page: 865
  issue: 1
  year: 2022
  ident: 10.1016/j.egyr.2024.06.034_bib21
  article-title: Improved prediction of metamaterial antenna bandwidth using adaptive optimization of LSTM
  publication-title: Comput., Mater. Contin.
– volume: 4
  start-page: 548
  issue: 2
  year: 2021
  ident: 10.1016/j.egyr.2024.06.034_bib33
  article-title: Artificial intelligence techniques in smart grid: a survey
  publication-title: Smart Cities
  doi: 10.3390/smartcities4020029
– ident: 10.1016/j.egyr.2024.06.034_bib12
– volume: 1
  start-page: 1
  year: 2017
  ident: 10.1016/j.egyr.2024.06.034_bib24
  article-title: A comparison of artificial neural networks and support vector machines for short-term load forecasting using various load types
  publication-title: IEEE
– volume: 75
  start-page: 5271
  issue: 3
  year: 2023
  ident: 10.1016/j.egyr.2024.06.034_bib29
  article-title: Classification of electroencephalogram signals using LSTM and SVM based on fast Walsh-Hadamard transform
  publication-title: CMC-Comput. Mater. Continua
  doi: 10.32604/cmc.2023.038758
– ident: 10.1016/j.egyr.2024.06.034_bib35
  doi: 10.1007/978-3-030-03146-6_86
– volume: 8
  start-page: 85454
  year: 2020
  ident: 10.1016/j.egyr.2024.06.034_bib4
  article-title: A multidirectional LSTM model for predicting the stability of a smart grid
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2991067
– start-page: 458
  year: 2021
  ident: 10.1016/j.egyr.2024.06.034_bib26
  article-title: EEG-based human emotion prediction using an LSTM model. In 2021
– volume: 12
  start-page: 581
  issue: 2s
  year: 2024
  ident: 10.1016/j.egyr.2024.06.034_bib3
  article-title: Framework for sustainable energy management using smart grid panels integrated with machine learning and iot based approach
  publication-title: Int. J. Intell. Syst. Appl. Eng.
– volume: 11
  start-page: 1141374
  year: 2023
  ident: 10.1016/j.egyr.2024.06.034_bib20
  article-title: An efficient user demand response framework based on load sensing in smart grid
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2023.1141374
– volume: 150
  start-page: 715
  issue: 1-2
  year: 2022
  ident: 10.1016/j.egyr.2024.06.034_bib18
  article-title: Evaluation of energy extraction of PV systems affected by environmental factors under real outdoor conditions
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-022-04166-6
– volume: 1
  year: 2020
  ident: 10.1016/j.egyr.2024.06.034_bib25
  article-title: Analysis of security and energy efficiency for shortest route discovery in low-energy adaptive clustering hierarchy protocol using Levenberg-Marquardt neural network and gated recurrent unit for intrusion detection system
  publication-title: Trans. Emerg. Telecommun. Technol.
– volume: 25
  start-page: 5993
  issue: 8
  year: 2021
  ident: 10.1016/j.egyr.2024.06.034_bib5
  article-title: A new imputation method based on genetic programming and weighted KNN for symbolic regression with incomplete data
  publication-title: Soft Comput.
  doi: 10.1007/s00500-021-05590-y
– volume: 160
  start-page: 1008
  year: 2018
  ident: 10.1016/j.egyr.2024.06.034_bib2
  article-title: Potential of three variant machine-learning models for forecasting district level medium-term and long-term energy demand in smart grid environment
  publication-title: Energy
  doi: 10.1016/j.energy.2018.07.084
– volume: 10
  start-page: 4421
  issue: 23
  year: 2022
  ident: 10.1016/j.egyr.2024.06.034_bib14
  article-title: Metaheuristic optimization for improving weed detection in wheat images captured by drones
  publication-title: Mathematics
  doi: 10.3390/math10234421
– volume: 12
  start-page: 2892
  issue: 11
  year: 2022
  ident: 10.1016/j.egyr.2024.06.034_bib22
  article-title: An Al-Biruni earth radius optimization-based deep convolutional neural network for classifying monkeypox disease
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12112892
– year: 2024
  ident: 10.1016/j.egyr.2024.06.034_bib30
  article-title: Classification of intrusion cyber-attacks in smart power grids using deep ensemble learning with metaheuristic-based optimization.
  publication-title: Expert Syst.
– volume: 2
  start-page: 1
  year: 2021
  ident: 10.1016/j.egyr.2024.06.034_bib10
  article-title: Predicting smart grid stability with optimized deep models
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-021-00463-5
– volume: 6
  issue: 2
  year: 2023
  ident: 10.1016/j.egyr.2024.06.034_bib36
  article-title: Integrated CNN and waterwheel plant algorithm for enhanced global traffic detection
  publication-title: J. Artif. Intell. Metaheurist.
  doi: 10.54216/JAIM.060204
– volume: 8
  start-page: 15548
  year: 2022
  ident: 10.1016/j.egyr.2024.06.034_bib13
  article-title: Hourly predictions of direct normal irradiation using an innovative hybrid LSTM model for concentrating solar power projects in hyper-arid regions
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.10.402
– volume: 11
  start-page: 1636
  issue: 7
  year: 2018
  ident: 10.1016/j.egyr.2024.06.034_bib9
  article-title: Optimal deep learning LSTM model for electric load forecasting using feature selection and genetic algorithm: comparison with machine learning approaches
  publication-title: Energies
  doi: 10.3390/en11071636
– volume: 8
  start-page: 65450
  year: 2020
  ident: 10.1016/j.egyr.2024.06.034_bib32
  article-title: A systematic review on clone node detection in static wireless sensor networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2983091
– start-page: 135
  year: 2013
  ident: 10.1016/j.egyr.2024.06.034_bib6
– volume: 7
  start-page: 529
  issue: 4
  year: 2011
  ident: 10.1016/j.egyr.2024.06.034_bib16
  article-title: Smart grid technologies: communication technologies and standards
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2011.2166794
SSID ssj0001920463
Score 2.346837
Snippet With the surge in global population and economic expansion, there's been a marked increase in electricity demand. This necessitates the efficient distribution...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 305
SubjectTerms Deep Learning
Dipper throated optimization
Gradient boosting
Hyperparameter Optimization
Machine learning
Smart grid stability
Title Optimizing IoT-driven smart grid stability prediction with dipper throated optimization algorithm for gradient boosting hyperparameters
URI https://dx.doi.org/10.1016/j.egyr.2024.06.034
Volume 12
WOSCitedRecordID wos001346781500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2352-4847
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001920463
  issn: 2352-4847
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2352-4847
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001920463
  issn: 2352-4847
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbK4MAFgQCxMSYfuEWZ2tip6yOaQCCxgaBIu0V27CYZSVqlYVs5cOWf44_i2c6vlTGxA5eocpzXJO-r3_Pr995D6GXMdMBjLn0K-wmfwhbCBy9E-nKqhJCBHEtpi7i-Zycns9NT_nE0-tXmwpznrCxnl5d89V9VDWOgbJM6ewt1d0JhAD6D0uEIaofjPyn-AywCRfbdMgGWc19VZj3z1gVM9ZIqUyZ6YBmxG1MgQGWuV7iNx6pstdKV7d0jjCe6dKIcRkSeLCuYVVhmYlJZrljtgZe-ttTpFHa0lakkXhiGzfpKyN8lGDb_T3QYy7-KMnUsgU9aF9472LmnWdHTSXwwA-Ji4-hn_mexgXs6PuzOZ6rJNroQg2HTUjrPEpG6tO-sToeRjYAOWCJ2AQzAOTTwcQZZXzPWruDBYAkm43BgzYlNtfvTULiYxdmhTjamKmxAbRXXJq56pSr3lrXsOIwtPe4sMjIiIyMyHEFC76C7AQu5IRge_xhE_HhgyrPZbofNQzRZXI5wuH0r13tKA-9n_hA9aLYt-JWD2yM00uVj9LOHGu6hhi3UsIEa7qCGe6hhAzXsoIZbqOEh1HAHNQxQwy3UcAs1vAW1J-jLm9fzo7d-09jDjwmlta-ZoLaS4VQToWcqllQrruBkyEPF2FQxRQQ4sxM9JnzBhFAhlRMpSBzSeDEjT9FOuSz1M4RjohTXUwozwbNfgMlkHKRrwsgCZE520aR9iVHcVL03zVfy6O_620Ved83K1Xy5cXbY6iZqvFbnjUaAtRuu27vVtzxH9_ufyD7aqatv-gW6F5_X2bo6sJGkAwu33zYlwhc
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+IoT-driven+smart+grid+stability+prediction+with+dipper+throated+optimization+algorithm+for+gradient+boosting+hyperparameters&rft.jtitle=Energy+reports&rft.au=Alkanhel%2C+Reem+Ibrahim&rft.au=El-Kenawy%2C+El-Sayed+M.&rft.au=Eid%2C+Marwa+M.&rft.au=Abualigah%2C+Laith&rft.date=2024-12-01&rft.issn=2352-4847&rft.eissn=2352-4847&rft.volume=12&rft.spage=305&rft.epage=320&rft_id=info:doi/10.1016%2Fj.egyr.2024.06.034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_egyr_2024_06_034
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4847&client=summon