Multi-objective optimization of electrical discharge machining parameters using particle swarm optimization

This manuscript presents an efficient multi-objective optimization method based on using particle swarm optimization together with a desirability function that can be applied where the response variables may have an opposite behavior and where the range of variation of the independent variables as w...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied soft computing Ročník 153; s. 111300
Hlavní autor: Luis-Pérez, Carmelo J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.03.2024
Témata:
ISSN:1568-4946, 1872-9681
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This manuscript presents an efficient multi-objective optimization method based on using particle swarm optimization together with a desirability function that can be applied where the response variables may have an opposite behavior and where the range of variation of the independent variables as well as those of the responses are subjected to constraints, which has a great deal of industrial interest. For example, maintaining roughness and dimensional tolerances within a tolerance range is determined by the design requirements of the manufactured parts (shape errors, microgeometry errors, etc.) and these requirements must be met in the manufacture of parts. It is demonstrated that it is possible to obtain optimal results in the ranges of variation considered for the independent variables, with regard to those obtained by experimentation. Similarly, models based on Adaptive Network-based Fuzzy Inference Systems are used to solve the problem that may arise from the inadequate fitting of the regression models. Thus, thanks to this present study a fast and efficient method is available for the multiple-optimization of response variables, subject to constraints on both response and independent variables, which are obtained from experiments and modelled by means of soft computing techniques. Furthermore, it is also demonstrated that it is possible to obtain technology tables for various manufacturing processes, which is of great interest from a technological point of view so as to obtain the most suitable processing conditions. •A novel method for multiple-objective optimization based on PSO is proposed.•The algorithm performs efficiently and with low computational cost.•Technology tables for various manufacturing processes can be obtained.•Optimal manufacturing parameters selection in EDM has been obtained.
AbstractList This manuscript presents an efficient multi-objective optimization method based on using particle swarm optimization together with a desirability function that can be applied where the response variables may have an opposite behavior and where the range of variation of the independent variables as well as those of the responses are subjected to constraints, which has a great deal of industrial interest. For example, maintaining roughness and dimensional tolerances within a tolerance range is determined by the design requirements of the manufactured parts (shape errors, microgeometry errors, etc.) and these requirements must be met in the manufacture of parts. It is demonstrated that it is possible to obtain optimal results in the ranges of variation considered for the independent variables, with regard to those obtained by experimentation. Similarly, models based on Adaptive Network-based Fuzzy Inference Systems are used to solve the problem that may arise from the inadequate fitting of the regression models. Thus, thanks to this present study a fast and efficient method is available for the multiple-optimization of response variables, subject to constraints on both response and independent variables, which are obtained from experiments and modelled by means of soft computing techniques. Furthermore, it is also demonstrated that it is possible to obtain technology tables for various manufacturing processes, which is of great interest from a technological point of view so as to obtain the most suitable processing conditions. •A novel method for multiple-objective optimization based on PSO is proposed.•The algorithm performs efficiently and with low computational cost.•Technology tables for various manufacturing processes can be obtained.•Optimal manufacturing parameters selection in EDM has been obtained.
ArticleNumber 111300
Author Luis-Pérez, Carmelo J.
Author_xml – sequence: 1
  givenname: Carmelo J.
  surname: Luis-Pérez
  fullname: Luis-Pérez, Carmelo J.
  email: cluis.perez@unavarra.es
  organization: Engineering Department. Public University of Navarre, Campus de Arrosadía s/n, Pamplona 31006, Navarra, Spain
BookMark eNp9kE1PwzAMhiM0JLbBH-DUP9DRNFmbSFzQxJc0xAXOUeq6m0s_piQbgl9Px3aBw062bD2W32fCRl3fIWPXPJnxhGc39cz6HmZpksoZ51wkyRkbc5Wnsc4UHw39PFOx1DK7YBPv62SAdKrG7ONl2wSK-6JGCLTDqN8EaunbBuq7qK8ibIaFI7BNVJKHtXUrjFoLa-qoW0Ub62yLAZ2Ptv44CAQNRv7TuvbPuUt2XtnG49WxTtn7w_3b4ilevj4-L-6WMQgpQ4xzARUHLEDLIYHKOSQi5VINQ6tEJkCiBaHyUhVaiaLKpK7yXAurteYgxZSlh7vgeu8dVmbjqLXuy_DE7HWZ2ux1mb0uc9A1QOofBBR-3w7OUnMavT2gOITaETrjgbADLMkN8kzZ0yn8Bzivivw
CitedBy_id crossref_primary_10_1039_D4NR02910K
crossref_primary_10_1016_j_renene_2025_122570
crossref_primary_10_1016_j_measurement_2024_116323
crossref_primary_10_1007_s40430_024_05247_5
crossref_primary_10_1016_j_jmrt_2025_03_088
crossref_primary_10_1061_JAEEEZ_ASENG_4824
crossref_primary_10_1007_s12008_025_02241_6
crossref_primary_10_1080_10426914_2025_2469545
crossref_primary_10_1007_s12008_024_01936_6
crossref_primary_10_1007_s42452_024_06193_6
crossref_primary_10_1038_s41598_024_75194_7
crossref_primary_10_1088_1402_4896_ad9d9d
crossref_primary_10_1016_j_mtcomm_2025_112916
crossref_primary_10_1108_RPJ_11_2024_0485
crossref_primary_10_1038_s41598_024_60825_w
crossref_primary_10_1088_2053_1591_ad8ffd
crossref_primary_10_1177_09544089251364317
Cites_doi 10.1016/j.eswa.2023.121349
10.1016/j.apm.2013.10.073
10.1016/j.engappai.2022.105697
10.1016/j.knosys.2018.04.014
10.3390/met7050166
10.1016/j.knosys.2019.03.017
10.1080/10426910802679568
10.1016/j.matpr.2020.10.636
10.1016/j.jclepro.2020.121388
10.1016/j.asoc.2023.110811
10.1007/s00170-015-7967-4
10.1016/j.asoc.2023.110232
10.1080/00224065.1980.11980968
10.1109/21.256541
10.1016/j.engappai.2021.104210
10.1016/j.asoc.2009.08.007
10.1016/j.eswa.2023.121474
10.1016/j.asoc.2012.06.007
10.1016/j.asoc.2012.11.008
10.1016/j.asoc.2016.12.003
10.1016/j.asoc.2022.108713
10.1016/j.matpr.2022.04.141
10.1007/s00170-015-7807-6
10.3390/su12187310
10.1007/s00500-016-2251-6
10.1016/j.asoc.2021.107416
10.1016/j.asoc.2019.105743
10.1007/s00521-021-05844-8
10.1109/ACCESS.2021.3050437
10.1016/j.precisioneng.2021.08.018
10.1007/s00170-011-3262-1
10.1016/j.eswa.2022.116965
10.1016/j.asoc.2023.110580
10.1016/j.asoc.2023.110330
10.1016/j.asoc.2012.03.053
10.1016/j.cam.2018.04.036
10.1016/j.asoc.2020.106489
10.1016/j.asoc.2020.107075
10.1016/j.eswa.2023.120669
10.1016/j.asoc.2014.05.004
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.asoc.2024.111300
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2024_111300
S1568494624000747
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6I.
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c344t-e53cf1cebc94872871c032148f1ca8363c4eac387d8b983bf649f7793a9991c43
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001173345100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 07:04:37 EST 2025
Tue Nov 18 21:00:18 EST 2025
Sat Mar 02 15:59:51 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Multi-objective optimization
Manufacturing
ANFIS
Fuzzy modeling
PSO
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-e53cf1cebc94872871c032148f1ca8363c4eac387d8b983bf649f7793a9991c43
OpenAccessLink https://dx.doi.org/10.1016/j.asoc.2024.111300
ParticipantIDs crossref_primary_10_1016_j_asoc_2024_111300
crossref_citationtrail_10_1016_j_asoc_2024_111300
elsevier_sciencedirect_doi_10_1016_j_asoc_2024_111300
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Coppel, Abellan-Nebot, Siller, Rodriguez, Guedea (bib20) 2016; 84
Amor, Tayyab Noman, Petru, Sebastian, Balram (bib35) 2024; 237
Yüksel, Börklü, Sezer, Canyurt (bib4) 2023; 118
P.S.G. de Mattos Neto, M.H.N. Marinho, H. Siqueira, Y. de S. Tadano, V. Machado, T.A. Alves, J.F.L. de Oliveira, F. Madeiro, A methodology to increase the accuracy of particulate matter predictors based on time decomposition, 2020. https://doi.org/10.3390/SU12187310.
Peng, Che, Liao, Zhang (bib23) 2023; 145
Tito, Bruno, Pereira, Henrique, Cardoso, Roberto (bib30) 2024; 238
Gao, Yang, Zhang (bib26) 2023; 141
Escamilla-Salazar, Torres-Trevi no, Gonzalez-Ortiz (bib19) 2016; 86
Selvarajan, Venkataramanan, Nair, Srinivasan (bib33) 2023; 230
Venkata Rao, Pawar (bib16) 2010; 10
Devaraj, Mahalingam, Esakki, Astarita, Mirjalili (bib34) 2022; 199
Nguyen, Sugeno (bib41) 1998
Sibalija (bib2) 2019; 84
Rahul, Balaji, Narendranath (bib7) 2023; 18
Rostami, Berahmand, Nasiri, Forouzande (bib3) 2021; 100
Sahu, Nayak, Deka, Roy, Jena (bib5) 2021; 44
Gao, Huang, Li (bib11) 2012; 12
Han, Li, Cai, Li, Deng, Sutherland (bib12) 2020; 262
Torres-Salcedo, Puertas-Arbizu, Luis-Pérez (bib1) 2017; 7
Hegab, Salem, Rahnamayan, Kishawy (bib22) 2021; 108
Das, Pratihar (bib28) 2019; 175
Derringer, Suich (bib39) 1980; 12
Aich, Banerjee (bib17) 2014; 38
Balaji, Siva Kumar, Yuvaraj (bib27) 2021; 102
Toledo, Pires, Pereira, Ferreira (bib29) 2023; 147
De Mattos Neto, Firmino, Siqueira, De Souza Tadano, Alves, De Oliveira, Da Nobrega Marinho, Madeiro (bib44) 2021; 9
Farahnakian, Razfar, Moghri, Asadnia (bib21) 2011; 57
Ciurana, Arias, Ozel (bib37) 2009; 24
Shihabudheen, Pillai (bib43) 2018; 152
Han, Luo, Zhang (bib46) 2020; 95
Alkayem, Parida, Pal (bib18) 2017; 21
Takagi, Sugeno (bib40) 1985; 15
Sibalija, Kumar, Patel, Jagadish (bib10) 2021; 33
Om Prakash, Jeyakumar, Sanjay Gandhi (bib6) 2022; 62
Jang (bib42) 1993; 23
Mukherjee, Chakraborty, Samanta (bib15) 2012; 12
Chung Baek, Park, Seong, Koo, Jung, Kim (bib32) 2024; 236
Lobato, Sousa, Silva, Machado (bib13) 2014; 22
Saha, Tarafdar, Pal, Saha, Srivastava, Das (bib31) 2013; 13
de Melo, Pereira, da Silva Reis, Lauro, Brandão (bib24) 2022; 120
Lu, Chen, Liao, Chen, Ouyang, Li (bib25) 2023; 142
Xu, Yu (bib38) 2018; 340
Kennedy, Eberhart (bib36) 2011
D’Mello, Pai, Puneet (bib8) 2017; 51
Vundavilli, Phani Kumar, Sai (bib9) 2012; 2012
Quarto, D’Urso, Giardini (bib14) 2022; 73
Nguyen (10.1016/j.asoc.2024.111300_bib41) 1998
Xu (10.1016/j.asoc.2024.111300_bib38) 2018; 340
Sibalija (10.1016/j.asoc.2024.111300_bib10) 2021; 33
Hegab (10.1016/j.asoc.2024.111300_bib22) 2021; 108
Venkata Rao (10.1016/j.asoc.2024.111300_bib16) 2010; 10
Selvarajan (10.1016/j.asoc.2024.111300_bib33) 2023; 230
Takagi (10.1016/j.asoc.2024.111300_bib40) 1985; 15
Rostami (10.1016/j.asoc.2024.111300_bib3) 2021; 100
Om Prakash (10.1016/j.asoc.2024.111300_bib6) 2022; 62
Jang (10.1016/j.asoc.2024.111300_bib42) 1993; 23
D’Mello (10.1016/j.asoc.2024.111300_bib8) 2017; 51
Escamilla-Salazar (10.1016/j.asoc.2024.111300_bib19) 2016; 86
Sibalija (10.1016/j.asoc.2024.111300_bib2) 2019; 84
Lobato (10.1016/j.asoc.2024.111300_bib13) 2014; 22
Mukherjee (10.1016/j.asoc.2024.111300_bib15) 2012; 12
Gao (10.1016/j.asoc.2024.111300_bib26) 2023; 141
de Melo (10.1016/j.asoc.2024.111300_bib24) 2022; 120
Das (10.1016/j.asoc.2024.111300_bib28) 2019; 175
Ciurana (10.1016/j.asoc.2024.111300_bib37) 2009; 24
Kennedy (10.1016/j.asoc.2024.111300_bib36) 2011
Rahul (10.1016/j.asoc.2024.111300_bib7) 2023; 18
Vundavilli (10.1016/j.asoc.2024.111300_bib9) 2012; 2012
Torres-Salcedo (10.1016/j.asoc.2024.111300_bib1) 2017; 7
Alkayem (10.1016/j.asoc.2024.111300_bib18) 2017; 21
Coppel (10.1016/j.asoc.2024.111300_bib20) 2016; 84
Peng (10.1016/j.asoc.2024.111300_bib23) 2023; 145
Han (10.1016/j.asoc.2024.111300_bib12) 2020; 262
Balaji (10.1016/j.asoc.2024.111300_bib27) 2021; 102
Lu (10.1016/j.asoc.2024.111300_bib25) 2023; 142
Derringer (10.1016/j.asoc.2024.111300_bib39) 1980; 12
Amor (10.1016/j.asoc.2024.111300_bib35) 2024; 237
Yüksel (10.1016/j.asoc.2024.111300_bib4) 2023; 118
De Mattos Neto (10.1016/j.asoc.2024.111300_bib44) 2021; 9
Toledo (10.1016/j.asoc.2024.111300_bib29) 2023; 147
Devaraj (10.1016/j.asoc.2024.111300_bib34) 2022; 199
Shihabudheen (10.1016/j.asoc.2024.111300_bib43) 2018; 152
Gao (10.1016/j.asoc.2024.111300_bib11) 2012; 12
Farahnakian (10.1016/j.asoc.2024.111300_bib21) 2011; 57
Aich (10.1016/j.asoc.2024.111300_bib17) 2014; 38
10.1016/j.asoc.2024.111300_bib45
Sahu (10.1016/j.asoc.2024.111300_bib5) 2021; 44
Chung Baek (10.1016/j.asoc.2024.111300_bib32) 2024; 236
Saha (10.1016/j.asoc.2024.111300_bib31) 2013; 13
Han (10.1016/j.asoc.2024.111300_bib46) 2020; 95
Quarto (10.1016/j.asoc.2024.111300_bib14) 2022; 73
Tito (10.1016/j.asoc.2024.111300_bib30) 2024; 238
References_xml – volume: 142
  year: 2023
  ident: bib25
  article-title: Multi-objective optimization for improving machining benefit based on WOA-BBPN and a Deep Double Q-Network
  publication-title: Appl. Soft Comput.
– volume: 199
  year: 2022
  ident: bib34
  article-title: A hybrid GA-ANFIS and F-Race tuned harmony search algorithm for Multi-Response optimization of Non-Traditional Machining process
  publication-title: Expert Syst. Appl.
– volume: 86
  start-page: 1997
  year: 2016
  end-page: 2009
  ident: bib19
  article-title: Intelligent parameter identification of machining Ti64 alloy
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 84
  year: 2019
  ident: bib2
  article-title: Particle swarm optimisation in designing parameters of manufacturing processes: A review (2008–2018)
  publication-title: Appl. Soft Comput. J.
– volume: 147
  year: 2023
  ident: bib29
  article-title: A multi-objective robust evolutionary optimization approach applied to the multivariate helical milling process of super duplex steel[Formula presented]
  publication-title: Appl. Soft Comput.
– volume: 237
  year: 2024
  ident: bib35
  article-title: Design and optimization of machinability of ZnO embedded-glass fiber reinforced polymer composites with a modified white shark optimizer
  publication-title: Expert Syst. Appl.
– volume: 12
  start-page: 214
  year: 1980
  end-page: 219
  ident: bib39
  article-title: Simultaneous Optimization of Several Response Variables
  publication-title: J. Qual. Technol.
– volume: 51
  start-page: 105
  year: 2017
  end-page: 115
  ident: bib8
  article-title: Optimization studies in high speed turning of Ti-6Al-4V
  publication-title: Appl. Soft Comput.
– volume: 12
  start-page: 3490
  year: 2012
  end-page: 3499
  ident: bib11
  article-title: An effective cellular particle swarm optimization for parameters optimization of a multi-pass milling process
  publication-title: Appl. Soft Comput.
– volume: 33
  start-page: 11985
  year: 2021
  end-page: 12006
  ident: bib10
  article-title: A soft computing-based study on WEDM optimization in processing Inconel 625
  publication-title: Neural Comput. Appl.
– volume: 236
  year: 2024
  ident: bib32
  article-title: Multi-objective robust parameter optimization using the extended and weighted k-means (EWK-means) clustering in laser powder bed fusion (LPBF)
  publication-title: Expert Syst. Appl.
– volume: 95
  year: 2020
  ident: bib46
  article-title: Optimization of varying-parameter drilling for multi-hole parts using metaheuristic algorithm coupled with self-adaptive penalty method
  publication-title: Appl. Soft Comput. J.
– volume: 22
  start-page: 261
  year: 2014
  end-page: 271
  ident: bib13
  article-title: Multi-objective optimization and bio-inspired methods applied to machinability of stainless steel
  publication-title: Appl. Soft Comput. J.
– volume: 230
  year: 2023
  ident: bib33
  article-title: Simultaneous multi-response Jaya optimization and Pareto front visualization in EDM drilling of MoSi2-SiC composites
  publication-title: Expert Syst. Appl.
– volume: 24
  start-page: 358
  year: 2009
  end-page: 368
  ident: bib37
  article-title: Neural network modeling and particle swarm optimization (PSO) of process parameters in pulsed laser micromachining of hardened AISI H13 steel
  publication-title: Mater. Manuf. Process.
– volume: 10
  start-page: 445
  year: 2010
  end-page: 456
  ident: bib16
  article-title: Parameter optimization of a multi-pass milling process using non-traditional optimization algorithms
  publication-title: Appl. Soft Comput. J.
– volume: 38
  start-page: 2800
  year: 2014
  end-page: 2818
  ident: bib17
  article-title: Modeling of EDM responses by support vector machine regression with parameters selected by particle swarm optimization
  publication-title: Appl. Math. Model.
– volume: 62
  start-page: 2332
  year: 2022
  end-page: 2338
  ident: bib6
  article-title: Parametric optimization on electro chemical machining process using PSO algorithm
  publication-title: Mater. Today Proc.
– volume: 100
  year: 2021
  ident: bib3
  article-title: Review of swarm intelligence-based feature selection methods
  publication-title: Eng. Appl. Artif. Intell.
– volume: 145
  year: 2023
  ident: bib23
  article-title: Prediction using multi-objective slime mould algorithm optimized support vector regression model
  publication-title: Appl. Soft Comput.
– volume: 44
  start-page: 737
  year: 2021
  end-page: 743
  ident: bib5
  article-title: Multi-objective optimization of WEDM taper cutting process using MOPSO based on crowding distance
  publication-title: Mater. Today Proc.
– volume: 238
  year: 2024
  ident: bib30
  article-title: Multi-objective evolutionary optimization of extreme gradient boosting regression models of the internal turning of PEEK tubes
  publication-title: Expert Syst. Appl.
– volume: 21
  start-page: 7083
  year: 2017
  end-page: 7098
  ident: bib18
  article-title: Optimization of friction stir welding process parameters using soft computing techniques
  publication-title: Soft Comput.
– volume: 141
  year: 2023
  ident: bib26
  article-title: A multiobjective evolutionary algorithm using multi-ecological environment selection strategy
  publication-title: Appl. Soft Comput.
– start-page: 1942
  year: 2011
  end-page: 1948
  ident: bib36
  article-title: Particle swarm optimization
  publication-title: Proc. ICNN’95 - Int. Conf. Neural Networks
– volume: 12
  start-page: 2506
  year: 2012
  end-page: 2516
  ident: bib15
  article-title: Selection of wire electrical discharge machining process parameters using non-traditional optimization algorithms
  publication-title: Appl. Soft Comput. J.
– volume: 152
  start-page: 136
  year: 2018
  end-page: 162
  ident: bib43
  article-title: Recent advances in neuro-fuzzy system: A survey
  publication-title: Knowl. -Based Syst.
– volume: 7
  start-page: 166
  year: 2017
  ident: bib1
  article-title: Analytical Modelling of Energy Density and Optimization of the EDM Machining Parameters of Inconel 600 (Open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license: http://creativecommons.org/licenses/by/4.0/)
  publication-title: Met. (Basel)
– volume: 84
  start-page: 2219
  year: 2016
  end-page: 2238
  ident: bib20
  article-title: Adaptive control optimization in micro-milling of hardened steels—evaluation of optimization approaches
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 102
  year: 2021
  ident: bib27
  article-title: Multi objective taguchi–grey relational analysis and krill herd algorithm approaches to investigate the parametric optimization in abrasive water jet drilling of stainless steel
  publication-title: Appl. Soft Comput.
– volume: 23
  start-page: 665
  year: 1993
  end-page: 685
  ident: bib42
  article-title: ANFIS: adaptive-network-based fuzzy inference system
  publication-title: IEEE Trans. Syst. Man. Cybern.
– volume: 73
  start-page: 63
  year: 2022
  end-page: 70
  ident: bib14
  article-title: Micro-EDM optimization through particle swarm algorithm and artificial neural network
  publication-title: Precis. Eng.
– volume: 13
  start-page: 2065
  year: 2013
  end-page: 2074
  ident: bib31
  article-title: Multi-objective optimization in wire-electro-discharge machining of TiC reinforced composite through Neuro-Genetic technique
  publication-title: Appl. Soft Comput. J.
– volume: 2012
  start-page: 180
  year: 2012
  end-page: 185
  ident: bib9
  article-title: Priyatham, Parameter optimization of wire electric discharge machining process using GA and PSO
  publication-title: IEEE-International Conf. Adv. Eng. Sci. Manag
– volume: 340
  start-page: 709
  year: 2018
  end-page: 717
  ident: bib38
  article-title: On convergence analysis of particle swarm optimization algorithm
  publication-title: J. Comput. Appl. Math.
– volume: 108
  year: 2021
  ident: bib22
  article-title: Analysis, modeling, and multi-objective optimization of machining Inconel 718 with nano-additives based minimum quantity coolant
  publication-title: Appl. Soft Comput.
– reference: P.S.G. de Mattos Neto, M.H.N. Marinho, H. Siqueira, Y. de S. Tadano, V. Machado, T.A. Alves, J.F.L. de Oliveira, F. Madeiro, A methodology to increase the accuracy of particulate matter predictors based on time decomposition, 2020. https://doi.org/10.3390/SU12187310.
– volume: 262
  year: 2020
  ident: bib12
  article-title: Parameters optimization considering the trade-off between cutting power and MRR based on Linear Decreasing Particle Swarm Algorithm in milling
  publication-title: J. Clean. Prod.
– volume: 57
  start-page: 49
  year: 2011
  end-page: 60
  ident: bib21
  article-title: The selection of milling parameters by the PSO-based neural network modeling method
  publication-title: Int. J. Adv. Manuf. Technol.
– year: 1998
  ident: bib41
  article-title: Fuzzy Systems
  publication-title: Modeling and Control
– volume: 9
  start-page: 14470
  year: 2021
  end-page: 14490
  ident: bib44
  article-title: Neural-Based Ensembles for Particulate Matter Forecasting
  publication-title: IEEE Access
– volume: 18
  year: 2023
  ident: bib7
  article-title: Optimization of wire-EDM process parameters for Ni–Ti-Hf shape memory alloy through particle swarm optimization and CNN-based SEM-image classification
  publication-title: Results Eng.
– volume: 175
  start-page: 1
  year: 2019
  end-page: 11
  ident: bib28
  article-title: A novel approach for neuro-fuzzy system-based multi-objective optimization to capture inherent fuzziness in engineering processes
  publication-title: Knowl. -Based Syst.
– volume: 15
  start-page: 116
  year: 1985
  end-page: 132
  ident: bib40
  article-title: Fuzzy identification of systems and its applications to modeling and control
  publication-title: IEEE Trans. Syst. Man. Cybern
– volume: 118
  year: 2023
  ident: bib4
  article-title: Review of artificial intelligence applications in engineering design perspective
  publication-title: Eng. Appl. Artif. Intell.
– volume: 120
  year: 2022
  ident: bib24
  article-title: Multi-objective evolutionary optimization of unsupervised latent variables of turning process
  publication-title: Appl. Soft Comput.
– volume: 15
  start-page: 116
  year: 1985
  ident: 10.1016/j.asoc.2024.111300_bib40
  article-title: Fuzzy identification of systems and its applications to modeling and control
– volume: 236
  year: 2024
  ident: 10.1016/j.asoc.2024.111300_bib32
  article-title: Multi-objective robust parameter optimization using the extended and weighted k-means (EWK-means) clustering in laser powder bed fusion (LPBF)
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121349
– volume: 18
  year: 2023
  ident: 10.1016/j.asoc.2024.111300_bib7
  article-title: Optimization of wire-EDM process parameters for Ni–Ti-Hf shape memory alloy through particle swarm optimization and CNN-based SEM-image classification
  publication-title: Results Eng.
– volume: 38
  start-page: 2800
  year: 2014
  ident: 10.1016/j.asoc.2024.111300_bib17
  article-title: Modeling of EDM responses by support vector machine regression with parameters selected by particle swarm optimization
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2013.10.073
– volume: 118
  year: 2023
  ident: 10.1016/j.asoc.2024.111300_bib4
  article-title: Review of artificial intelligence applications in engineering design perspective
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105697
– volume: 152
  start-page: 136
  year: 2018
  ident: 10.1016/j.asoc.2024.111300_bib43
  article-title: Recent advances in neuro-fuzzy system: A survey
  publication-title: Knowl. -Based Syst.
  doi: 10.1016/j.knosys.2018.04.014
– volume: 7
  start-page: 166
  year: 2017
  ident: 10.1016/j.asoc.2024.111300_bib1
  publication-title: Met. (Basel)
  doi: 10.3390/met7050166
– volume: 175
  start-page: 1
  year: 2019
  ident: 10.1016/j.asoc.2024.111300_bib28
  article-title: A novel approach for neuro-fuzzy system-based multi-objective optimization to capture inherent fuzziness in engineering processes
  publication-title: Knowl. -Based Syst.
  doi: 10.1016/j.knosys.2019.03.017
– volume: 24
  start-page: 358
  year: 2009
  ident: 10.1016/j.asoc.2024.111300_bib37
  article-title: Neural network modeling and particle swarm optimization (PSO) of process parameters in pulsed laser micromachining of hardened AISI H13 steel
  publication-title: Mater. Manuf. Process.
  doi: 10.1080/10426910802679568
– volume: 44
  start-page: 737
  year: 2021
  ident: 10.1016/j.asoc.2024.111300_bib5
  article-title: Multi-objective optimization of WEDM taper cutting process using MOPSO based on crowding distance
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2020.10.636
– volume: 262
  year: 2020
  ident: 10.1016/j.asoc.2024.111300_bib12
  article-title: Parameters optimization considering the trade-off between cutting power and MRR based on Linear Decreasing Particle Swarm Algorithm in milling
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.121388
– volume: 147
  year: 2023
  ident: 10.1016/j.asoc.2024.111300_bib29
  article-title: A multi-objective robust evolutionary optimization approach applied to the multivariate helical milling process of super duplex steel[Formula presented]
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110811
– volume: 86
  start-page: 1997
  year: 2016
  ident: 10.1016/j.asoc.2024.111300_bib19
  article-title: Intelligent parameter identification of machining Ti64 alloy
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-015-7967-4
– volume: 141
  year: 2023
  ident: 10.1016/j.asoc.2024.111300_bib26
  article-title: A multiobjective evolutionary algorithm using multi-ecological environment selection strategy
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110232
– volume: 12
  start-page: 214
  year: 1980
  ident: 10.1016/j.asoc.2024.111300_bib39
  article-title: Simultaneous Optimization of Several Response Variables
  publication-title: J. Qual. Technol.
  doi: 10.1080/00224065.1980.11980968
– volume: 23
  start-page: 665
  year: 1993
  ident: 10.1016/j.asoc.2024.111300_bib42
  article-title: ANFIS: adaptive-network-based fuzzy inference system
  publication-title: IEEE Trans. Syst. Man. Cybern.
  doi: 10.1109/21.256541
– volume: 100
  year: 2021
  ident: 10.1016/j.asoc.2024.111300_bib3
  article-title: Review of swarm intelligence-based feature selection methods
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104210
– volume: 10
  start-page: 445
  year: 2010
  ident: 10.1016/j.asoc.2024.111300_bib16
  article-title: Parameter optimization of a multi-pass milling process using non-traditional optimization algorithms
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2009.08.007
– volume: 237
  year: 2024
  ident: 10.1016/j.asoc.2024.111300_bib35
  article-title: Design and optimization of machinability of ZnO embedded-glass fiber reinforced polymer composites with a modified white shark optimizer
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121474
– volume: 12
  start-page: 3490
  year: 2012
  ident: 10.1016/j.asoc.2024.111300_bib11
  article-title: An effective cellular particle swarm optimization for parameters optimization of a multi-pass milling process
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.06.007
– volume: 13
  start-page: 2065
  year: 2013
  ident: 10.1016/j.asoc.2024.111300_bib31
  article-title: Multi-objective optimization in wire-electro-discharge machining of TiC reinforced composite through Neuro-Genetic technique
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2012.11.008
– volume: 51
  start-page: 105
  year: 2017
  ident: 10.1016/j.asoc.2024.111300_bib8
  article-title: Optimization studies in high speed turning of Ti-6Al-4V
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.12.003
– volume: 120
  year: 2022
  ident: 10.1016/j.asoc.2024.111300_bib24
  article-title: Multi-objective evolutionary optimization of unsupervised latent variables of turning process
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.108713
– volume: 2012
  start-page: 180
  year: 2012
  ident: 10.1016/j.asoc.2024.111300_bib9
  article-title: Priyatham, Parameter optimization of wire electric discharge machining process using GA and PSO
– volume: 62
  start-page: 2332
  year: 2022
  ident: 10.1016/j.asoc.2024.111300_bib6
  article-title: Parametric optimization on electro chemical machining process using PSO algorithm
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2022.04.141
– volume: 84
  start-page: 2219
  year: 2016
  ident: 10.1016/j.asoc.2024.111300_bib20
  article-title: Adaptive control optimization in micro-milling of hardened steels—evaluation of optimization approaches
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-015-7807-6
– year: 1998
  ident: 10.1016/j.asoc.2024.111300_bib41
  article-title: Fuzzy Systems
– ident: 10.1016/j.asoc.2024.111300_bib45
  doi: 10.3390/su12187310
– volume: 21
  start-page: 7083
  year: 2017
  ident: 10.1016/j.asoc.2024.111300_bib18
  article-title: Optimization of friction stir welding process parameters using soft computing techniques
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2251-6
– volume: 108
  year: 2021
  ident: 10.1016/j.asoc.2024.111300_bib22
  article-title: Analysis, modeling, and multi-objective optimization of machining Inconel 718 with nano-additives based minimum quantity coolant
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107416
– volume: 84
  year: 2019
  ident: 10.1016/j.asoc.2024.111300_bib2
  article-title: Particle swarm optimisation in designing parameters of manufacturing processes: A review (2008–2018)
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2019.105743
– volume: 33
  start-page: 11985
  year: 2021
  ident: 10.1016/j.asoc.2024.111300_bib10
  article-title: A soft computing-based study on WEDM optimization in processing Inconel 625
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-05844-8
– volume: 9
  start-page: 14470
  year: 2021
  ident: 10.1016/j.asoc.2024.111300_bib44
  article-title: Neural-Based Ensembles for Particulate Matter Forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3050437
– volume: 238
  year: 2024
  ident: 10.1016/j.asoc.2024.111300_bib30
  article-title: Multi-objective evolutionary optimization of extreme gradient boosting regression models of the internal turning of PEEK tubes
  publication-title: Expert Syst. Appl.
– volume: 73
  start-page: 63
  year: 2022
  ident: 10.1016/j.asoc.2024.111300_bib14
  article-title: Micro-EDM optimization through particle swarm algorithm and artificial neural network
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2021.08.018
– volume: 57
  start-page: 49
  year: 2011
  ident: 10.1016/j.asoc.2024.111300_bib21
  article-title: The selection of milling parameters by the PSO-based neural network modeling method
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-011-3262-1
– volume: 199
  year: 2022
  ident: 10.1016/j.asoc.2024.111300_bib34
  article-title: A hybrid GA-ANFIS and F-Race tuned harmony search algorithm for Multi-Response optimization of Non-Traditional Machining process
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116965
– volume: 145
  year: 2023
  ident: 10.1016/j.asoc.2024.111300_bib23
  article-title: Prediction using multi-objective slime mould algorithm optimized support vector regression model
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110580
– volume: 142
  year: 2023
  ident: 10.1016/j.asoc.2024.111300_bib25
  article-title: Multi-objective optimization for improving machining benefit based on WOA-BBPN and a Deep Double Q-Network
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110330
– volume: 12
  start-page: 2506
  year: 2012
  ident: 10.1016/j.asoc.2024.111300_bib15
  article-title: Selection of wire electrical discharge machining process parameters using non-traditional optimization algorithms
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2012.03.053
– volume: 340
  start-page: 709
  year: 2018
  ident: 10.1016/j.asoc.2024.111300_bib38
  article-title: On convergence analysis of particle swarm optimization algorithm
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2018.04.036
– volume: 95
  year: 2020
  ident: 10.1016/j.asoc.2024.111300_bib46
  article-title: Optimization of varying-parameter drilling for multi-hole parts using metaheuristic algorithm coupled with self-adaptive penalty method
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2020.106489
– volume: 102
  year: 2021
  ident: 10.1016/j.asoc.2024.111300_bib27
  article-title: Multi objective taguchi–grey relational analysis and krill herd algorithm approaches to investigate the parametric optimization in abrasive water jet drilling of stainless steel
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.107075
– volume: 230
  year: 2023
  ident: 10.1016/j.asoc.2024.111300_bib33
  article-title: Simultaneous multi-response Jaya optimization and Pareto front visualization in EDM drilling of MoSi2-SiC composites
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.120669
– start-page: 1942
  year: 2011
  ident: 10.1016/j.asoc.2024.111300_bib36
  article-title: Particle swarm optimization
– volume: 22
  start-page: 261
  year: 2014
  ident: 10.1016/j.asoc.2024.111300_bib13
  article-title: Multi-objective optimization and bio-inspired methods applied to machinability of stainless steel
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2014.05.004
SSID ssj0016928
Score 2.5128555
Snippet This manuscript presents an efficient multi-objective optimization method based on using particle swarm optimization together with a desirability function that...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111300
SubjectTerms ANFIS
Fuzzy modeling
Manufacturing
Multi-objective optimization
PSO
Title Multi-objective optimization of electrical discharge machining parameters using particle swarm optimization
URI https://dx.doi.org/10.1016/j.asoc.2024.111300
Volume 153
WOSCitedRecordID wos001173345100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Na9wwEBVp0kMvbdMPmn6hQ25Gi23JtnQMISUJIQSSwt6MrJUh28QO6902P78zkmxvkhLSQi_GCEsyeuJpJM3MI2TX8rSQcVoxwbWADUqdMSUSy4AHxSzhUubaIX1SnJ7K6VSdBf3OzskJFE0jb2_VzX-FGsoAbAyd_Qu4h0ahAN4BdHgC7PB8EvAupJa11dxTWdQCKVyHaEs0Db3wTX874zIloRMr-lS6yHSN7lqYczNadaHA9RF1v_Ti-k5z65Ztb852wOvOUX217FdF9PdZXXbszN_KL_yh9T60Zq_a6HiyfvKQitH1yh-HPQiJ8QyaSyZUOFe0vkwWKVO512YZaNcnCX5A4f40YT7RMDsn2C2yOo_jccEa3AjPsTPsCx1hUQngGdlKi0wBu23tHR1Mj4f7pFw5ld3h50L4lPf0u9_Tn02UNbPj4jV5GfYLdM9jsE02bPOGvOq1OGig5rfkxz3Y6TpOtK3pCDsdYKcD7HSEnTrYaQ87dbDfae4d-f7t4GL_kAUhDWa4EEtmM27qxNjKKNif4h7ZxChQJaFQS55zI2D95bKYyUpJXtW5UHUBzK1x-2AEf082m7axHwhNdFyYlJsqm9VCmKrSMPg6x0SSNWoL7JCkH7vShCzzKHZyVfbuhPMSx7vE8S79eO-QaKhz43OsPPp11kNSBivRW38lzKBH6n38x3qfyItx8n8mm8vFyn4hz83P5WW3-Bom2m_-DI58
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimization+of+electrical+discharge+machining+parameters+using+particle+swarm+optimization&rft.jtitle=Applied+soft+computing&rft.au=Luis-P%C3%A9rez%2C+Carmelo+J.&rft.date=2024-03-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=153&rft_id=info:doi/10.1016%2Fj.asoc.2024.111300&rft.externalDocID=S1568494624000747
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon