Monocular human pose estimation: A survey of deep learning-based methods

Vision-based monocular human pose estimation, as one of the most fundamental and challenging problems in computer vision, aims to obtain posture of the human body from input images or video sequences. The recent developments of deep learning techniques have been brought significant progress and rema...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer vision and image understanding Ročník 192; s. 102897
Hlavní autoři: Chen, Yucheng, Tian, Yingli, He, Mingyi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.03.2020
Témata:
ISSN:1077-3142, 1090-235X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Vision-based monocular human pose estimation, as one of the most fundamental and challenging problems in computer vision, aims to obtain posture of the human body from input images or video sequences. The recent developments of deep learning techniques have been brought significant progress and remarkable breakthroughs in the field of human pose estimation. This survey extensively reviews the recent deep learning-based 2D and 3D human pose estimation methods published since 2014. This paper summarizes the challenges, main frameworks, benchmark datasets, evaluation metrics, performance comparison, and discusses some promising future research directions.
ISSN:1077-3142
1090-235X
DOI:10.1016/j.cviu.2019.102897