Multi-objective optimization of electrical discharge machining parameters using particle swarm optimization
This manuscript presents an efficient multi-objective optimization method based on using particle swarm optimization together with a desirability function that can be applied where the response variables may have an opposite behavior and where the range of variation of the independent variables as w...
Uloženo v:
| Vydáno v: | Applied soft computing Ročník 153; s. 111300 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.03.2024
|
| Témata: | |
| ISSN: | 1568-4946, 1872-9681 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This manuscript presents an efficient multi-objective optimization method based on using particle swarm optimization together with a desirability function that can be applied where the response variables may have an opposite behavior and where the range of variation of the independent variables as well as those of the responses are subjected to constraints, which has a great deal of industrial interest. For example, maintaining roughness and dimensional tolerances within a tolerance range is determined by the design requirements of the manufactured parts (shape errors, microgeometry errors, etc.) and these requirements must be met in the manufacture of parts. It is demonstrated that it is possible to obtain optimal results in the ranges of variation considered for the independent variables, with regard to those obtained by experimentation. Similarly, models based on Adaptive Network-based Fuzzy Inference Systems are used to solve the problem that may arise from the inadequate fitting of the regression models. Thus, thanks to this present study a fast and efficient method is available for the multiple-optimization of response variables, subject to constraints on both response and independent variables, which are obtained from experiments and modelled by means of soft computing techniques. Furthermore, it is also demonstrated that it is possible to obtain technology tables for various manufacturing processes, which is of great interest from a technological point of view so as to obtain the most suitable processing conditions.
•A novel method for multiple-objective optimization based on PSO is proposed.•The algorithm performs efficiently and with low computational cost.•Technology tables for various manufacturing processes can be obtained.•Optimal manufacturing parameters selection in EDM has been obtained. |
|---|---|
| AbstractList | This manuscript presents an efficient multi-objective optimization method based on using particle swarm optimization together with a desirability function that can be applied where the response variables may have an opposite behavior and where the range of variation of the independent variables as well as those of the responses are subjected to constraints, which has a great deal of industrial interest. For example, maintaining roughness and dimensional tolerances within a tolerance range is determined by the design requirements of the manufactured parts (shape errors, microgeometry errors, etc.) and these requirements must be met in the manufacture of parts. It is demonstrated that it is possible to obtain optimal results in the ranges of variation considered for the independent variables, with regard to those obtained by experimentation. Similarly, models based on Adaptive Network-based Fuzzy Inference Systems are used to solve the problem that may arise from the inadequate fitting of the regression models. Thus, thanks to this present study a fast and efficient method is available for the multiple-optimization of response variables, subject to constraints on both response and independent variables, which are obtained from experiments and modelled by means of soft computing techniques. Furthermore, it is also demonstrated that it is possible to obtain technology tables for various manufacturing processes, which is of great interest from a technological point of view so as to obtain the most suitable processing conditions.
•A novel method for multiple-objective optimization based on PSO is proposed.•The algorithm performs efficiently and with low computational cost.•Technology tables for various manufacturing processes can be obtained.•Optimal manufacturing parameters selection in EDM has been obtained. |
| ArticleNumber | 111300 |
| Author | Luis-Pérez, Carmelo J. |
| Author_xml | – sequence: 1 givenname: Carmelo J. surname: Luis-Pérez fullname: Luis-Pérez, Carmelo J. email: cluis.perez@unavarra.es organization: Engineering Department. Public University of Navarre, Campus de Arrosadía s/n, Pamplona 31006, Navarra, Spain |
| BookMark | eNp9kE1PwzAMhiM0JLbBH-DUP9DRNFmbSFzQxJc0xAXOUeq6m0s_piQbgl9Px3aBw062bD2W32fCRl3fIWPXPJnxhGc39cz6HmZpksoZ51wkyRkbc5Wnsc4UHw39PFOx1DK7YBPv62SAdKrG7ONl2wSK-6JGCLTDqN8EaunbBuq7qK8ibIaFI7BNVJKHtXUrjFoLa-qoW0Ub62yLAZ2Ptv44CAQNRv7TuvbPuUt2XtnG49WxTtn7w_3b4ilevj4-L-6WMQgpQ4xzARUHLEDLIYHKOSQi5VINQ6tEJkCiBaHyUhVaiaLKpK7yXAurteYgxZSlh7vgeu8dVmbjqLXuy_DE7HWZ2ux1mb0uc9A1QOofBBR-3w7OUnMavT2gOITaETrjgbADLMkN8kzZ0yn8Bzivivw |
| CitedBy_id | crossref_primary_10_1039_D4NR02910K crossref_primary_10_1016_j_renene_2025_122570 crossref_primary_10_1016_j_measurement_2024_116323 crossref_primary_10_1007_s40430_024_05247_5 crossref_primary_10_1016_j_jmrt_2025_03_088 crossref_primary_10_1061_JAEEEZ_ASENG_4824 crossref_primary_10_1007_s12008_025_02241_6 crossref_primary_10_1080_10426914_2025_2469545 crossref_primary_10_1007_s12008_024_01936_6 crossref_primary_10_1007_s42452_024_06193_6 crossref_primary_10_1038_s41598_024_75194_7 crossref_primary_10_1088_1402_4896_ad9d9d crossref_primary_10_1016_j_mtcomm_2025_112916 crossref_primary_10_1108_RPJ_11_2024_0485 crossref_primary_10_1038_s41598_024_60825_w crossref_primary_10_1088_2053_1591_ad8ffd crossref_primary_10_1177_09544089251364317 |
| Cites_doi | 10.1016/j.eswa.2023.121349 10.1016/j.apm.2013.10.073 10.1016/j.engappai.2022.105697 10.1016/j.knosys.2018.04.014 10.3390/met7050166 10.1016/j.knosys.2019.03.017 10.1080/10426910802679568 10.1016/j.matpr.2020.10.636 10.1016/j.jclepro.2020.121388 10.1016/j.asoc.2023.110811 10.1007/s00170-015-7967-4 10.1016/j.asoc.2023.110232 10.1080/00224065.1980.11980968 10.1109/21.256541 10.1016/j.engappai.2021.104210 10.1016/j.asoc.2009.08.007 10.1016/j.eswa.2023.121474 10.1016/j.asoc.2012.06.007 10.1016/j.asoc.2012.11.008 10.1016/j.asoc.2016.12.003 10.1016/j.asoc.2022.108713 10.1016/j.matpr.2022.04.141 10.1007/s00170-015-7807-6 10.3390/su12187310 10.1007/s00500-016-2251-6 10.1016/j.asoc.2021.107416 10.1016/j.asoc.2019.105743 10.1007/s00521-021-05844-8 10.1109/ACCESS.2021.3050437 10.1016/j.precisioneng.2021.08.018 10.1007/s00170-011-3262-1 10.1016/j.eswa.2022.116965 10.1016/j.asoc.2023.110580 10.1016/j.asoc.2023.110330 10.1016/j.asoc.2012.03.053 10.1016/j.cam.2018.04.036 10.1016/j.asoc.2020.106489 10.1016/j.asoc.2020.107075 10.1016/j.eswa.2023.120669 10.1016/j.asoc.2014.05.004 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors |
| Copyright_xml | – notice: 2024 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.asoc.2024.111300 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| ExternalDocumentID | 10_1016_j_asoc_2024_111300 S1568494624000747 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6I. 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c344t-e53cf1cebc94872871c032148f1ca8363c4eac387d8b983bf649f7793a9991c43 |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001173345100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Sat Nov 29 07:04:37 EST 2025 Tue Nov 18 21:00:18 EST 2025 Sat Mar 02 15:59:51 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-objective optimization Manufacturing ANFIS Fuzzy modeling PSO |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c344t-e53cf1cebc94872871c032148f1ca8363c4eac387d8b983bf649f7793a9991c43 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.asoc.2024.111300 |
| ParticipantIDs | crossref_primary_10_1016_j_asoc_2024_111300 crossref_citationtrail_10_1016_j_asoc_2024_111300 elsevier_sciencedirect_doi_10_1016_j_asoc_2024_111300 |
| PublicationCentury | 2000 |
| PublicationDate | March 2024 2024-03-00 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: March 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Coppel, Abellan-Nebot, Siller, Rodriguez, Guedea (bib20) 2016; 84 Amor, Tayyab Noman, Petru, Sebastian, Balram (bib35) 2024; 237 Yüksel, Börklü, Sezer, Canyurt (bib4) 2023; 118 P.S.G. de Mattos Neto, M.H.N. Marinho, H. Siqueira, Y. de S. Tadano, V. Machado, T.A. Alves, J.F.L. de Oliveira, F. Madeiro, A methodology to increase the accuracy of particulate matter predictors based on time decomposition, 2020. https://doi.org/10.3390/SU12187310. Peng, Che, Liao, Zhang (bib23) 2023; 145 Tito, Bruno, Pereira, Henrique, Cardoso, Roberto (bib30) 2024; 238 Gao, Yang, Zhang (bib26) 2023; 141 Escamilla-Salazar, Torres-Trevi no, Gonzalez-Ortiz (bib19) 2016; 86 Selvarajan, Venkataramanan, Nair, Srinivasan (bib33) 2023; 230 Venkata Rao, Pawar (bib16) 2010; 10 Devaraj, Mahalingam, Esakki, Astarita, Mirjalili (bib34) 2022; 199 Nguyen, Sugeno (bib41) 1998 Sibalija (bib2) 2019; 84 Rahul, Balaji, Narendranath (bib7) 2023; 18 Rostami, Berahmand, Nasiri, Forouzande (bib3) 2021; 100 Sahu, Nayak, Deka, Roy, Jena (bib5) 2021; 44 Gao, Huang, Li (bib11) 2012; 12 Han, Li, Cai, Li, Deng, Sutherland (bib12) 2020; 262 Torres-Salcedo, Puertas-Arbizu, Luis-Pérez (bib1) 2017; 7 Hegab, Salem, Rahnamayan, Kishawy (bib22) 2021; 108 Das, Pratihar (bib28) 2019; 175 Derringer, Suich (bib39) 1980; 12 Aich, Banerjee (bib17) 2014; 38 Balaji, Siva Kumar, Yuvaraj (bib27) 2021; 102 Toledo, Pires, Pereira, Ferreira (bib29) 2023; 147 De Mattos Neto, Firmino, Siqueira, De Souza Tadano, Alves, De Oliveira, Da Nobrega Marinho, Madeiro (bib44) 2021; 9 Farahnakian, Razfar, Moghri, Asadnia (bib21) 2011; 57 Ciurana, Arias, Ozel (bib37) 2009; 24 Shihabudheen, Pillai (bib43) 2018; 152 Han, Luo, Zhang (bib46) 2020; 95 Alkayem, Parida, Pal (bib18) 2017; 21 Takagi, Sugeno (bib40) 1985; 15 Sibalija, Kumar, Patel, Jagadish (bib10) 2021; 33 Om Prakash, Jeyakumar, Sanjay Gandhi (bib6) 2022; 62 Jang (bib42) 1993; 23 Mukherjee, Chakraborty, Samanta (bib15) 2012; 12 Chung Baek, Park, Seong, Koo, Jung, Kim (bib32) 2024; 236 Lobato, Sousa, Silva, Machado (bib13) 2014; 22 Saha, Tarafdar, Pal, Saha, Srivastava, Das (bib31) 2013; 13 de Melo, Pereira, da Silva Reis, Lauro, Brandão (bib24) 2022; 120 Lu, Chen, Liao, Chen, Ouyang, Li (bib25) 2023; 142 Xu, Yu (bib38) 2018; 340 Kennedy, Eberhart (bib36) 2011 D’Mello, Pai, Puneet (bib8) 2017; 51 Vundavilli, Phani Kumar, Sai (bib9) 2012; 2012 Quarto, D’Urso, Giardini (bib14) 2022; 73 Nguyen (10.1016/j.asoc.2024.111300_bib41) 1998 Xu (10.1016/j.asoc.2024.111300_bib38) 2018; 340 Sibalija (10.1016/j.asoc.2024.111300_bib10) 2021; 33 Hegab (10.1016/j.asoc.2024.111300_bib22) 2021; 108 Venkata Rao (10.1016/j.asoc.2024.111300_bib16) 2010; 10 Selvarajan (10.1016/j.asoc.2024.111300_bib33) 2023; 230 Takagi (10.1016/j.asoc.2024.111300_bib40) 1985; 15 Rostami (10.1016/j.asoc.2024.111300_bib3) 2021; 100 Om Prakash (10.1016/j.asoc.2024.111300_bib6) 2022; 62 Jang (10.1016/j.asoc.2024.111300_bib42) 1993; 23 D’Mello (10.1016/j.asoc.2024.111300_bib8) 2017; 51 Escamilla-Salazar (10.1016/j.asoc.2024.111300_bib19) 2016; 86 Sibalija (10.1016/j.asoc.2024.111300_bib2) 2019; 84 Lobato (10.1016/j.asoc.2024.111300_bib13) 2014; 22 Mukherjee (10.1016/j.asoc.2024.111300_bib15) 2012; 12 Gao (10.1016/j.asoc.2024.111300_bib26) 2023; 141 de Melo (10.1016/j.asoc.2024.111300_bib24) 2022; 120 Das (10.1016/j.asoc.2024.111300_bib28) 2019; 175 Ciurana (10.1016/j.asoc.2024.111300_bib37) 2009; 24 Kennedy (10.1016/j.asoc.2024.111300_bib36) 2011 Rahul (10.1016/j.asoc.2024.111300_bib7) 2023; 18 Vundavilli (10.1016/j.asoc.2024.111300_bib9) 2012; 2012 Torres-Salcedo (10.1016/j.asoc.2024.111300_bib1) 2017; 7 Alkayem (10.1016/j.asoc.2024.111300_bib18) 2017; 21 Coppel (10.1016/j.asoc.2024.111300_bib20) 2016; 84 Peng (10.1016/j.asoc.2024.111300_bib23) 2023; 145 Han (10.1016/j.asoc.2024.111300_bib12) 2020; 262 Balaji (10.1016/j.asoc.2024.111300_bib27) 2021; 102 Lu (10.1016/j.asoc.2024.111300_bib25) 2023; 142 Derringer (10.1016/j.asoc.2024.111300_bib39) 1980; 12 Amor (10.1016/j.asoc.2024.111300_bib35) 2024; 237 Yüksel (10.1016/j.asoc.2024.111300_bib4) 2023; 118 De Mattos Neto (10.1016/j.asoc.2024.111300_bib44) 2021; 9 Toledo (10.1016/j.asoc.2024.111300_bib29) 2023; 147 Devaraj (10.1016/j.asoc.2024.111300_bib34) 2022; 199 Shihabudheen (10.1016/j.asoc.2024.111300_bib43) 2018; 152 Gao (10.1016/j.asoc.2024.111300_bib11) 2012; 12 Farahnakian (10.1016/j.asoc.2024.111300_bib21) 2011; 57 Aich (10.1016/j.asoc.2024.111300_bib17) 2014; 38 10.1016/j.asoc.2024.111300_bib45 Sahu (10.1016/j.asoc.2024.111300_bib5) 2021; 44 Chung Baek (10.1016/j.asoc.2024.111300_bib32) 2024; 236 Saha (10.1016/j.asoc.2024.111300_bib31) 2013; 13 Han (10.1016/j.asoc.2024.111300_bib46) 2020; 95 Quarto (10.1016/j.asoc.2024.111300_bib14) 2022; 73 Tito (10.1016/j.asoc.2024.111300_bib30) 2024; 238 |
| References_xml | – volume: 142 year: 2023 ident: bib25 article-title: Multi-objective optimization for improving machining benefit based on WOA-BBPN and a Deep Double Q-Network publication-title: Appl. Soft Comput. – volume: 199 year: 2022 ident: bib34 article-title: A hybrid GA-ANFIS and F-Race tuned harmony search algorithm for Multi-Response optimization of Non-Traditional Machining process publication-title: Expert Syst. Appl. – volume: 86 start-page: 1997 year: 2016 end-page: 2009 ident: bib19 article-title: Intelligent parameter identification of machining Ti64 alloy publication-title: Int. J. Adv. Manuf. Technol. – volume: 84 year: 2019 ident: bib2 article-title: Particle swarm optimisation in designing parameters of manufacturing processes: A review (2008–2018) publication-title: Appl. Soft Comput. J. – volume: 147 year: 2023 ident: bib29 article-title: A multi-objective robust evolutionary optimization approach applied to the multivariate helical milling process of super duplex steel[Formula presented] publication-title: Appl. Soft Comput. – volume: 237 year: 2024 ident: bib35 article-title: Design and optimization of machinability of ZnO embedded-glass fiber reinforced polymer composites with a modified white shark optimizer publication-title: Expert Syst. Appl. – volume: 12 start-page: 214 year: 1980 end-page: 219 ident: bib39 article-title: Simultaneous Optimization of Several Response Variables publication-title: J. Qual. Technol. – volume: 51 start-page: 105 year: 2017 end-page: 115 ident: bib8 article-title: Optimization studies in high speed turning of Ti-6Al-4V publication-title: Appl. Soft Comput. – volume: 12 start-page: 3490 year: 2012 end-page: 3499 ident: bib11 article-title: An effective cellular particle swarm optimization for parameters optimization of a multi-pass milling process publication-title: Appl. Soft Comput. – volume: 33 start-page: 11985 year: 2021 end-page: 12006 ident: bib10 article-title: A soft computing-based study on WEDM optimization in processing Inconel 625 publication-title: Neural Comput. Appl. – volume: 236 year: 2024 ident: bib32 article-title: Multi-objective robust parameter optimization using the extended and weighted k-means (EWK-means) clustering in laser powder bed fusion (LPBF) publication-title: Expert Syst. Appl. – volume: 95 year: 2020 ident: bib46 article-title: Optimization of varying-parameter drilling for multi-hole parts using metaheuristic algorithm coupled with self-adaptive penalty method publication-title: Appl. Soft Comput. J. – volume: 22 start-page: 261 year: 2014 end-page: 271 ident: bib13 article-title: Multi-objective optimization and bio-inspired methods applied to machinability of stainless steel publication-title: Appl. Soft Comput. J. – volume: 230 year: 2023 ident: bib33 article-title: Simultaneous multi-response Jaya optimization and Pareto front visualization in EDM drilling of MoSi2-SiC composites publication-title: Expert Syst. Appl. – volume: 24 start-page: 358 year: 2009 end-page: 368 ident: bib37 article-title: Neural network modeling and particle swarm optimization (PSO) of process parameters in pulsed laser micromachining of hardened AISI H13 steel publication-title: Mater. Manuf. Process. – volume: 10 start-page: 445 year: 2010 end-page: 456 ident: bib16 article-title: Parameter optimization of a multi-pass milling process using non-traditional optimization algorithms publication-title: Appl. Soft Comput. J. – volume: 38 start-page: 2800 year: 2014 end-page: 2818 ident: bib17 article-title: Modeling of EDM responses by support vector machine regression with parameters selected by particle swarm optimization publication-title: Appl. Math. Model. – volume: 62 start-page: 2332 year: 2022 end-page: 2338 ident: bib6 article-title: Parametric optimization on electro chemical machining process using PSO algorithm publication-title: Mater. Today Proc. – volume: 100 year: 2021 ident: bib3 article-title: Review of swarm intelligence-based feature selection methods publication-title: Eng. Appl. Artif. Intell. – volume: 145 year: 2023 ident: bib23 article-title: Prediction using multi-objective slime mould algorithm optimized support vector regression model publication-title: Appl. Soft Comput. – volume: 44 start-page: 737 year: 2021 end-page: 743 ident: bib5 article-title: Multi-objective optimization of WEDM taper cutting process using MOPSO based on crowding distance publication-title: Mater. Today Proc. – volume: 238 year: 2024 ident: bib30 article-title: Multi-objective evolutionary optimization of extreme gradient boosting regression models of the internal turning of PEEK tubes publication-title: Expert Syst. Appl. – volume: 21 start-page: 7083 year: 2017 end-page: 7098 ident: bib18 article-title: Optimization of friction stir welding process parameters using soft computing techniques publication-title: Soft Comput. – volume: 141 year: 2023 ident: bib26 article-title: A multiobjective evolutionary algorithm using multi-ecological environment selection strategy publication-title: Appl. Soft Comput. – start-page: 1942 year: 2011 end-page: 1948 ident: bib36 article-title: Particle swarm optimization publication-title: Proc. ICNN’95 - Int. Conf. Neural Networks – volume: 12 start-page: 2506 year: 2012 end-page: 2516 ident: bib15 article-title: Selection of wire electrical discharge machining process parameters using non-traditional optimization algorithms publication-title: Appl. Soft Comput. J. – volume: 152 start-page: 136 year: 2018 end-page: 162 ident: bib43 article-title: Recent advances in neuro-fuzzy system: A survey publication-title: Knowl. -Based Syst. – volume: 7 start-page: 166 year: 2017 ident: bib1 article-title: Analytical Modelling of Energy Density and Optimization of the EDM Machining Parameters of Inconel 600 (Open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license: http://creativecommons.org/licenses/by/4.0/) publication-title: Met. (Basel) – volume: 84 start-page: 2219 year: 2016 end-page: 2238 ident: bib20 article-title: Adaptive control optimization in micro-milling of hardened steels—evaluation of optimization approaches publication-title: Int. J. Adv. Manuf. Technol. – volume: 102 year: 2021 ident: bib27 article-title: Multi objective taguchi–grey relational analysis and krill herd algorithm approaches to investigate the parametric optimization in abrasive water jet drilling of stainless steel publication-title: Appl. Soft Comput. – volume: 23 start-page: 665 year: 1993 end-page: 685 ident: bib42 article-title: ANFIS: adaptive-network-based fuzzy inference system publication-title: IEEE Trans. Syst. Man. Cybern. – volume: 73 start-page: 63 year: 2022 end-page: 70 ident: bib14 article-title: Micro-EDM optimization through particle swarm algorithm and artificial neural network publication-title: Precis. Eng. – volume: 13 start-page: 2065 year: 2013 end-page: 2074 ident: bib31 article-title: Multi-objective optimization in wire-electro-discharge machining of TiC reinforced composite through Neuro-Genetic technique publication-title: Appl. Soft Comput. J. – volume: 2012 start-page: 180 year: 2012 end-page: 185 ident: bib9 article-title: Priyatham, Parameter optimization of wire electric discharge machining process using GA and PSO publication-title: IEEE-International Conf. Adv. Eng. Sci. Manag – volume: 340 start-page: 709 year: 2018 end-page: 717 ident: bib38 article-title: On convergence analysis of particle swarm optimization algorithm publication-title: J. Comput. Appl. Math. – volume: 108 year: 2021 ident: bib22 article-title: Analysis, modeling, and multi-objective optimization of machining Inconel 718 with nano-additives based minimum quantity coolant publication-title: Appl. Soft Comput. – reference: P.S.G. de Mattos Neto, M.H.N. Marinho, H. Siqueira, Y. de S. Tadano, V. Machado, T.A. Alves, J.F.L. de Oliveira, F. Madeiro, A methodology to increase the accuracy of particulate matter predictors based on time decomposition, 2020. https://doi.org/10.3390/SU12187310. – volume: 262 year: 2020 ident: bib12 article-title: Parameters optimization considering the trade-off between cutting power and MRR based on Linear Decreasing Particle Swarm Algorithm in milling publication-title: J. Clean. Prod. – volume: 57 start-page: 49 year: 2011 end-page: 60 ident: bib21 article-title: The selection of milling parameters by the PSO-based neural network modeling method publication-title: Int. J. Adv. Manuf. Technol. – year: 1998 ident: bib41 article-title: Fuzzy Systems publication-title: Modeling and Control – volume: 9 start-page: 14470 year: 2021 end-page: 14490 ident: bib44 article-title: Neural-Based Ensembles for Particulate Matter Forecasting publication-title: IEEE Access – volume: 18 year: 2023 ident: bib7 article-title: Optimization of wire-EDM process parameters for Ni–Ti-Hf shape memory alloy through particle swarm optimization and CNN-based SEM-image classification publication-title: Results Eng. – volume: 175 start-page: 1 year: 2019 end-page: 11 ident: bib28 article-title: A novel approach for neuro-fuzzy system-based multi-objective optimization to capture inherent fuzziness in engineering processes publication-title: Knowl. -Based Syst. – volume: 15 start-page: 116 year: 1985 end-page: 132 ident: bib40 article-title: Fuzzy identification of systems and its applications to modeling and control publication-title: IEEE Trans. Syst. Man. Cybern – volume: 118 year: 2023 ident: bib4 article-title: Review of artificial intelligence applications in engineering design perspective publication-title: Eng. Appl. Artif. Intell. – volume: 120 year: 2022 ident: bib24 article-title: Multi-objective evolutionary optimization of unsupervised latent variables of turning process publication-title: Appl. Soft Comput. – volume: 15 start-page: 116 year: 1985 ident: 10.1016/j.asoc.2024.111300_bib40 article-title: Fuzzy identification of systems and its applications to modeling and control – volume: 236 year: 2024 ident: 10.1016/j.asoc.2024.111300_bib32 article-title: Multi-objective robust parameter optimization using the extended and weighted k-means (EWK-means) clustering in laser powder bed fusion (LPBF) publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121349 – volume: 18 year: 2023 ident: 10.1016/j.asoc.2024.111300_bib7 article-title: Optimization of wire-EDM process parameters for Ni–Ti-Hf shape memory alloy through particle swarm optimization and CNN-based SEM-image classification publication-title: Results Eng. – volume: 38 start-page: 2800 year: 2014 ident: 10.1016/j.asoc.2024.111300_bib17 article-title: Modeling of EDM responses by support vector machine regression with parameters selected by particle swarm optimization publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2013.10.073 – volume: 118 year: 2023 ident: 10.1016/j.asoc.2024.111300_bib4 article-title: Review of artificial intelligence applications in engineering design perspective publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105697 – volume: 152 start-page: 136 year: 2018 ident: 10.1016/j.asoc.2024.111300_bib43 article-title: Recent advances in neuro-fuzzy system: A survey publication-title: Knowl. -Based Syst. doi: 10.1016/j.knosys.2018.04.014 – volume: 7 start-page: 166 year: 2017 ident: 10.1016/j.asoc.2024.111300_bib1 publication-title: Met. (Basel) doi: 10.3390/met7050166 – volume: 175 start-page: 1 year: 2019 ident: 10.1016/j.asoc.2024.111300_bib28 article-title: A novel approach for neuro-fuzzy system-based multi-objective optimization to capture inherent fuzziness in engineering processes publication-title: Knowl. -Based Syst. doi: 10.1016/j.knosys.2019.03.017 – volume: 24 start-page: 358 year: 2009 ident: 10.1016/j.asoc.2024.111300_bib37 article-title: Neural network modeling and particle swarm optimization (PSO) of process parameters in pulsed laser micromachining of hardened AISI H13 steel publication-title: Mater. Manuf. Process. doi: 10.1080/10426910802679568 – volume: 44 start-page: 737 year: 2021 ident: 10.1016/j.asoc.2024.111300_bib5 article-title: Multi-objective optimization of WEDM taper cutting process using MOPSO based on crowding distance publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2020.10.636 – volume: 262 year: 2020 ident: 10.1016/j.asoc.2024.111300_bib12 article-title: Parameters optimization considering the trade-off between cutting power and MRR based on Linear Decreasing Particle Swarm Algorithm in milling publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.121388 – volume: 147 year: 2023 ident: 10.1016/j.asoc.2024.111300_bib29 article-title: A multi-objective robust evolutionary optimization approach applied to the multivariate helical milling process of super duplex steel[Formula presented] publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110811 – volume: 86 start-page: 1997 year: 2016 ident: 10.1016/j.asoc.2024.111300_bib19 article-title: Intelligent parameter identification of machining Ti64 alloy publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-015-7967-4 – volume: 141 year: 2023 ident: 10.1016/j.asoc.2024.111300_bib26 article-title: A multiobjective evolutionary algorithm using multi-ecological environment selection strategy publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110232 – volume: 12 start-page: 214 year: 1980 ident: 10.1016/j.asoc.2024.111300_bib39 article-title: Simultaneous Optimization of Several Response Variables publication-title: J. Qual. Technol. doi: 10.1080/00224065.1980.11980968 – volume: 23 start-page: 665 year: 1993 ident: 10.1016/j.asoc.2024.111300_bib42 article-title: ANFIS: adaptive-network-based fuzzy inference system publication-title: IEEE Trans. Syst. Man. Cybern. doi: 10.1109/21.256541 – volume: 100 year: 2021 ident: 10.1016/j.asoc.2024.111300_bib3 article-title: Review of swarm intelligence-based feature selection methods publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104210 – volume: 10 start-page: 445 year: 2010 ident: 10.1016/j.asoc.2024.111300_bib16 article-title: Parameter optimization of a multi-pass milling process using non-traditional optimization algorithms publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2009.08.007 – volume: 237 year: 2024 ident: 10.1016/j.asoc.2024.111300_bib35 article-title: Design and optimization of machinability of ZnO embedded-glass fiber reinforced polymer composites with a modified white shark optimizer publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121474 – volume: 12 start-page: 3490 year: 2012 ident: 10.1016/j.asoc.2024.111300_bib11 article-title: An effective cellular particle swarm optimization for parameters optimization of a multi-pass milling process publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.06.007 – volume: 13 start-page: 2065 year: 2013 ident: 10.1016/j.asoc.2024.111300_bib31 article-title: Multi-objective optimization in wire-electro-discharge machining of TiC reinforced composite through Neuro-Genetic technique publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2012.11.008 – volume: 51 start-page: 105 year: 2017 ident: 10.1016/j.asoc.2024.111300_bib8 article-title: Optimization studies in high speed turning of Ti-6Al-4V publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.12.003 – volume: 120 year: 2022 ident: 10.1016/j.asoc.2024.111300_bib24 article-title: Multi-objective evolutionary optimization of unsupervised latent variables of turning process publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.108713 – volume: 2012 start-page: 180 year: 2012 ident: 10.1016/j.asoc.2024.111300_bib9 article-title: Priyatham, Parameter optimization of wire electric discharge machining process using GA and PSO – volume: 62 start-page: 2332 year: 2022 ident: 10.1016/j.asoc.2024.111300_bib6 article-title: Parametric optimization on electro chemical machining process using PSO algorithm publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2022.04.141 – volume: 84 start-page: 2219 year: 2016 ident: 10.1016/j.asoc.2024.111300_bib20 article-title: Adaptive control optimization in micro-milling of hardened steels—evaluation of optimization approaches publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-015-7807-6 – year: 1998 ident: 10.1016/j.asoc.2024.111300_bib41 article-title: Fuzzy Systems – ident: 10.1016/j.asoc.2024.111300_bib45 doi: 10.3390/su12187310 – volume: 21 start-page: 7083 year: 2017 ident: 10.1016/j.asoc.2024.111300_bib18 article-title: Optimization of friction stir welding process parameters using soft computing techniques publication-title: Soft Comput. doi: 10.1007/s00500-016-2251-6 – volume: 108 year: 2021 ident: 10.1016/j.asoc.2024.111300_bib22 article-title: Analysis, modeling, and multi-objective optimization of machining Inconel 718 with nano-additives based minimum quantity coolant publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107416 – volume: 84 year: 2019 ident: 10.1016/j.asoc.2024.111300_bib2 article-title: Particle swarm optimisation in designing parameters of manufacturing processes: A review (2008–2018) publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2019.105743 – volume: 33 start-page: 11985 year: 2021 ident: 10.1016/j.asoc.2024.111300_bib10 article-title: A soft computing-based study on WEDM optimization in processing Inconel 625 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-05844-8 – volume: 9 start-page: 14470 year: 2021 ident: 10.1016/j.asoc.2024.111300_bib44 article-title: Neural-Based Ensembles for Particulate Matter Forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3050437 – volume: 238 year: 2024 ident: 10.1016/j.asoc.2024.111300_bib30 article-title: Multi-objective evolutionary optimization of extreme gradient boosting regression models of the internal turning of PEEK tubes publication-title: Expert Syst. Appl. – volume: 73 start-page: 63 year: 2022 ident: 10.1016/j.asoc.2024.111300_bib14 article-title: Micro-EDM optimization through particle swarm algorithm and artificial neural network publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2021.08.018 – volume: 57 start-page: 49 year: 2011 ident: 10.1016/j.asoc.2024.111300_bib21 article-title: The selection of milling parameters by the PSO-based neural network modeling method publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-011-3262-1 – volume: 199 year: 2022 ident: 10.1016/j.asoc.2024.111300_bib34 article-title: A hybrid GA-ANFIS and F-Race tuned harmony search algorithm for Multi-Response optimization of Non-Traditional Machining process publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.116965 – volume: 145 year: 2023 ident: 10.1016/j.asoc.2024.111300_bib23 article-title: Prediction using multi-objective slime mould algorithm optimized support vector regression model publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110580 – volume: 142 year: 2023 ident: 10.1016/j.asoc.2024.111300_bib25 article-title: Multi-objective optimization for improving machining benefit based on WOA-BBPN and a Deep Double Q-Network publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110330 – volume: 12 start-page: 2506 year: 2012 ident: 10.1016/j.asoc.2024.111300_bib15 article-title: Selection of wire electrical discharge machining process parameters using non-traditional optimization algorithms publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2012.03.053 – volume: 340 start-page: 709 year: 2018 ident: 10.1016/j.asoc.2024.111300_bib38 article-title: On convergence analysis of particle swarm optimization algorithm publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2018.04.036 – volume: 95 year: 2020 ident: 10.1016/j.asoc.2024.111300_bib46 article-title: Optimization of varying-parameter drilling for multi-hole parts using metaheuristic algorithm coupled with self-adaptive penalty method publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2020.106489 – volume: 102 year: 2021 ident: 10.1016/j.asoc.2024.111300_bib27 article-title: Multi objective taguchi–grey relational analysis and krill herd algorithm approaches to investigate the parametric optimization in abrasive water jet drilling of stainless steel publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.107075 – volume: 230 year: 2023 ident: 10.1016/j.asoc.2024.111300_bib33 article-title: Simultaneous multi-response Jaya optimization and Pareto front visualization in EDM drilling of MoSi2-SiC composites publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.120669 – start-page: 1942 year: 2011 ident: 10.1016/j.asoc.2024.111300_bib36 article-title: Particle swarm optimization – volume: 22 start-page: 261 year: 2014 ident: 10.1016/j.asoc.2024.111300_bib13 article-title: Multi-objective optimization and bio-inspired methods applied to machinability of stainless steel publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2014.05.004 |
| SSID | ssj0016928 |
| Score | 2.5128555 |
| Snippet | This manuscript presents an efficient multi-objective optimization method based on using particle swarm optimization together with a desirability function that... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 111300 |
| SubjectTerms | ANFIS Fuzzy modeling Manufacturing Multi-objective optimization PSO |
| Title | Multi-objective optimization of electrical discharge machining parameters using particle swarm optimization |
| URI | https://dx.doi.org/10.1016/j.asoc.2024.111300 |
| Volume | 153 |
| WOSCitedRecordID | wos001173345100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Na9wwEBVp0kMvbdMPmn6hQ25Gi23JtnQMISUJIQSSwt6MrJUh28QO6902P78zkmxvkhLSQi_GCEsyeuJpJM3MI2TX8rSQcVoxwbWADUqdMSUSy4AHxSzhUubaIX1SnJ7K6VSdBf3OzskJFE0jb2_VzX-FGsoAbAyd_Qu4h0ahAN4BdHgC7PB8EvAupJa11dxTWdQCKVyHaEs0Db3wTX874zIloRMr-lS6yHSN7lqYczNadaHA9RF1v_Ti-k5z65Ztb852wOvOUX217FdF9PdZXXbszN_KL_yh9T60Zq_a6HiyfvKQitH1yh-HPQiJ8QyaSyZUOFe0vkwWKVO512YZaNcnCX5A4f40YT7RMDsn2C2yOo_jccEa3AjPsTPsCx1hUQngGdlKi0wBu23tHR1Mj4f7pFw5ld3h50L4lPf0u9_Tn02UNbPj4jV5GfYLdM9jsE02bPOGvOq1OGig5rfkxz3Y6TpOtK3pCDsdYKcD7HSEnTrYaQ87dbDfae4d-f7t4GL_kAUhDWa4EEtmM27qxNjKKNif4h7ZxChQJaFQS55zI2D95bKYyUpJXtW5UHUBzK1x-2AEf082m7axHwhNdFyYlJsqm9VCmKrSMPg6x0SSNWoL7JCkH7vShCzzKHZyVfbuhPMSx7vE8S79eO-QaKhz43OsPPp11kNSBivRW38lzKBH6n38x3qfyItx8n8mm8vFyn4hz83P5WW3-Bom2m_-DI58 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimization+of+electrical+discharge+machining+parameters+using+particle+swarm+optimization&rft.jtitle=Applied+soft+computing&rft.au=Luis-P%C3%A9rez%2C+Carmelo+J.&rft.date=2024-03-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=153&rft_id=info:doi/10.1016%2Fj.asoc.2024.111300&rft.externalDocID=S1568494624000747 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |