Mapping snow cover frequency at 30 m for studying seasonal variations and topographic controls on the Tibetan Plateau
•An innovative 30 m resolution snow cover frequency map of the Tibetan Plateau was developed using over 500,000 Landsat and Sentinel-2 images.•A specialized snow mapping algorithm was designed to improve detection in shaded and low-illumination areas.•The SCOF maps accurately characterize the spatia...
Gespeichert in:
| Veröffentlicht in: | Journal of hydrology (Amsterdam) Jg. 660; S. 133303 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.10.2025
|
| Schlagworte: | |
| ISSN: | 0022-1694 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •An innovative 30 m resolution snow cover frequency map of the Tibetan Plateau was developed using over 500,000 Landsat and Sentinel-2 images.•A specialized snow mapping algorithm was designed to improve detection in shaded and low-illumination areas.•The SCOF maps accurately characterize the spatial heterogeneity of mountain snow at the hillslope scale.•A 30 m resolution analysis of seasonal variations and topographic controls on snow cover across different elevation zones provides new insights into snow distribution on the Tibetan Plateau.
Estimating snow parameters (e.g., snow cover, snow depth) at hillslope scales (<100 m) is an urgent but highly challenging research task. Remote sensing has become an indispensable tool for monitoring large-scale snow cover. However, existing studies on spatial patterns of snow cover typically focus on scales of 500–5000 m due to the trade-offs between temporal and spatial resolution in remote sensing sensors. This limitation hinders accurately representing the high spatial heterogeneity in mountain snow. To this end, we used a straightforward metric and developed an innovative 30 m average monthly Snow Cover Frequency (SCOF) map for the Tibetan Plateau (TP) utilizing high-resolution images from Landsat and Sentinel-2 satellites, spanning from 2000 to 2024. These maps provide a novel perspective for analyzing seasonal variations in snow cover and its relationship with topography. First, we designed a specific snow mapping algorithm tailored to shaded and low-illumination areas, which were depicted through terrain modeling. Validation against in situ observations and very-high-resolution remote sensing data demonstrated that snow could be effectively extracted even in challenging shadowed conditions. Next, SCOF maps were generated using snow cover data extracted from over 500,000 Landsat and Sentinel-2 images. Comparative analysis demonstrated that SCOF maps accurately characterize the spatial heterogeneity of mountain snow, with strong correlations with in situ observations, providing significantly enhanced spatial details compared to MODIS-derived SCOF maps. Finally, the spatial patterns of SCOF, along with seasonal variations and their relationship with topography, were meticulously documented. Key findings include: (1) SCOF exhibits apparent seasonal variations at elevations between 1500 and 6300 m, with the highest value typically observed in February and the lowest in August. However, above 7100 m, the highest SCOF occurs in July and the lowest in February, presenting an almost opposite seasonal pattern. Notably, although SCOF remains high at elevations of 6300–7100 m, seasonal variation are minimal, with the snow remaining relatively balanced across the seasons. (2) Generally, SCOF increases with elevation below 6300 m, showing a gradual rise below 5000 m but becoming significantly more rapid above this elevation. Above 7100 m, an intriguing phenomenon is observed: SCOF is unexpectedly lower in winter than in summer. In this region, SCOF in the warm season remains constant with increasing elevation, with slight increases in individual months, whereas in the cold season, SCOF shows a decreasing trend. (3) Elevation, distance to the coastline, and the topographic relief index are found to be important factors influencing snow distribution on the TP. The high-resolution SCOF maps presented in this study enhance our understanding of hillslope-level snow cover patterns in alpine regions lacking in situ observations, contributing to improved research on snow hydrology. |
|---|---|
| AbstractList | Estimating snow parameters (e.g., snow cover, snow depth) at hillslope scales (<100 m) is an urgent but highly challenging research task. Remote sensing has become an indispensable tool for monitoring large-scale snow cover. However, existing studies on spatial patterns of snow cover typically focus on scales of 500–5000 m due to the trade-offs between temporal and spatial resolution in remote sensing sensors. This limitation hinders accurately representing the high spatial heterogeneity in mountain snow. To this end, we used a straightforward metric and developed an innovative 30 m average monthly Snow Cover Frequency (SCOF) map for the Tibetan Plateau (TP) utilizing high-resolution images from Landsat and Sentinel-2 satellites, spanning from 2000 to 2024. These maps provide a novel perspective for analyzing seasonal variations in snow cover and its relationship with topography. First, we designed a specific snow mapping algorithm tailored to shaded and low-illumination areas, which were depicted through terrain modeling. Validation against in situ observations and very-high-resolution remote sensing data demonstrated that snow could be effectively extracted even in challenging shadowed conditions. Next, SCOF maps were generated using snow cover data extracted from over 500,000 Landsat and Sentinel-2 images. Comparative analysis demonstrated that SCOF maps accurately characterize the spatial heterogeneity of mountain snow, with strong correlations with in situ observations, providing significantly enhanced spatial details compared to MODIS-derived SCOF maps. Finally, the spatial patterns of SCOF, along with seasonal variations and their relationship with topography, were meticulously documented. Key findings include: (1) SCOF exhibits apparent seasonal variations at elevations between 1500 and 6300 m, with the highest value typically observed in February and the lowest in August. However, above 7100 m, the highest SCOF occurs in July and the lowest in February, presenting an almost opposite seasonal pattern. Notably, although SCOF remains high at elevations of 6300–7100 m, seasonal variation are minimal, with the snow remaining relatively balanced across the seasons. (2) Generally, SCOF increases with elevation below 6300 m, showing a gradual rise below 5000 m but becoming significantly more rapid above this elevation. Above 7100 m, an intriguing phenomenon is observed: SCOF is unexpectedly lower in winter than in summer. In this region, SCOF in the warm season remains constant with increasing elevation, with slight increases in individual months, whereas in the cold season, SCOF shows a decreasing trend. (3) Elevation, distance to the coastline, and the topographic relief index are found to be important factors influencing snow distribution on the TP. The high-resolution SCOF maps presented in this study enhance our understanding of hillslope-level snow cover patterns in alpine regions lacking in situ observations, contributing to improved research on snow hydrology. •An innovative 30 m resolution snow cover frequency map of the Tibetan Plateau was developed using over 500,000 Landsat and Sentinel-2 images.•A specialized snow mapping algorithm was designed to improve detection in shaded and low-illumination areas.•The SCOF maps accurately characterize the spatial heterogeneity of mountain snow at the hillslope scale.•A 30 m resolution analysis of seasonal variations and topographic controls on snow cover across different elevation zones provides new insights into snow distribution on the Tibetan Plateau. Estimating snow parameters (e.g., snow cover, snow depth) at hillslope scales (<100 m) is an urgent but highly challenging research task. Remote sensing has become an indispensable tool for monitoring large-scale snow cover. However, existing studies on spatial patterns of snow cover typically focus on scales of 500–5000 m due to the trade-offs between temporal and spatial resolution in remote sensing sensors. This limitation hinders accurately representing the high spatial heterogeneity in mountain snow. To this end, we used a straightforward metric and developed an innovative 30 m average monthly Snow Cover Frequency (SCOF) map for the Tibetan Plateau (TP) utilizing high-resolution images from Landsat and Sentinel-2 satellites, spanning from 2000 to 2024. These maps provide a novel perspective for analyzing seasonal variations in snow cover and its relationship with topography. First, we designed a specific snow mapping algorithm tailored to shaded and low-illumination areas, which were depicted through terrain modeling. Validation against in situ observations and very-high-resolution remote sensing data demonstrated that snow could be effectively extracted even in challenging shadowed conditions. Next, SCOF maps were generated using snow cover data extracted from over 500,000 Landsat and Sentinel-2 images. Comparative analysis demonstrated that SCOF maps accurately characterize the spatial heterogeneity of mountain snow, with strong correlations with in situ observations, providing significantly enhanced spatial details compared to MODIS-derived SCOF maps. Finally, the spatial patterns of SCOF, along with seasonal variations and their relationship with topography, were meticulously documented. Key findings include: (1) SCOF exhibits apparent seasonal variations at elevations between 1500 and 6300 m, with the highest value typically observed in February and the lowest in August. However, above 7100 m, the highest SCOF occurs in July and the lowest in February, presenting an almost opposite seasonal pattern. Notably, although SCOF remains high at elevations of 6300–7100 m, seasonal variation are minimal, with the snow remaining relatively balanced across the seasons. (2) Generally, SCOF increases with elevation below 6300 m, showing a gradual rise below 5000 m but becoming significantly more rapid above this elevation. Above 7100 m, an intriguing phenomenon is observed: SCOF is unexpectedly lower in winter than in summer. In this region, SCOF in the warm season remains constant with increasing elevation, with slight increases in individual months, whereas in the cold season, SCOF shows a decreasing trend. (3) Elevation, distance to the coastline, and the topographic relief index are found to be important factors influencing snow distribution on the TP. The high-resolution SCOF maps presented in this study enhance our understanding of hillslope-level snow cover patterns in alpine regions lacking in situ observations, contributing to improved research on snow hydrology. |
| ArticleNumber | 133303 |
| Author | Wu, Jun Che, Tao Feng, Dongdong Meng, Saiyao Kong, Chuilei Dai, Liyun Wang, Guigang Hu, Yanxing Wang, Jing Li, Xuemei Wang, Shijie |
| Author_xml | – sequence: 1 givenname: Guigang surname: Wang fullname: Wang, Guigang organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China – sequence: 2 givenname: Tao surname: Che fullname: Che, Tao email: chetao@lzb.ac.cn organization: Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China – sequence: 3 givenname: Liyun surname: Dai fullname: Dai, Liyun organization: Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China – sequence: 4 givenname: Yanxing surname: Hu fullname: Hu, Yanxing organization: Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China – sequence: 5 givenname: Jun surname: Wu fullname: Wu, Jun organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China – sequence: 6 givenname: Saiyao surname: Meng fullname: Meng, Saiyao organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China – sequence: 7 givenname: Chuilei surname: Kong fullname: Kong, Chuilei organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China – sequence: 8 givenname: Jing surname: Wang fullname: Wang, Jing organization: Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China – sequence: 9 givenname: Dongdong surname: Feng fullname: Feng, Dongdong organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China – sequence: 10 givenname: Shijie surname: Wang fullname: Wang, Shijie organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China – sequence: 11 givenname: Xuemei surname: Li fullname: Li, Xuemei organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China |
| BookMark | eNqFkE1PAjEQhnvAREB_gkmPXsB2u7tAPBhD_EowesBzM9tOoWRp17aL4d-7CCcvzGUu7_Nm5hmQnvMOCbnhbMwZL-824816r4OvxxnLijEXQjDRI33GsmzEy1l-SQYxblg3QuR90r5D01i3otH5H6r8DgM1Ab9bdGpPIVHB6JYaH2hMrd7_JRGid1DTHQQLyXoXKThNk2_8KkCztqorcqk7IlLvaFojXdoKEzj6WUNCaK_IhYE64vVpD8nX89Ny_jpafLy8zR8XIyXyPI1Q8GmlmeKlqVg5UROciEwYzSuuZiyD0ky15jrXfKqAmXzGhS41GFEUpiiqiRiS22NvE3z3Ukxya6PCugaHvo1SZKzks2mR8y56f4yq4GMMaKSy6e-7FMDWkjN5ECw38iRYHgTLo-COLv7RTbBbCPuz3MORw87CzmKQUdlOPWobUCWpvT3T8AulFp71 |
| CitedBy_id | crossref_primary_10_1109_TGRS_2025_3588200 |
| Cites_doi | 10.3137/ao.410101 10.5194/tc-12-1579-2018 10.1080/01431161.2018.1466075 10.5194/essd-13-4711-2021 10.3390/rs9090883 10.1080/17538947.2024.2308734 10.1002/hyp.14546 10.1016/j.rse.2009.01.007 10.1109/JSTARS.2018.2810094 10.3390/rs15051231 10.1016/j.rse.2017.11.021 10.3390/rs9090902 10.1371/journal.pone.0143619 10.1088/1748-9326/10/11/114016 10.1016/j.rse.2018.02.007 10.5194/essd-11-1483-2019 10.1016/j.rse.2007.08.010 10.1016/j.rse.2016.12.028 10.1038/nature04141 10.1126/science.1183188 10.1016/S0034-4257(97)00085-0 10.1016/j.advwatres.2012.03.002 10.5194/tc-11-1933-2017 10.5194/essd-11-493-2019 10.1016/j.rse.2014.12.014 10.3390/rs16010192 10.5194/gmd-15-5045-2022 10.5194/tc-14-1409-2020 10.3390/rs10121989 10.1080/01431161.2011.640964 10.1016/j.wse.2020.09.002 10.1016/j.rse.2021.112608 10.1016/j.rse.2011.11.026 10.5194/essd-16-2501-2024 10.1029/2022GL098888 10.1016/j.rse.2021.112474 10.1029/2019WR024935 10.1016/j.rse.2009.01.001 10.1029/2020WR027243 10.1002/hyp.13951 10.1007/s12145-023-01077-6 10.5194/tc-17-2387-2023 10.3390/rs71215882 10.1117/1.JRS.7.073582 10.3390/rs14122823 10.5194/hess-10-679-2006 10.1016/j.rse.2005.02.014 10.5194/tc-4-99-2010 10.3390/rs15020343 10.1080/20964471.2022.2032998 10.3189/172756408787814690 10.1016/j.advwatres.2012.07.013 10.1016/S0165-232X(02)00073-3 10.3390/rs15164044 10.5194/essd-14-4445-2022 10.1016/j.rse.2016.06.018 10.5194/tc-11-1647-2017 10.1002/hyp.6715 10.5194/gmd-9-307-2016 10.3390/rs14225661 10.1016/j.jhydrol.2024.130876 10.1029/2010WR009434 10.1016/j.rse.2017.06.031 10.1016/j.rse.2018.02.072 10.1016/j.rse.2015.02.028 10.1002/2016GL068520 10.5194/tc-8-1989-2014 10.1109/JSTARS.2018.2879666 10.1038/nature20584 10.5194/hess-19-2337-2015 10.1016/j.rse.2018.05.012 10.3390/rs13071250 10.1016/j.coldregions.2022.103561 10.1016/j.coldregions.2013.12.004 10.3390/rs13224513 10.5194/gmd-15-4853-2022 10.5194/gmd-8-3867-2015 10.1002/(SICI)1099-1085(199910)13:14/15<2149::AID-HYP847>3.0.CO;2-8 10.5194/tc-8-2381-2014 10.1016/j.jhydrol.2021.127027 10.1016/0034-4257(95)00137-P 10.5194/tc-17-2629-2023 10.1016/S0034-4257(02)00095-0 10.1002/hyp.6787 10.3390/rs12203341 10.5194/tc-17-673-2023 10.1029/95WR02718 10.1029/2007GL029262 10.1002/joc.4961 10.1175/1520-0450(1987)026<1210:SDMOSC>2.0.CO;2 10.1016/j.rse.2017.10.001 10.1016/j.rse.2013.12.009 10.3390/rs12182904 |
| ContentType | Journal Article |
| Copyright | 2025 |
| Copyright_xml | – notice: 2025 |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.jhydrol.2025.133303 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| ExternalDocumentID | 10_1016_j_jhydrol_2025_133303 S0022169425006419 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO AAYWO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACRPL ACSBN ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADQTV ADVLN AEBSH AEIPS AEKER AENEX AEQOU AEUPX AFFNX AFJKZ AFPUW AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~HD ~KM 9DU AAYXX ABUFD ACLOT CITATION 7S9 L.6 |
| ID | FETCH-LOGICAL-c344t-e318bd0c16fb067c7e7323fd1b1c902a6f8dd1d4d18ca0f4913d6daf355f55b73 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001481881600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-1694 |
| IngestDate | Fri Nov 14 18:41:03 EST 2025 Sat Nov 29 06:57:52 EST 2025 Tue Nov 18 21:11:16 EST 2025 Sat Sep 20 17:14:32 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Tibetan Plateau Snow cover frequency Snow mapping algorithm Google Earth Engine Hillslope scale |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c344t-e318bd0c16fb067c7e7323fd1b1c902a6f8dd1d4d18ca0f4913d6daf355f55b73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 3206198541 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3206198541 crossref_citationtrail_10_1016_j_jhydrol_2025_133303 crossref_primary_10_1016_j_jhydrol_2025_133303 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2025_133303 |
| PublicationCentury | 2000 |
| PublicationDate | October 2025 2025-10-00 20251001 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: October 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of hydrology (Amsterdam) |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Hall, Riggs, Salomonson (b0210) 1995; 54 Jasrotia, Kour, Singh (b0270) 2022; 199 Revuelto, López-Moreno, Azorin-Molina, Vicente-Serrano (b0410) 2014; 8 Wang, Wang, Jiang, Li, Hao (b0495) 2015; 7 Rittger (b0430) 2021; 264 Hao, Jiang, Shi, Wang, Liu (b0225) 2019; 12 Stigter (b0455) 2017; 11 Cuffey, Paterson (b0095) 2010 Parajka, Blöschl (b0355) 2006; 10 Du (b0135) 2022; 14 Chu, Liu, Wang (b0085) 2023; 15 Meadows, Jones, Reinke (b0330) 2024; 17 Gorelick (b0190) 2017; 202 Revuelto, Alonso-González, Gascoin, Rodríguez-López, López-Moreno (b0400) 2021; 13 Immerzeel, Van Beek, Bierkens (b0265) 2010; 328 JPL, N., 2020. NASADEM Merged DEM Global 1 arc second V001. NASA EOSDIS Land Processes Distributed Active Archive Center. DOI: https://doi.org/10.5067/MEaSUREs/NASADEM/NASADEM_HGT.001. Hu, Che, Dai, Xiao (b0240) 2021; 13 Margulis (b0325) 2016; 43 Wang (b0490) 2018; 11 Barnett, Adam, Lettenmaier (b0025) 2005; 438 Che, Li, Jin, Armstrong, Zhang (b0060) 2008; 49 Gurung (b0200) 2017; 37 Chu (b0080) 2018; 39 Lute, Abatzoglou, Link (b0305) 2022; 15 Rosenthal, Dozier (b0440) 1996; 32 Lehning, Bartelt, Brown, Fierz, Satyawali (b0295) 2002; 35 Chander, Markham, Helder (b0050) 2009; 113 Mankin, Viviroli, Singh, Hoekstra, Diffenbaugh (b0320) 2015; 10 Portenier, Hüsler, Härer, Wunderle (b0380) 2020; 14 Drusch (b0130) 2012; 120 Richiardi, Siniscalco, Adamo (b0415) 2023; 15 Zhu, Wang, Woodcock (b0535) 2015; 159 Gascoin (b0180) 2015; 19 Kuter, Akyurek, Weber (b0290) 2018; 205 Bernhardt, Liston, Strasser, Zängl, Schulz (b0030) 2010; 4 Bair, Abreu Calfa, Rittger, Dozier (b0015) 2018; 12 Sun (b0470) 2024; 632 Wayand, Marsh, Shea, Pomeroy (b0500) 2018; 213 Derksen, Walker, Goodison (b0115) 2005; 96 Revuelto (b0405) 2020; 34 Hao (b0220) 2023; 17 Huang, Deng, Wang, Feng, Liang (b0250) 2017; 190 Brown, Brasnett, Robinson (b0040) 2003; 41 Gascoin, Grizonnet, Bouchet, Salgues, Hagolle (b0175) 2019; 11 Pan (b0350) 2024; 16 Yan, Ma, Zhang (b0515) 2022; 604 Keuris, Hetzenecker, Nagler, Mölg, Schwaizer (b0285) 2023; 15 Jiang (b0275) 2022; 6 Saydi, Ding (b0445) 2020; 13 Hu (b0245) 2023; 2022 Deng, Tang, Dong, Shao, Wang (b0110) 2024; 16 Li, Roy (b0300) 2017; 9 Painter (b0340) 2009; 113 Riggs, Hall, Vuyovich, DiGirolamo (b0420) 2022; 14 Dai, Che, Ding, Hao (b0100) 2017; 11 Raghubanshi, Agrawal, Rathore (b0395) 2023; 16 Xiao (b0510) 2022; 114 Macander, Swingley, Joly, Raynolds (b0310) 2015; 163 Pomeroy (b0375) 2007; 21 Gao, Dai, Yang, Che, Yao (b0165) 2023; 48 Huang (b0260) 2022; 14 Tang, Long, Hong, Gao, Wan (b0475) 2018; 208 Che, Li, Jin, Huang (b0065) 2014; 143 Hall, Riggs (b0205) 2007; 21 Durand, Molotch, Margulis (b0140) 2008; 112 Bair (b0020) 2023; 17 Hao (b0230) 2021; 13 Che (b0055) 2019; 34 Essery, Morin, Lejeune, Ménard, C. (b0155) 2013; 55 Pu, Xu, Salomonson (b0390) 2007; 34 Dietz, Kuenzer, Gessner, Dech (b0125) 2012; 33 Härer, Bernhardt, Schulz (b0235) 2016; 9 Yang (b0520) 2020; 590 Malmros, Mernild, Wilson, Tagesson, Fensholt (b0315) 2018; 209 Premier (b0385) 2023; 17 Che, Li, Li, Jiang (b0070) 2020; 35 Tang, Wang, Li, Yan (b0480) 2013; 7 Riggs, Hall, Román (b0425) 2015; 66 Dai, Che, Xie, Wu (b0105) 2018; 10 Armstrong, Brun (b0005) 2008 Foster (b0160) 1997; 62 Stigter (b0460) 2017; 11 Essery (b0150) 2015; 8 EROS, U., 2017. Landsat Collection 1 Level 1 Product Definition. USGS: Reston, WV, USA. Huang (b0255) 2018; 204 Theobald, Harrison-Atlas, Monahan, Albano (b0485) 2015; 10 Schmucki, Marty, Fierz, Lehning (b0450) 2014; 99 Grünewald, Bühler, Lehning (b0195) 2014; 8 Girona-Mata, Miles, Ragettli, Pellicciotti (b0185) 2019; 55 Avanzi (b0010) 2022; 15 Rittger, Painter, Dozier (b0435) 2013; 51 Gascoin (b0170) 2020; 12 Pengsen, Shirong, Chongwei (b0365) 2004; 24 Dewey (b0120) 1987; 26 Painter (b0345) 2016; 184 Blöschl (b0035) 1999; 13 Xiao, Che, Chen, Xie, Dai (b0505) 2017; 9 Zanaga, D. et al., 2021. ESA WorldCover 10 m 2020 v100. Zenodo. Hall, Riggs, Salomonson, DiGirolamo, Bayr (b0215) 2002; 83 Pekel, Cottam, Gorelick, Belward (b0360) 2016; 540 Zhang, Zhang, Zhang, Yan (b0530) 2022; 49 Meloche (b0335) 2022; 36 Carrera-Hernández (b0045) 2021; 261 Sturm, Wagner (b0465) 2010; 46 Pflug, J.M., Lundquist, J.D., 2020. Inferring Distributed Snow Depth by Leveraging Snow Pattern Repeatability: Investigation Using 47 Lidar Observations in the Tuolumne Watershed, Sierra Nevada, California. Water Resour. Res., 56(9). DOI: 10.1029/2020wr027243. Che (b0075) 2019; 11 Crumley, Palomaki, Nolin, Sproles, Mar (b0090) 2020; 12 Blöschl (10.1016/j.jhydrol.2025.133303_b0035) 1999; 13 Zhang (10.1016/j.jhydrol.2025.133303_b0530) 2022; 49 Malmros (10.1016/j.jhydrol.2025.133303_b0315) 2018; 209 10.1016/j.jhydrol.2025.133303_b0145 Rosenthal (10.1016/j.jhydrol.2025.133303_b0440) 1996; 32 Huang (10.1016/j.jhydrol.2025.133303_b0260) 2022; 14 Brown (10.1016/j.jhydrol.2025.133303_b0040) 2003; 41 Margulis (10.1016/j.jhydrol.2025.133303_b0325) 2016; 43 Saydi (10.1016/j.jhydrol.2025.133303_b0445) 2020; 13 Crumley (10.1016/j.jhydrol.2025.133303_b0090) 2020; 12 Che (10.1016/j.jhydrol.2025.133303_b0055) 2019; 34 Che (10.1016/j.jhydrol.2025.133303_b0070) 2020; 35 Tang (10.1016/j.jhydrol.2025.133303_b0480) 2013; 7 Huang (10.1016/j.jhydrol.2025.133303_b0255) 2018; 204 Sturm (10.1016/j.jhydrol.2025.133303_b0465) 2010; 46 Du (10.1016/j.jhydrol.2025.133303_b0135) 2022; 14 Pu (10.1016/j.jhydrol.2025.133303_b0390) 2007; 34 Stigter (10.1016/j.jhydrol.2025.133303_b0455) 2017; 11 Che (10.1016/j.jhydrol.2025.133303_b0060) 2008; 49 Pengsen (10.1016/j.jhydrol.2025.133303_b0365) 2004; 24 Carrera-Hernández (10.1016/j.jhydrol.2025.133303_b0045) 2021; 261 Essery (10.1016/j.jhydrol.2025.133303_b0150) 2015; 8 Bernhardt (10.1016/j.jhydrol.2025.133303_b0030) 2010; 4 10.1016/j.jhydrol.2025.133303_b0280 Bair (10.1016/j.jhydrol.2025.133303_b0020) 2023; 17 Pekel (10.1016/j.jhydrol.2025.133303_b0360) 2016; 540 Rittger (10.1016/j.jhydrol.2025.133303_b0430) 2021; 264 Chu (10.1016/j.jhydrol.2025.133303_b0085) 2023; 15 Mankin (10.1016/j.jhydrol.2025.133303_b0320) 2015; 10 Gascoin (10.1016/j.jhydrol.2025.133303_b0170) 2020; 12 Yang (10.1016/j.jhydrol.2025.133303_b0520) 2020; 590 Tang (10.1016/j.jhydrol.2025.133303_b0475) 2018; 208 Dewey (10.1016/j.jhydrol.2025.133303_b0120) 1987; 26 Bair (10.1016/j.jhydrol.2025.133303_b0015) 2018; 12 Deng (10.1016/j.jhydrol.2025.133303_b0110) 2024; 16 Dai (10.1016/j.jhydrol.2025.133303_b0105) 2018; 10 Gurung (10.1016/j.jhydrol.2025.133303_b0200) 2017; 37 Hall (10.1016/j.jhydrol.2025.133303_b0210) 1995; 54 Parajka (10.1016/j.jhydrol.2025.133303_b0355) 2006; 10 Painter (10.1016/j.jhydrol.2025.133303_b0340) 2009; 113 Keuris (10.1016/j.jhydrol.2025.133303_b0285) 2023; 15 Wayand (10.1016/j.jhydrol.2025.133303_b0500) 2018; 213 Foster (10.1016/j.jhydrol.2025.133303_b0160) 1997; 62 Härer (10.1016/j.jhydrol.2025.133303_b0235) 2016; 9 Schmucki (10.1016/j.jhydrol.2025.133303_b0450) 2014; 99 Jasrotia (10.1016/j.jhydrol.2025.133303_b0270) 2022; 199 Rittger (10.1016/j.jhydrol.2025.133303_b0435) 2013; 51 Xiao (10.1016/j.jhydrol.2025.133303_b0510) 2022; 114 Yan (10.1016/j.jhydrol.2025.133303_b0515) 2022; 604 Chu (10.1016/j.jhydrol.2025.133303_b0080) 2018; 39 Girona-Mata (10.1016/j.jhydrol.2025.133303_b0185) 2019; 55 Revuelto (10.1016/j.jhydrol.2025.133303_b0410) 2014; 8 Hao (10.1016/j.jhydrol.2025.133303_b0225) 2019; 12 Barnett (10.1016/j.jhydrol.2025.133303_b0025) 2005; 438 Grünewald (10.1016/j.jhydrol.2025.133303_b0195) 2014; 8 Gorelick (10.1016/j.jhydrol.2025.133303_b0190) 2017; 202 Pan (10.1016/j.jhydrol.2025.133303_b0350) 2024; 16 Drusch (10.1016/j.jhydrol.2025.133303_b0130) 2012; 120 Macander (10.1016/j.jhydrol.2025.133303_b0310) 2015; 163 Sun (10.1016/j.jhydrol.2025.133303_b0470) 2024; 632 Wang (10.1016/j.jhydrol.2025.133303_b0490) 2018; 11 Dai (10.1016/j.jhydrol.2025.133303_b0100) 2017; 11 Meloche (10.1016/j.jhydrol.2025.133303_b0335) 2022; 36 Revuelto (10.1016/j.jhydrol.2025.133303_b0405) 2020; 34 Derksen (10.1016/j.jhydrol.2025.133303_b0115) 2005; 96 Immerzeel (10.1016/j.jhydrol.2025.133303_b0265) 2010; 328 Lute (10.1016/j.jhydrol.2025.133303_b0305) 2022; 15 Xiao (10.1016/j.jhydrol.2025.133303_b0505) 2017; 9 Gao (10.1016/j.jhydrol.2025.133303_b0165) 2023; 48 Hao (10.1016/j.jhydrol.2025.133303_b0220) 2023; 17 Hu (10.1016/j.jhydrol.2025.133303_b0240) 2021; 13 Zhu (10.1016/j.jhydrol.2025.133303_b0535) 2015; 159 Gascoin (10.1016/j.jhydrol.2025.133303_b0175) 2019; 11 Armstrong (10.1016/j.jhydrol.2025.133303_b0005) 2008 Lehning (10.1016/j.jhydrol.2025.133303_b0295) 2002; 35 Portenier (10.1016/j.jhydrol.2025.133303_b0380) 2020; 14 Riggs (10.1016/j.jhydrol.2025.133303_b0425) 2015; 66 Wang (10.1016/j.jhydrol.2025.133303_b0495) 2015; 7 Richiardi (10.1016/j.jhydrol.2025.133303_b0415) 2023; 15 Painter (10.1016/j.jhydrol.2025.133303_b0345) 2016; 184 Kuter (10.1016/j.jhydrol.2025.133303_b0290) 2018; 205 Meadows (10.1016/j.jhydrol.2025.133303_b0330) 2024; 17 Gascoin (10.1016/j.jhydrol.2025.133303_b0180) 2015; 19 10.1016/j.jhydrol.2025.133303_b0525 Raghubanshi (10.1016/j.jhydrol.2025.133303_b0395) 2023; 16 Hao (10.1016/j.jhydrol.2025.133303_b0230) 2021; 13 Essery (10.1016/j.jhydrol.2025.133303_b0155) 2013; 55 Revuelto (10.1016/j.jhydrol.2025.133303_b0400) 2021; 13 Che (10.1016/j.jhydrol.2025.133303_b0065) 2014; 143 Cuffey (10.1016/j.jhydrol.2025.133303_b0095) 2010 Avanzi (10.1016/j.jhydrol.2025.133303_b0010) 2022; 15 Li (10.1016/j.jhydrol.2025.133303_b0300) 2017; 9 Premier (10.1016/j.jhydrol.2025.133303_b0385) 2023; 17 Theobald (10.1016/j.jhydrol.2025.133303_b0485) 2015; 10 Riggs (10.1016/j.jhydrol.2025.133303_b0420) 2022; 14 Jiang (10.1016/j.jhydrol.2025.133303_b0275) 2022; 6 Dietz (10.1016/j.jhydrol.2025.133303_b0125) 2012; 33 10.1016/j.jhydrol.2025.133303_b0370 Hu (10.1016/j.jhydrol.2025.133303_b0245) 2023; 2022 Durand (10.1016/j.jhydrol.2025.133303_b0140) 2008; 112 Hall (10.1016/j.jhydrol.2025.133303_b0205) 2007; 21 Pomeroy (10.1016/j.jhydrol.2025.133303_b0375) 2007; 21 Huang (10.1016/j.jhydrol.2025.133303_b0250) 2017; 190 Chander (10.1016/j.jhydrol.2025.133303_b0050) 2009; 113 Hall (10.1016/j.jhydrol.2025.133303_b0215) 2002; 83 Stigter (10.1016/j.jhydrol.2025.133303_b0460) 2017; 11 Che (10.1016/j.jhydrol.2025.133303_b0075) 2019; 11 |
| References_xml | – volume: 11 start-page: 1647 year: 2017 end-page: 1664 ident: b0455 article-title: Assimilation of snow cover and snow depth into a snow model to publication-title: Cryosphere – volume: 604 year: 2022 ident: b0515 article-title: Development of a fine-resolution snow depth product based on the snow cover probability for the Tibetan Plateau: validation and spatial–temporal analyses publication-title: J. Hydrol., – volume: 4 start-page: 99 year: 2010 end-page: 113 ident: b0030 article-title: High resolution modelling of snow transport in complex terrain using downscaled MM5 wind fields publication-title: Cryosphere – volume: 49 start-page: 145 year: 2008 end-page: 154 ident: b0060 article-title: Snow depth derived from passive microwave remote-sensing data in China publication-title: Ann. Glaciol., – volume: 120 start-page: 25 year: 2012 end-page: 36 ident: b0130 article-title: Sentinel-2: ESA's optical high-resolution mission for GMES operational services publication-title: Remote Sens. Environ., – volume: 51 start-page: 367 year: 2013 end-page: 380 ident: b0435 article-title: Assessment of methods for mapping snow cover from MODIS publication-title: Adv. Water Resour., – volume: 99 start-page: 27 year: 2014 end-page: 37 ident: b0450 article-title: Evaluation of modelled snow depth and snow water equivalent at three contrasting sites in Switzerland using SNOWPACK simulations driven by different meteorological data input publication-title: Cold Reg. Sci. Technol., – volume: 41 start-page: 1 year: 2003 end-page: 14 ident: b0040 article-title: Gridded North American monthly snow depth and snow water equivalent for GCM evaluation publication-title: Atmos. Ocean – volume: 66 start-page: 545 year: 2015 ident: b0425 article-title: MODIS snow products collection 6 user guide publication-title: National Snow and Ice Data Center: Boulder, CO, USA – volume: 33 start-page: 4094 year: 2012 end-page: 4134 ident: b0125 article-title: Remote sensing of snow – a review of available methods publication-title: Int. J. Remote Sens., – year: 2010 ident: b0095 article-title: The physics of glaciers – volume: 143 start-page: 54 year: 2014 end-page: 63 ident: b0065 article-title: Assimilating passive microwave remote sensing data into a land surface model to improve the estimation of snow depth publication-title: Remote Sens. Environ., – volume: 36 year: 2022 ident: b0335 article-title: High‐resolution snow depth prediction using Random Forest algorithm with topographic parameters: a case study in the Greiner watershed, Nunavut publication-title: Hydrol. Processes – volume: 39 start-page: 6784 year: 2018 end-page: 6804 ident: b0080 article-title: Spatiotemporal variability of snow cover on Tibet, China using MODIS remote-sensing data publication-title: Int. J. Remote Sens., – volume: 7 start-page: 17246 year: 2015 end-page: 17257 ident: b0495 article-title: An effective method for snow-cover mapping of dense coniferous forests in the upper heihe river basin using landsat operational land imager data publication-title: Remote Sens., – volume: 8 start-page: 2381 year: 2014 end-page: 2394 ident: b0195 article-title: Elevation dependency of mountain snow depth publication-title: Cryosphere – volume: 199 year: 2022 ident: b0270 article-title: Effect of shadow on atmospheric and topographic processed NDSI values in Chenab basin, western Himalayas publication-title: Cold Reg. Sci. Technol., – volume: 13 start-page: 4711 year: 2021 end-page: 4726 ident: b0230 article-title: The NIEER AVHRR snow cover extent product over China – a long-term daily snow record for regional climate research publication-title: Earth Syst. Sci. Data – volume: 35 start-page: 147 year: 2002 end-page: 167 ident: b0295 article-title: A physical SNOWPACK model for the Swiss avalanche warning publication-title: Cold Reg. Sci. Technol., – volume: 264 year: 2021 ident: b0430 article-title: Multi-sensor fusion using random forests for daily fractional snow cover at 30 publication-title: Remote Sens. Environ., – volume: 32 start-page: 115 year: 1996 end-page: 130 ident: b0440 article-title: Automated mapping of montane snow cover at subpixel resolution from the Landsat Thematic Mapper publication-title: Water Resour. Res., – volume: 11 start-page: 493 year: 2019 end-page: 514 ident: b0175 article-title: Theia Snow collection: high-resolution operational snow cover maps from Sentinel-2 and Landsat-8 data publication-title: Earth Syst. Sci. Data – volume: 54 start-page: 127 year: 1995 end-page: 140 ident: b0210 article-title: Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data publication-title: Remote Sens. Environ., – volume: 202 start-page: 18 year: 2017 end-page: 27 ident: b0190 article-title: Google Earth Engine: Planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ., – volume: 13 start-page: 1250 year: 2021 ident: b0240 article-title: Snow depth fusion based on machine learning methods for the northern hemisphere publication-title: Remote Sens., – volume: 26 start-page: 1210 year: 1987 end-page: 1229 ident: b0120 article-title: Satellite-derived maps of snow cover frequency for the northern hemisphere publication-title: J. Appl. Meteorol. Climatol. – volume: 6 start-page: 420 year: 2022 end-page: 434 ident: b0275 article-title: Daily snow water equivalent product with SMMR, SSM/I and SSMIS from 1980 to 2020 over China publication-title: Big Earth Data – volume: 11 start-page: 1483 year: 2019 end-page: 1499 ident: b0075 article-title: Integrated hydrometeorological, snow and frozen-ground observations in the alpine region of the Heihe River Basin, China publication-title: Earth Syst. Sci. Data – volume: 15 start-page: 4044 year: 2023 ident: b0085 article-title: Snow cover on the tibetan plateau and topographic controls publication-title: Remote Sens., – volume: 113 start-page: 893 year: 2009 end-page: 903 ident: b0050 article-title: Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors publication-title: Remote Sens. Environ., – volume: 43 start-page: 6341 year: 2016 end-page: 6349 ident: b0325 article-title: Characterizing the extreme 2015 snowpack deficit in the Sierra Nevada (USA) and the implications for drought recovery publication-title: Geophys. Res. Lett., – volume: 2022 start-page: 1 year: 2023 end-page: 28 ident: b0245 article-title: A long-term daily gridded snow depth dataset for the Northern Hemisphere from 1980 to 2019 based on machine learning publication-title: Big Earth Data – volume: 55 start-page: 6754 year: 2019 end-page: 6772 ident: b0185 article-title: High‐Resolution snowline delineation from landsat imagery to infer snow cover controls in a himalayan catchment publication-title: Water Resour. Res., – volume: 14 start-page: 5661 year: 2022 ident: b0420 article-title: Development of snow cover frequency maps from MODIS snow cover products publication-title: Remote Sens., – volume: 12 start-page: 2904 year: 2020 ident: b0170 article-title: Estimating Fractional Snow Cover in Open Terrain from Sentinel-2 Using the Normalized Difference Snow Index publication-title: Remote Sens., – volume: 14 start-page: 2823 year: 2022 ident: b0135 article-title: Spatiotemporal Variation of Snow Cover Frequency in the Qilian Mountains (Northwestern China) during 2000-2020 and Associated Circulation Mechanisms publication-title: Remote Sens., – volume: 15 start-page: 4853 year: 2022 end-page: 4879 ident: b0010 article-title: Snow Multidata Mapping and Modeling (S3M) 5.1: a distributed cryospheric model with dry and wet snow, data assimilation, glacier mass balance, and debris-driven melt publication-title: Geosci. Model Dev., – volume: 62 start-page: 132 year: 1997 end-page: 142 ident: b0160 article-title: Comparison of snow mass estimates from a prototype passive microwave snow algorithm, a revised algorithm and a snow depth climatology publication-title: Remote Sens. Environ., – volume: 184 start-page: 139 year: 2016 end-page: 152 ident: b0345 article-title: The Airborne Snow Observatory: fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo publication-title: Remote Sens. Environ., – year: 2008 ident: b0005 article-title: Snow and climate: physical processes, surface energy exchange and modeling – volume: 17 start-page: 2629 year: 2023 end-page: 2643 ident: b0020 article-title: How do tradeoffs in satellite spatial and temporal resolution impact snow water equivalent reconstruction? publication-title: Cryosphere – volume: 34 start-page: 1247 year: 2019 end-page: 1253 ident: b0055 article-title: Snow cover variation and its impacts over the Qinghai-Tibet Plateau publication-title: Bulletin of Chinese Academy of Sciences. – volume: 10 start-page: 1989 year: 2018 ident: b0105 article-title: Estimation of snow depth over the qinghai-tibetan plateau based on AMSR-E and MODIS data publication-title: Remote Sens., – volume: 55 start-page: 131 year: 2013 end-page: 148 ident: b0155 article-title: A comparison of 1701 snow models using observations from an alpine site publication-title: Adv. Water Resour., – volume: 16 start-page: 2813 year: 2023 end-page: 2824 ident: b0395 article-title: Enhanced snow cover mapping using object-based classification and normalized difference snow index (NDSI) publication-title: Earth Sci. Inf., – volume: 163 start-page: 23 year: 2015 end-page: 31 ident: b0310 article-title: Landsat-based snow persistence map for northwest Alaska publication-title: Remote Sens. Environ., – volume: 113 start-page: 868 year: 2009 end-page: 879 ident: b0340 article-title: Retrieval of subpixel snow covered area, grain size, and albedo from MODIS publication-title: Remote Sens. Environ., – volume: 438 start-page: 303 year: 2005 end-page: 309 ident: b0025 article-title: Potential impacts of a warming climate on water availability in snow-dominated regions publication-title: Nature – volume: 204 start-page: 568 year: 2018 end-page: 582 ident: b0255 article-title: Improving MODIS snow products with a HMRF-based spatio-temporal modeling technique in the Upper Rio Grande Basin publication-title: Remote Sens. Environ., – volume: 7 year: 2013 ident: b0480 article-title: Spatiotemporal changes of snow cover over the Tibetan plateau based on cloud-removed moderate resolution imaging spectroradiometer fractional snow cover product from 2001 to 2011 publication-title: J. Appl. Remote Sens., – volume: 209 start-page: 240 year: 2018 end-page: 252 ident: b0315 article-title: Snow cover and snow albedo changes in the central Andes of Chile and Argentina from daily MODIS observations (2000–2016) publication-title: Remote Sens. Environ., – reference: Pflug, J.M., Lundquist, J.D., 2020. Inferring Distributed Snow Depth by Leveraging Snow Pattern Repeatability: Investigation Using 47 Lidar Observations in the Tuolumne Watershed, Sierra Nevada, California. Water Resour. Res., 56(9). DOI: 10.1029/2020wr027243. – volume: 46 year: 2010 ident: b0465 article-title: Using repeated patterns in snow distribution modeling: an Arctic example publication-title: Water Resour. Res., – volume: 10 year: 2015 ident: b0485 article-title: Ecologically-Relevant maps of landforms and physiographic diversity for climate adaptation planning publication-title: PLoS One – volume: 114 year: 2022 ident: b0510 article-title: Estimating fractional snow cover in vegetated environments using MODIS surface reflectance data publication-title: Int. J. Appl. Earth Obs. Geoinf., – volume: 12 start-page: 1579 year: 2018 end-page: 1594 ident: b0015 article-title: Using machine learning for real-time estimates of snow water equivalent in the watersheds of Afghanistan publication-title: Cryosphere – volume: 632 year: 2024 ident: b0470 article-title: Fusing daily snow water equivalent from 1980 to 2020 in China using a spatiotemporal XGBoost model publication-title: J. Hydrol., – volume: 540 start-page: 418 year: 2016 end-page: 422 ident: b0360 article-title: High-resolution mapping of global surface water and its long-term changes publication-title: Nature – volume: 11 start-page: 1647 year: 2017 end-page: 1664 ident: b0460 article-title: Assimilation of snow cover and snow depth into a snow model to publication-title: Cryosphere – volume: 328 start-page: 1382 year: 2010 end-page: 1385 ident: b0265 article-title: Climate change will affect the Asian water towers publication-title: Science – reference: JPL, N., 2020. NASADEM Merged DEM Global 1 arc second V001. NASA EOSDIS Land Processes Distributed Active Archive Center. DOI: https://doi.org/10.5067/MEaSUREs/NASADEM/NASADEM_HGT.001. – volume: 15 start-page: 343 year: 2023 ident: b0415 article-title: Comparison of three different random forest approaches to retrieve daily high-resolution snow cover maps from MODIS and Sentinel-2 in a Mountain Area, Gran Paradiso National Park (NW Alps) publication-title: Remote Sens., – volume: 34 start-page: 5384 year: 2020 end-page: 5401 ident: b0405 article-title: Random forests as a tool to understand the snow depth distribution and its evolution in mountain areas publication-title: Hydrol. Processes – volume: 208 start-page: 82 year: 2018 end-page: 96 ident: b0475 article-title: Documentation of multifactorial relationships between precipitation and topography of the Tibetan Plateau using spaceborne precipitation radars publication-title: Remote Sens. Environ., – volume: 10 year: 2015 ident: b0320 article-title: The potential for snow to supply human water demand in the present and future publication-title: Environ. Res. Lett., – volume: 11 start-page: 1433 year: 2018 end-page: 1441 ident: b0490 article-title: Snow cover mapping for complex mountainous forested environments based on a multi-index technique publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., – volume: 49 year: 2022 ident: b0530 article-title: Why Do CMIP6 models fail to simulate snow depth in terms of temporal change and high mountain snow of China skillfully? publication-title: Geophys. Res. Lett., – volume: 16 start-page: 192 year: 2024 ident: b0110 article-title: Development and evaluation of a cloud-gap-filled MODIS normalized difference snow index product over high Mountain Asia publication-title: Remote Sens., – volume: 8 start-page: 3867 year: 2015 end-page: 3876 ident: b0150 article-title: A factorial snowpack model (FSM 1.0) publication-title: Geosci. Model Dev., – volume: 17 year: 2024 ident: b0330 article-title: Vertical accuracy assessment of freely available global DEMs (FABDEM, Copernicus DEM, NASADEM, AW3D30 and SRTM) in flood-prone environments publication-title: Int. J. Digital Earth – volume: 15 start-page: 5045 year: 2022 end-page: 5071 ident: b0305 article-title: SnowClim v1.0: high-resolution snow model and data for the western United States publication-title: Geosci. Model Dev., – volume: 13 start-page: 4513 year: 2021 ident: b0400 article-title: Spatial downscaling of MODIS snow cover observations using sentinel-2 snow products publication-title: Remote Sens., – volume: 9 start-page: 883 year: 2017 ident: b0505 article-title: Quantifying snow albedo radiative forcing and its feedback during 2003–2016 publication-title: Remote Sens., – volume: 12 start-page: 533 year: 2019 end-page: 548 ident: b0225 article-title: Assessment of MODIS-based fractional snow cover products over the Tibetan Plateau publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., – volume: 9 start-page: 307 year: 2016 end-page: 321 ident: b0235 article-title: PRACTISE – Photo Rectification And ClassificaTIon SoftwarE (V.2.1) publication-title: Geosci. Model Dev., – volume: 13 start-page: 2149 year: 1999 end-page: 2175 ident: b0035 article-title: Scaling issues in snow hydrology publication-title: Hydrol. Processes – volume: 17 start-page: 673 year: 2023 end-page: 697 ident: b0220 article-title: Evaluation of E3SM land model snow simulations over the western United States publication-title: Cryosphere – volume: 14 start-page: 4445 year: 2022 end-page: 4462 ident: b0260 article-title: HMRFS–TP: long-term daily gap-free snow cover products over the Tibetan Plateau from 2002 to 2021 based on hidden Markov random field model publication-title: Earth Syst. Sci. Data – reference: EROS, U., 2017. Landsat Collection 1 Level 1 Product Definition. USGS: Reston, WV, USA. – volume: 205 start-page: 236 year: 2018 end-page: 252 ident: b0290 article-title: Retrieval of fractional snow covered area from MODIS data by multivariate adaptive regression splines publication-title: Remote Sens. Environ., – volume: 21 start-page: 2650 year: 2007 end-page: 2667 ident: b0375 article-title: The cold regions hydrological model: a platform for basing process representation and model structure on physical evidence publication-title: Hydrol. Processes – volume: 17 start-page: 2387 year: 2023 end-page: 2407 ident: b0385 article-title: Exploring the use of multi-source high-resolution satellite data for snow water equivalent reconstruction over mountainous catchments publication-title: Cryosphere – volume: 34 year: 2007 ident: b0390 article-title: MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau publication-title: Geophys. Res. Lett., – volume: 10 start-page: 679 year: 2006 end-page: 689 ident: b0355 article-title: Validation of MODIS snow cover images over Austria publication-title: Hydrol. Earth Syst. Sci., – volume: 213 start-page: 61 year: 2018 end-page: 72 ident: b0500 article-title: Globally scalable alpine snow metrics publication-title: Remote Sens. Environ., – volume: 35 start-page: 484 year: 2020 end-page: 493 ident: b0070 article-title: Developing cryospheric remote sensing, promoting scientific programme of Earth's Three Poles. Bulletin of Chinese publication-title: Acad. Sci. – volume: 8 start-page: 1989 year: 2014 end-page: 2006 ident: b0410 article-title: Topographic control of snowpack distribution in a small catchment in the central Spanish Pyrenees: intra- and inter-annual persistence publication-title: Cryosphere – volume: 15 start-page: 1231 year: 2023 ident: b0285 article-title: An adaptive method for the estimation of snow-covered fraction with error propagation for applications from local to global scales publication-title: Remote Sens., – volume: 19 start-page: 2337 year: 2015 end-page: 2351 ident: b0180 article-title: A snow cover climatology for the Pyrenees from MODIS snow products publication-title: Hydrol. Earth Syst. Sci., – volume: 190 start-page: 274 year: 2017 end-page: 288 ident: b0250 article-title: Impact of climate and elevation on snow cover using integrated remote sensing snow products in Tibetan Plateau publication-title: Remote Sens. Environ., – volume: 590 year: 2020 ident: b0520 article-title: Improving snow simulation with more realistic vegetation parameters in a regional climate model in the Tianshan Mountains publication-title: Central Asia. J. Hydrol., – volume: 261 year: 2021 ident: b0045 article-title: Not all DEMs are equal: An evaluation of six globally available 30 publication-title: Remote Sens. Environ., – volume: 12 start-page: 3341 year: 2020 ident: b0090 article-title: SnowCloudMetrics: snow information for everyone publication-title: Remote Sens., – volume: 96 start-page: 315 year: 2005 end-page: 327 ident: b0115 article-title: Evaluation of passive microwave snow water equivalent retrievals across the boreal forest/tundra transition of western Canada publication-title: Remote Sens. Environ., – volume: 112 start-page: 1212 year: 2008 end-page: 1225 ident: b0140 article-title: Merging complementary remote sensing datasets in the context of snow water equivalent reconstruction publication-title: Remote Sens. Environ., – volume: 21 start-page: 1534 year: 2007 end-page: 1547 ident: b0205 article-title: Accuracy assessment of the MODIS snow products publication-title: Hydrol. Processes – volume: 9 start-page: 902 year: 2017 ident: b0300 article-title: A global analysis of sentinel-2A, sentinel-2B and landsat-8 data revisit intervals and implications for terrestrial monitoring publication-title: Remote Sens., – volume: 24 start-page: 1910 year: 2004 end-page: 1915 ident: b0365 article-title: Estimation of precipitation using altitude and prevailing wind direction effect index in Mountainous region publication-title: Acta Ecol. Sin., – volume: 37 start-page: 3873 year: 2017 end-page: 3882 ident: b0200 article-title: Climate and topographic controls on snow cover dynamics in the Hindu Kush Himalaya publication-title: Int. J. Climatol., – volume: 48 year: 2023 ident: b0165 article-title: Estimation of snow bulk density and snow water equivalent on the Tibetan Plateau using snow cover duration and snow depth publication-title: J Hydrol.: Reg. Stud., – volume: 11 start-page: 1933 year: 2017 end-page: 1948 ident: b0100 article-title: Evaluation of snow cover and snow depth on the Qinghai–Tibetan Plateau derived from passive microwave remote sensing publication-title: Cryosphere – volume: 16 start-page: 2501 year: 2024 end-page: 2523 ident: b0350 article-title: MODIS daily cloud-gap-filled fractional snow cover dataset of the Asian Water Tower region (2000–2022) publication-title: Earth Syst. Sci. Data – volume: 159 start-page: 269 year: 2015 end-page: 277 ident: b0535 article-title: Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images publication-title: Remote Sens. Environ. – volume: 83 start-page: 181 year: 2002 end-page: 194 ident: b0215 article-title: MODIS snow-cover products publication-title: Remote Sens. Environ., – volume: 13 start-page: 171 year: 2020 end-page: 180 ident: b0445 article-title: Impacts of topographic factors on regional snow cover characteristics publication-title: Water Sci. Eng., – volume: 14 start-page: 1409 year: 2020 end-page: 1423 ident: b0380 article-title: Towards a webcam-based snow cover monitoring network: methodology and evaluation publication-title: Cryosphere – reference: Zanaga, D. et al., 2021. ESA WorldCover 10 m 2020 v100. Zenodo. – volume: 41 start-page: 1 issue: 1 year: 2003 ident: 10.1016/j.jhydrol.2025.133303_b0040 article-title: Gridded North American monthly snow depth and snow water equivalent for GCM evaluation publication-title: Atmos. Ocean doi: 10.3137/ao.410101 – volume: 12 start-page: 1579 issue: 5 year: 2018 ident: 10.1016/j.jhydrol.2025.133303_b0015 article-title: Using machine learning for real-time estimates of snow water equivalent in the watersheds of Afghanistan publication-title: Cryosphere doi: 10.5194/tc-12-1579-2018 – volume: 39 start-page: 6784 issue: 20 year: 2018 ident: 10.1016/j.jhydrol.2025.133303_b0080 article-title: Spatiotemporal variability of snow cover on Tibet, China using MODIS remote-sensing data publication-title: Int. J. Remote Sens., doi: 10.1080/01431161.2018.1466075 – volume: 13 start-page: 4711 issue: 10 year: 2021 ident: 10.1016/j.jhydrol.2025.133303_b0230 article-title: The NIEER AVHRR snow cover extent product over China – a long-term daily snow record for regional climate research publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-13-4711-2021 – volume: 9 start-page: 883 issue: 9 year: 2017 ident: 10.1016/j.jhydrol.2025.133303_b0505 article-title: Quantifying snow albedo radiative forcing and its feedback during 2003–2016 publication-title: Remote Sens., doi: 10.3390/rs9090883 – volume: 17 issue: 1 year: 2024 ident: 10.1016/j.jhydrol.2025.133303_b0330 article-title: Vertical accuracy assessment of freely available global DEMs (FABDEM, Copernicus DEM, NASADEM, AW3D30 and SRTM) in flood-prone environments publication-title: Int. J. Digital Earth doi: 10.1080/17538947.2024.2308734 – volume: 36 issue: 3 year: 2022 ident: 10.1016/j.jhydrol.2025.133303_b0335 article-title: High‐resolution snow depth prediction using Random Forest algorithm with topographic parameters: a case study in the Greiner watershed, Nunavut publication-title: Hydrol. Processes doi: 10.1002/hyp.14546 – volume: 113 start-page: 893 issue: 5 year: 2009 ident: 10.1016/j.jhydrol.2025.133303_b0050 article-title: Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors publication-title: Remote Sens. Environ., doi: 10.1016/j.rse.2009.01.007 – volume: 11 start-page: 1433 issue: 5 year: 2018 ident: 10.1016/j.jhydrol.2025.133303_b0490 article-title: Snow cover mapping for complex mountainous forested environments based on a multi-index technique publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., doi: 10.1109/JSTARS.2018.2810094 – volume: 15 start-page: 1231 issue: 5 year: 2023 ident: 10.1016/j.jhydrol.2025.133303_b0285 article-title: An adaptive method for the estimation of snow-covered fraction with error propagation for applications from local to global scales publication-title: Remote Sens., doi: 10.3390/rs15051231 – volume: 205 start-page: 236 year: 2018 ident: 10.1016/j.jhydrol.2025.133303_b0290 article-title: Retrieval of fractional snow covered area from MODIS data by multivariate adaptive regression splines publication-title: Remote Sens. Environ., doi: 10.1016/j.rse.2017.11.021 – volume: 9 start-page: 902 issue: 9 year: 2017 ident: 10.1016/j.jhydrol.2025.133303_b0300 article-title: A global analysis of sentinel-2A, sentinel-2B and landsat-8 data revisit intervals and implications for terrestrial monitoring publication-title: Remote Sens., doi: 10.3390/rs9090902 – volume: 10 issue: 12 year: 2015 ident: 10.1016/j.jhydrol.2025.133303_b0485 article-title: Ecologically-Relevant maps of landforms and physiographic diversity for climate adaptation planning publication-title: PLoS One doi: 10.1371/journal.pone.0143619 – volume: 10 issue: 11 year: 2015 ident: 10.1016/j.jhydrol.2025.133303_b0320 article-title: The potential for snow to supply human water demand in the present and future publication-title: Environ. Res. Lett., doi: 10.1088/1748-9326/10/11/114016 – volume: 208 start-page: 82 year: 2018 ident: 10.1016/j.jhydrol.2025.133303_b0475 article-title: Documentation of multifactorial relationships between precipitation and topography of the Tibetan Plateau using spaceborne precipitation radars publication-title: Remote Sens. Environ., doi: 10.1016/j.rse.2018.02.007 – volume: 11 start-page: 1483 issue: 3 year: 2019 ident: 10.1016/j.jhydrol.2025.133303_b0075 article-title: Integrated hydrometeorological, snow and frozen-ground observations in the alpine region of the Heihe River Basin, China publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-11-1483-2019 – ident: 10.1016/j.jhydrol.2025.133303_b0145 – volume: 112 start-page: 1212 issue: 3 year: 2008 ident: 10.1016/j.jhydrol.2025.133303_b0140 article-title: Merging complementary remote sensing datasets in the context of snow water equivalent reconstruction publication-title: Remote Sens. Environ., doi: 10.1016/j.rse.2007.08.010 – volume: 190 start-page: 274 year: 2017 ident: 10.1016/j.jhydrol.2025.133303_b0250 article-title: Impact of climate and elevation on snow cover using integrated remote sensing snow products in Tibetan Plateau publication-title: Remote Sens. Environ., doi: 10.1016/j.rse.2016.12.028 – volume: 66 start-page: 545 year: 2015 ident: 10.1016/j.jhydrol.2025.133303_b0425 article-title: MODIS snow products collection 6 user guide publication-title: National Snow and Ice Data Center: Boulder, CO, USA – volume: 438 start-page: 303 issue: 7066 year: 2005 ident: 10.1016/j.jhydrol.2025.133303_b0025 article-title: Potential impacts of a warming climate on water availability in snow-dominated regions publication-title: Nature doi: 10.1038/nature04141 – volume: 328 start-page: 1382 issue: 5984 year: 2010 ident: 10.1016/j.jhydrol.2025.133303_b0265 article-title: Climate change will affect the Asian water towers publication-title: Science doi: 10.1126/science.1183188 – volume: 35 start-page: 484 issue: 04 year: 2020 ident: 10.1016/j.jhydrol.2025.133303_b0070 article-title: Developing cryospheric remote sensing, promoting scientific programme of Earth's Three Poles. Bulletin of Chinese publication-title: Acad. Sci. – volume: 62 start-page: 132 issue: 2 year: 1997 ident: 10.1016/j.jhydrol.2025.133303_b0160 article-title: Comparison of snow mass estimates from a prototype passive microwave snow algorithm, a revised algorithm and a snow depth climatology publication-title: Remote Sens. Environ., doi: 10.1016/S0034-4257(97)00085-0 – volume: 51 start-page: 367 year: 2013 ident: 10.1016/j.jhydrol.2025.133303_b0435 article-title: Assessment of methods for mapping snow cover from MODIS publication-title: Adv. Water Resour., doi: 10.1016/j.advwatres.2012.03.002 – volume: 11 start-page: 1933 issue: 4 year: 2017 ident: 10.1016/j.jhydrol.2025.133303_b0100 article-title: Evaluation of snow cover and snow depth on the Qinghai–Tibetan Plateau derived from passive microwave remote sensing publication-title: Cryosphere doi: 10.5194/tc-11-1933-2017 – volume: 34 start-page: 1247 issue: 11 year: 2019 ident: 10.1016/j.jhydrol.2025.133303_b0055 article-title: Snow cover variation and its impacts over the Qinghai-Tibet Plateau publication-title: Bulletin of Chinese Academy of Sciences. – volume: 11 start-page: 493 issue: 2 year: 2019 ident: 10.1016/j.jhydrol.2025.133303_b0175 article-title: Theia Snow collection: high-resolution operational snow cover maps from Sentinel-2 and Landsat-8 data publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-11-493-2019 – volume: 159 start-page: 269 year: 2015 ident: 10.1016/j.jhydrol.2025.133303_b0535 article-title: Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.12.014 – volume: 16 start-page: 192 issue: 1 year: 2024 ident: 10.1016/j.jhydrol.2025.133303_b0110 article-title: Development and evaluation of a cloud-gap-filled MODIS normalized difference snow index product over high Mountain Asia publication-title: Remote Sens., doi: 10.3390/rs16010192 – volume: 114 year: 2022 ident: 10.1016/j.jhydrol.2025.133303_b0510 article-title: Estimating fractional snow cover in vegetated environments using MODIS surface reflectance data publication-title: Int. J. Appl. Earth Obs. Geoinf., – volume: 15 start-page: 5045 issue: 13 year: 2022 ident: 10.1016/j.jhydrol.2025.133303_b0305 article-title: SnowClim v1.0: high-resolution snow model and data for the western United States publication-title: Geosci. Model Dev., doi: 10.5194/gmd-15-5045-2022 – volume: 14 start-page: 1409 issue: 4 year: 2020 ident: 10.1016/j.jhydrol.2025.133303_b0380 article-title: Towards a webcam-based snow cover monitoring network: methodology and evaluation publication-title: Cryosphere doi: 10.5194/tc-14-1409-2020 – volume: 10 start-page: 1989 issue: 12 year: 2018 ident: 10.1016/j.jhydrol.2025.133303_b0105 article-title: Estimation of snow depth over the qinghai-tibetan plateau based on AMSR-E and MODIS data publication-title: Remote Sens., doi: 10.3390/rs10121989 – volume: 33 start-page: 4094 issue: 13 year: 2012 ident: 10.1016/j.jhydrol.2025.133303_b0125 article-title: Remote sensing of snow – a review of available methods publication-title: Int. J. Remote Sens., doi: 10.1080/01431161.2011.640964 – volume: 13 start-page: 171 issue: 3 year: 2020 ident: 10.1016/j.jhydrol.2025.133303_b0445 article-title: Impacts of topographic factors on regional snow cover characteristics publication-title: Water Sci. Eng., doi: 10.1016/j.wse.2020.09.002 – ident: 10.1016/j.jhydrol.2025.133303_b0525 – volume: 264 year: 2021 ident: 10.1016/j.jhydrol.2025.133303_b0430 article-title: Multi-sensor fusion using random forests for daily fractional snow cover at 30m publication-title: Remote Sens. Environ., doi: 10.1016/j.rse.2021.112608 – volume: 120 start-page: 25 year: 2012 ident: 10.1016/j.jhydrol.2025.133303_b0130 article-title: Sentinel-2: ESA's optical high-resolution mission for GMES operational services publication-title: Remote Sens. Environ., doi: 10.1016/j.rse.2011.11.026 – volume: 16 start-page: 2501 issue: 5 year: 2024 ident: 10.1016/j.jhydrol.2025.133303_b0350 article-title: MODIS daily cloud-gap-filled fractional snow cover dataset of the Asian Water Tower region (2000–2022) publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-16-2501-2024 – volume: 49 issue: 15 year: 2022 ident: 10.1016/j.jhydrol.2025.133303_b0530 article-title: Why Do CMIP6 models fail to simulate snow depth in terms of temporal change and high mountain snow of China skillfully? publication-title: Geophys. Res. Lett., doi: 10.1029/2022GL098888 – volume: 261 year: 2021 ident: 10.1016/j.jhydrol.2025.133303_b0045 article-title: Not all DEMs are equal: An evaluation of six globally available 30m resolution DEMs with geodetic benchmarks and LiDAR in Mexico publication-title: Remote Sens. Environ., doi: 10.1016/j.rse.2021.112474 – volume: 55 start-page: 6754 issue: 8 year: 2019 ident: 10.1016/j.jhydrol.2025.133303_b0185 article-title: High‐Resolution snowline delineation from landsat imagery to infer snow cover controls in a himalayan catchment publication-title: Water Resour. Res., doi: 10.1029/2019WR024935 – volume: 113 start-page: 868 issue: 4 year: 2009 ident: 10.1016/j.jhydrol.2025.133303_b0340 article-title: Retrieval of subpixel snow covered area, grain size, and albedo from MODIS publication-title: Remote Sens. Environ., doi: 10.1016/j.rse.2009.01.001 – ident: 10.1016/j.jhydrol.2025.133303_b0370 doi: 10.1029/2020WR027243 – volume: 34 start-page: 5384 issue: 26 year: 2020 ident: 10.1016/j.jhydrol.2025.133303_b0405 article-title: Random forests as a tool to understand the snow depth distribution and its evolution in mountain areas publication-title: Hydrol. Processes doi: 10.1002/hyp.13951 – volume: 16 start-page: 2813 issue: 3 year: 2023 ident: 10.1016/j.jhydrol.2025.133303_b0395 article-title: Enhanced snow cover mapping using object-based classification and normalized difference snow index (NDSI) publication-title: Earth Sci. Inf., doi: 10.1007/s12145-023-01077-6 – year: 2008 ident: 10.1016/j.jhydrol.2025.133303_b0005 – volume: 17 start-page: 2387 issue: 6 year: 2023 ident: 10.1016/j.jhydrol.2025.133303_b0385 article-title: Exploring the use of multi-source high-resolution satellite data for snow water equivalent reconstruction over mountainous catchments publication-title: Cryosphere doi: 10.5194/tc-17-2387-2023 – volume: 7 start-page: 17246 issue: 12 year: 2015 ident: 10.1016/j.jhydrol.2025.133303_b0495 article-title: An effective method for snow-cover mapping of dense coniferous forests in the upper heihe river basin using landsat operational land imager data publication-title: Remote Sens., doi: 10.3390/rs71215882 – volume: 7 issue: 1 year: 2013 ident: 10.1016/j.jhydrol.2025.133303_b0480 article-title: Spatiotemporal changes of snow cover over the Tibetan plateau based on cloud-removed moderate resolution imaging spectroradiometer fractional snow cover product from 2001 to 2011 publication-title: J. Appl. Remote Sens., doi: 10.1117/1.JRS.7.073582 – volume: 14 start-page: 2823 issue: 12 year: 2022 ident: 10.1016/j.jhydrol.2025.133303_b0135 article-title: Spatiotemporal Variation of Snow Cover Frequency in the Qilian Mountains (Northwestern China) during 2000-2020 and Associated Circulation Mechanisms publication-title: Remote Sens., doi: 10.3390/rs14122823 – volume: 10 start-page: 679 issue: 5 year: 2006 ident: 10.1016/j.jhydrol.2025.133303_b0355 article-title: Validation of MODIS snow cover images over Austria publication-title: Hydrol. Earth Syst. Sci., doi: 10.5194/hess-10-679-2006 – volume: 96 start-page: 315 issue: 3–4 year: 2005 ident: 10.1016/j.jhydrol.2025.133303_b0115 article-title: Evaluation of passive microwave snow water equivalent retrievals across the boreal forest/tundra transition of western Canada publication-title: Remote Sens. Environ., doi: 10.1016/j.rse.2005.02.014 – volume: 4 start-page: 99 issue: 1 year: 2010 ident: 10.1016/j.jhydrol.2025.133303_b0030 article-title: High resolution modelling of snow transport in complex terrain using downscaled MM5 wind fields publication-title: Cryosphere doi: 10.5194/tc-4-99-2010 – volume: 15 start-page: 343 issue: 2 year: 2023 ident: 10.1016/j.jhydrol.2025.133303_b0415 article-title: Comparison of three different random forest approaches to retrieve daily high-resolution snow cover maps from MODIS and Sentinel-2 in a Mountain Area, Gran Paradiso National Park (NW Alps) publication-title: Remote Sens., doi: 10.3390/rs15020343 – volume: 6 start-page: 420 issue: 4 year: 2022 ident: 10.1016/j.jhydrol.2025.133303_b0275 article-title: Daily snow water equivalent product with SMMR, SSM/I and SSMIS from 1980 to 2020 over China publication-title: Big Earth Data doi: 10.1080/20964471.2022.2032998 – volume: 49 start-page: 145 year: 2008 ident: 10.1016/j.jhydrol.2025.133303_b0060 article-title: Snow depth derived from passive microwave remote-sensing data in China publication-title: Ann. Glaciol., doi: 10.3189/172756408787814690 – volume: 55 start-page: 131 year: 2013 ident: 10.1016/j.jhydrol.2025.133303_b0155 article-title: A comparison of 1701 snow models using observations from an alpine site publication-title: Adv. Water Resour., doi: 10.1016/j.advwatres.2012.07.013 – volume: 35 start-page: 147 issue: 3 year: 2002 ident: 10.1016/j.jhydrol.2025.133303_b0295 article-title: A physical SNOWPACK model for the Swiss avalanche warning publication-title: Cold Reg. Sci. Technol., doi: 10.1016/S0165-232X(02)00073-3 – year: 2010 ident: 10.1016/j.jhydrol.2025.133303_b0095 – volume: 15 start-page: 4044 issue: 16 year: 2023 ident: 10.1016/j.jhydrol.2025.133303_b0085 article-title: Snow cover on the tibetan plateau and topographic controls publication-title: Remote Sens., doi: 10.3390/rs15164044 – volume: 24 start-page: 1910 issue: 9 year: 2004 ident: 10.1016/j.jhydrol.2025.133303_b0365 article-title: Estimation of precipitation using altitude and prevailing wind direction effect index in Mountainous region publication-title: Acta Ecol. Sin., – volume: 14 start-page: 4445 issue: 9 year: 2022 ident: 10.1016/j.jhydrol.2025.133303_b0260 article-title: HMRFS–TP: long-term daily gap-free snow cover products over the Tibetan Plateau from 2002 to 2021 based on hidden Markov random field model publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-14-4445-2022 – volume: 184 start-page: 139 year: 2016 ident: 10.1016/j.jhydrol.2025.133303_b0345 article-title: The Airborne Snow Observatory: fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo publication-title: Remote Sens. Environ., doi: 10.1016/j.rse.2016.06.018 – volume: 11 start-page: 1647 issue: 4 year: 2017 ident: 10.1016/j.jhydrol.2025.133303_b0455 article-title: Assimilation of snow cover and snow depth into a snow model toestimate snow water equivalent and snowmelt runoff in a Himalayan catchment publication-title: Cryosphere doi: 10.5194/tc-11-1647-2017 – volume: 21 start-page: 1534 issue: 12 year: 2007 ident: 10.1016/j.jhydrol.2025.133303_b0205 article-title: Accuracy assessment of the MODIS snow products publication-title: Hydrol. Processes doi: 10.1002/hyp.6715 – volume: 9 start-page: 307 issue: 1 year: 2016 ident: 10.1016/j.jhydrol.2025.133303_b0235 article-title: PRACTISE – Photo Rectification And ClassificaTIon SoftwarE (V.2.1) publication-title: Geosci. Model Dev., doi: 10.5194/gmd-9-307-2016 – volume: 14 start-page: 5661 issue: 22 year: 2022 ident: 10.1016/j.jhydrol.2025.133303_b0420 article-title: Development of snow cover frequency maps from MODIS snow cover products publication-title: Remote Sens., doi: 10.3390/rs14225661 – volume: 632 year: 2024 ident: 10.1016/j.jhydrol.2025.133303_b0470 article-title: Fusing daily snow water equivalent from 1980 to 2020 in China using a spatiotemporal XGBoost model publication-title: J. Hydrol., doi: 10.1016/j.jhydrol.2024.130876 – volume: 46 issue: 12 year: 2010 ident: 10.1016/j.jhydrol.2025.133303_b0465 article-title: Using repeated patterns in snow distribution modeling: an Arctic example publication-title: Water Resour. Res., doi: 10.1029/2010WR009434 – volume: 202 start-page: 18 year: 2017 ident: 10.1016/j.jhydrol.2025.133303_b0190 article-title: Google Earth Engine: Planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ., doi: 10.1016/j.rse.2017.06.031 – volume: 48 year: 2023 ident: 10.1016/j.jhydrol.2025.133303_b0165 article-title: Estimation of snow bulk density and snow water equivalent on the Tibetan Plateau using snow cover duration and snow depth publication-title: J Hydrol.: Reg. Stud., – volume: 209 start-page: 240 year: 2018 ident: 10.1016/j.jhydrol.2025.133303_b0315 article-title: Snow cover and snow albedo changes in the central Andes of Chile and Argentina from daily MODIS observations (2000–2016) publication-title: Remote Sens. Environ., doi: 10.1016/j.rse.2018.02.072 – volume: 11 start-page: 1647 issue: 4 year: 2017 ident: 10.1016/j.jhydrol.2025.133303_b0460 article-title: Assimilation of snow cover and snow depth into a snow model toestimate snow water equivalent and snowmelt runoff in aHimalayan catchment publication-title: Cryosphere doi: 10.5194/tc-11-1647-2017 – volume: 163 start-page: 23 year: 2015 ident: 10.1016/j.jhydrol.2025.133303_b0310 article-title: Landsat-based snow persistence map for northwest Alaska publication-title: Remote Sens. Environ., doi: 10.1016/j.rse.2015.02.028 – volume: 43 start-page: 6341 issue: 12 year: 2016 ident: 10.1016/j.jhydrol.2025.133303_b0325 article-title: Characterizing the extreme 2015 snowpack deficit in the Sierra Nevada (USA) and the implications for drought recovery publication-title: Geophys. Res. Lett., doi: 10.1002/2016GL068520 – volume: 8 start-page: 1989 issue: 5 year: 2014 ident: 10.1016/j.jhydrol.2025.133303_b0410 article-title: Topographic control of snowpack distribution in a small catchment in the central Spanish Pyrenees: intra- and inter-annual persistence publication-title: Cryosphere doi: 10.5194/tc-8-1989-2014 – volume: 12 start-page: 533 issue: 2 year: 2019 ident: 10.1016/j.jhydrol.2025.133303_b0225 article-title: Assessment of MODIS-based fractional snow cover products over the Tibetan Plateau publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., doi: 10.1109/JSTARS.2018.2879666 – volume: 540 start-page: 418 issue: 7633 year: 2016 ident: 10.1016/j.jhydrol.2025.133303_b0360 article-title: High-resolution mapping of global surface water and its long-term changes publication-title: Nature doi: 10.1038/nature20584 – volume: 590 year: 2020 ident: 10.1016/j.jhydrol.2025.133303_b0520 article-title: Improving snow simulation with more realistic vegetation parameters in a regional climate model in the Tianshan Mountains publication-title: Central Asia. J. Hydrol., – volume: 2022 start-page: 1 year: 2023 ident: 10.1016/j.jhydrol.2025.133303_b0245 article-title: A long-term daily gridded snow depth dataset for the Northern Hemisphere from 1980 to 2019 based on machine learning publication-title: Big Earth Data – volume: 19 start-page: 2337 issue: 5 year: 2015 ident: 10.1016/j.jhydrol.2025.133303_b0180 article-title: A snow cover climatology for the Pyrenees from MODIS snow products publication-title: Hydrol. Earth Syst. Sci., doi: 10.5194/hess-19-2337-2015 – volume: 213 start-page: 61 year: 2018 ident: 10.1016/j.jhydrol.2025.133303_b0500 article-title: Globally scalable alpine snow metrics publication-title: Remote Sens. Environ., doi: 10.1016/j.rse.2018.05.012 – volume: 13 start-page: 1250 issue: 7 year: 2021 ident: 10.1016/j.jhydrol.2025.133303_b0240 article-title: Snow depth fusion based on machine learning methods for the northern hemisphere publication-title: Remote Sens., doi: 10.3390/rs13071250 – volume: 199 year: 2022 ident: 10.1016/j.jhydrol.2025.133303_b0270 article-title: Effect of shadow on atmospheric and topographic processed NDSI values in Chenab basin, western Himalayas publication-title: Cold Reg. Sci. Technol., doi: 10.1016/j.coldregions.2022.103561 – volume: 99 start-page: 27 year: 2014 ident: 10.1016/j.jhydrol.2025.133303_b0450 article-title: Evaluation of modelled snow depth and snow water equivalent at three contrasting sites in Switzerland using SNOWPACK simulations driven by different meteorological data input publication-title: Cold Reg. Sci. Technol., doi: 10.1016/j.coldregions.2013.12.004 – ident: 10.1016/j.jhydrol.2025.133303_b0280 – volume: 13 start-page: 4513 issue: 22 year: 2021 ident: 10.1016/j.jhydrol.2025.133303_b0400 article-title: Spatial downscaling of MODIS snow cover observations using sentinel-2 snow products publication-title: Remote Sens., doi: 10.3390/rs13224513 – volume: 15 start-page: 4853 issue: 12 year: 2022 ident: 10.1016/j.jhydrol.2025.133303_b0010 article-title: Snow Multidata Mapping and Modeling (S3M) 5.1: a distributed cryospheric model with dry and wet snow, data assimilation, glacier mass balance, and debris-driven melt publication-title: Geosci. Model Dev., doi: 10.5194/gmd-15-4853-2022 – volume: 8 start-page: 3867 issue: 12 year: 2015 ident: 10.1016/j.jhydrol.2025.133303_b0150 article-title: A factorial snowpack model (FSM 1.0) publication-title: Geosci. Model Dev., doi: 10.5194/gmd-8-3867-2015 – volume: 13 start-page: 2149 issue: 14–15 year: 1999 ident: 10.1016/j.jhydrol.2025.133303_b0035 article-title: Scaling issues in snow hydrology publication-title: Hydrol. Processes doi: 10.1002/(SICI)1099-1085(199910)13:14/15<2149::AID-HYP847>3.0.CO;2-8 – volume: 8 start-page: 2381 issue: 6 year: 2014 ident: 10.1016/j.jhydrol.2025.133303_b0195 article-title: Elevation dependency of mountain snow depth publication-title: Cryosphere doi: 10.5194/tc-8-2381-2014 – volume: 604 year: 2022 ident: 10.1016/j.jhydrol.2025.133303_b0515 article-title: Development of a fine-resolution snow depth product based on the snow cover probability for the Tibetan Plateau: validation and spatial–temporal analyses publication-title: J. Hydrol., doi: 10.1016/j.jhydrol.2021.127027 – volume: 54 start-page: 127 issue: 2 year: 1995 ident: 10.1016/j.jhydrol.2025.133303_b0210 article-title: Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data publication-title: Remote Sens. Environ., doi: 10.1016/0034-4257(95)00137-P – volume: 17 start-page: 2629 issue: 7 year: 2023 ident: 10.1016/j.jhydrol.2025.133303_b0020 article-title: How do tradeoffs in satellite spatial and temporal resolution impact snow water equivalent reconstruction? publication-title: Cryosphere doi: 10.5194/tc-17-2629-2023 – volume: 83 start-page: 181 issue: 1–2 year: 2002 ident: 10.1016/j.jhydrol.2025.133303_b0215 article-title: MODIS snow-cover products publication-title: Remote Sens. Environ., doi: 10.1016/S0034-4257(02)00095-0 – volume: 21 start-page: 2650 issue: 19 year: 2007 ident: 10.1016/j.jhydrol.2025.133303_b0375 article-title: The cold regions hydrological model: a platform for basing process representation and model structure on physical evidence publication-title: Hydrol. Processes doi: 10.1002/hyp.6787 – volume: 12 start-page: 3341 issue: 20 year: 2020 ident: 10.1016/j.jhydrol.2025.133303_b0090 article-title: SnowCloudMetrics: snow information for everyone publication-title: Remote Sens., doi: 10.3390/rs12203341 – volume: 17 start-page: 673 issue: 2 year: 2023 ident: 10.1016/j.jhydrol.2025.133303_b0220 article-title: Evaluation of E3SM land model snow simulations over the western United States publication-title: Cryosphere doi: 10.5194/tc-17-673-2023 – volume: 32 start-page: 115 issue: 1 year: 1996 ident: 10.1016/j.jhydrol.2025.133303_b0440 article-title: Automated mapping of montane snow cover at subpixel resolution from the Landsat Thematic Mapper publication-title: Water Resour. Res., doi: 10.1029/95WR02718 – volume: 34 issue: 6 year: 2007 ident: 10.1016/j.jhydrol.2025.133303_b0390 article-title: MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau publication-title: Geophys. Res. Lett., doi: 10.1029/2007GL029262 – volume: 37 start-page: 3873 issue: 10 year: 2017 ident: 10.1016/j.jhydrol.2025.133303_b0200 article-title: Climate and topographic controls on snow cover dynamics in the Hindu Kush Himalaya publication-title: Int. J. Climatol., doi: 10.1002/joc.4961 – volume: 26 start-page: 1210 issue: 9 year: 1987 ident: 10.1016/j.jhydrol.2025.133303_b0120 article-title: Satellite-derived maps of snow cover frequency for the northern hemisphere publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/1520-0450(1987)026<1210:SDMOSC>2.0.CO;2 – volume: 204 start-page: 568 year: 2018 ident: 10.1016/j.jhydrol.2025.133303_b0255 article-title: Improving MODIS snow products with a HMRF-based spatio-temporal modeling technique in the Upper Rio Grande Basin publication-title: Remote Sens. Environ., doi: 10.1016/j.rse.2017.10.001 – volume: 143 start-page: 54 year: 2014 ident: 10.1016/j.jhydrol.2025.133303_b0065 article-title: Assimilating passive microwave remote sensing data into a land surface model to improve the estimation of snow depth publication-title: Remote Sens. Environ., doi: 10.1016/j.rse.2013.12.009 – volume: 12 start-page: 2904 issue: 18 year: 2020 ident: 10.1016/j.jhydrol.2025.133303_b0170 article-title: Estimating Fractional Snow Cover in Open Terrain from Sentinel-2 Using the Normalized Difference Snow Index publication-title: Remote Sens., doi: 10.3390/rs12182904 |
| SSID | ssj0000334 |
| Score | 2.4944258 |
| Snippet | •An innovative 30 m resolution snow cover frequency map of the Tibetan Plateau was developed using over 500,000 Landsat and Sentinel-2 images.•A specialized... Estimating snow parameters (e.g., snow cover, snow depth) at hillslope scales (<100 m) is an urgent but highly challenging research task. Remote sensing has... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 133303 |
| SubjectTerms | algorithms China coasts cold season Google Earth Engine Hillslope scale hydrology Landsat landscapes seasonal variation snow Snow cover frequency Snow mapping algorithm snowpack spatial variation summer Tibetan Plateau topographic slope warm season winter |
| Title | Mapping snow cover frequency at 30 m for studying seasonal variations and topographic controls on the Tibetan Plateau |
| URI | https://dx.doi.org/10.1016/j.jhydrol.2025.133303 https://www.proquest.com/docview/3206198541 |
| Volume | 660 |
| WOSCitedRecordID | wos001481881600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0022-1694 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0000334 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqXSS4IJ5il4eMxK1KiWO3To4VWhaQWHFYRG-RYzvQqk2qNqlafj3jV4JYVgtIXKIqqh2135eZz-OZMUKviChBJMc8SsAuRqwgOhKF1FHJZMpEwuD9k_awCX5xkc5m2afB4HuohdkteVWl-322_q9Qwz0A25TO_gXc3aRwAz4D6HAF2OH6R8B_FGtbA7U1VW7SZGgOy41LmD6Y0kUaD1c2udB2lrXf1MIK8uEOFs4-Nc4mVtZr19B6LkNKe9hcAIwL3RgDugSxKtprNO63g9q4Jk8gZKcr05RBGQZ20YcvPlx93s6_Cu9EbbKBawYs6j6S7sq454e26qloHYio9sH_-vBFMu4S4XxM7UpdTVdjQCbu-ONgpyfu4IErNt-FHxajhftNI_OUESy9aUx7J9elHprd6cRMDdoP5JjpGHuc8HEGRv14-v5s9qH345Sy0GveDOjrv17_9mHXKZtffLwVLpf30F2PBp46ptxHA109QLfPte9V_hC1njHYMAZbxuCOMVg0mMZ4hYExODAGB8bgnjEYGIN_YgwOjMF1hYEx2DMGe8Y8Qp_fnl2-eRf50zgiSRlrIhMsL1QsyaQsQOJIrjlNaKlIQWQWJ2JSpkoRxRRJpYhLlhGqJkqUIGjL8bjg9DE6qupKP0GYwhqcp5KksalOMk0IBc94oVQCeknz5ASx8E_m0reqNyemLPOQk7jIPQC5ASB3AJygUTds7Xq13DQgDTDlXnA6IZkDt24a-jLAmoNBNrtsotJ1u81pAhI5S8eMnP779E_Rnf5leYaOmk2rn6NbctfMt5sXnqk_AC3ltm4 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+snow+cover+frequency+at+30+m+for+studying+seasonal+variations+and+topographic+controls+on+the+Tibetan+Plateau&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Wang%2C+Guigang&rft.au=Che%2C+Tao&rft.au=Dai%2C+Liyun&rft.au=Hu%2C+Yanxing&rft.date=2025-10-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.volume=660&rft_id=info:doi/10.1016%2Fj.jhydrol.2025.133303&rft.externalDocID=S0022169425006419 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |