Monocular human pose estimation: A survey of deep learning-based methods

Vision-based monocular human pose estimation, as one of the most fundamental and challenging problems in computer vision, aims to obtain posture of the human body from input images or video sequences. The recent developments of deep learning techniques have been brought significant progress and rema...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer vision and image understanding Jg. 192; S. 102897
Hauptverfasser: Chen, Yucheng, Tian, Yingli, He, Mingyi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.03.2020
Schlagworte:
ISSN:1077-3142, 1090-235X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vision-based monocular human pose estimation, as one of the most fundamental and challenging problems in computer vision, aims to obtain posture of the human body from input images or video sequences. The recent developments of deep learning techniques have been brought significant progress and remarkable breakthroughs in the field of human pose estimation. This survey extensively reviews the recent deep learning-based 2D and 3D human pose estimation methods published since 2014. This paper summarizes the challenges, main frameworks, benchmark datasets, evaluation metrics, performance comparison, and discusses some promising future research directions.
ISSN:1077-3142
1090-235X
DOI:10.1016/j.cviu.2019.102897