Mapping snow cover frequency at 30 m for studying seasonal variations and topographic controls on the Tibetan Plateau

•An innovative 30 m resolution snow cover frequency map of the Tibetan Plateau was developed using over 500,000 Landsat and Sentinel-2 images.•A specialized snow mapping algorithm was designed to improve detection in shaded and low-illumination areas.•The SCOF maps accurately characterize the spatia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrology (Amsterdam) Jg. 660; S. 133303
Hauptverfasser: Wang, Guigang, Che, Tao, Dai, Liyun, Hu, Yanxing, Wu, Jun, Meng, Saiyao, Kong, Chuilei, Wang, Jing, Feng, Dongdong, Wang, Shijie, Li, Xuemei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.10.2025
Schlagworte:
ISSN:0022-1694
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •An innovative 30 m resolution snow cover frequency map of the Tibetan Plateau was developed using over 500,000 Landsat and Sentinel-2 images.•A specialized snow mapping algorithm was designed to improve detection in shaded and low-illumination areas.•The SCOF maps accurately characterize the spatial heterogeneity of mountain snow at the hillslope scale.•A 30 m resolution analysis of seasonal variations and topographic controls on snow cover across different elevation zones provides new insights into snow distribution on the Tibetan Plateau. Estimating snow parameters (e.g., snow cover, snow depth) at hillslope scales (<100 m) is an urgent but highly challenging research task. Remote sensing has become an indispensable tool for monitoring large-scale snow cover. However, existing studies on spatial patterns of snow cover typically focus on scales of 500–5000 m due to the trade-offs between temporal and spatial resolution in remote sensing sensors. This limitation hinders accurately representing the high spatial heterogeneity in mountain snow. To this end, we used a straightforward metric and developed an innovative 30 m average monthly Snow Cover Frequency (SCOF) map for the Tibetan Plateau (TP) utilizing high-resolution images from Landsat and Sentinel-2 satellites, spanning from 2000 to 2024. These maps provide a novel perspective for analyzing seasonal variations in snow cover and its relationship with topography. First, we designed a specific snow mapping algorithm tailored to shaded and low-illumination areas, which were depicted through terrain modeling. Validation against in situ observations and very-high-resolution remote sensing data demonstrated that snow could be effectively extracted even in challenging shadowed conditions. Next, SCOF maps were generated using snow cover data extracted from over 500,000 Landsat and Sentinel-2 images. Comparative analysis demonstrated that SCOF maps accurately characterize the spatial heterogeneity of mountain snow, with strong correlations with in situ observations, providing significantly enhanced spatial details compared to MODIS-derived SCOF maps. Finally, the spatial patterns of SCOF, along with seasonal variations and their relationship with topography, were meticulously documented. Key findings include: (1) SCOF exhibits apparent seasonal variations at elevations between 1500 and 6300 m, with the highest value typically observed in February and the lowest in August. However, above 7100 m, the highest SCOF occurs in July and the lowest in February, presenting an almost opposite seasonal pattern. Notably, although SCOF remains high at elevations of 6300–7100 m, seasonal variation are minimal, with the snow remaining relatively balanced across the seasons. (2) Generally, SCOF increases with elevation below 6300 m, showing a gradual rise below 5000 m but becoming significantly more rapid above this elevation. Above 7100 m, an intriguing phenomenon is observed: SCOF is unexpectedly lower in winter than in summer. In this region, SCOF in the warm season remains constant with increasing elevation, with slight increases in individual months, whereas in the cold season, SCOF shows a decreasing trend. (3) Elevation, distance to the coastline, and the topographic relief index are found to be important factors influencing snow distribution on the TP. The high-resolution SCOF maps presented in this study enhance our understanding of hillslope-level snow cover patterns in alpine regions lacking in situ observations, contributing to improved research on snow hydrology.
AbstractList Estimating snow parameters (e.g., snow cover, snow depth) at hillslope scales (<100 m) is an urgent but highly challenging research task. Remote sensing has become an indispensable tool for monitoring large-scale snow cover. However, existing studies on spatial patterns of snow cover typically focus on scales of 500–5000 m due to the trade-offs between temporal and spatial resolution in remote sensing sensors. This limitation hinders accurately representing the high spatial heterogeneity in mountain snow. To this end, we used a straightforward metric and developed an innovative 30 m average monthly Snow Cover Frequency (SCOF) map for the Tibetan Plateau (TP) utilizing high-resolution images from Landsat and Sentinel-2 satellites, spanning from 2000 to 2024. These maps provide a novel perspective for analyzing seasonal variations in snow cover and its relationship with topography. First, we designed a specific snow mapping algorithm tailored to shaded and low-illumination areas, which were depicted through terrain modeling. Validation against in situ observations and very-high-resolution remote sensing data demonstrated that snow could be effectively extracted even in challenging shadowed conditions. Next, SCOF maps were generated using snow cover data extracted from over 500,000 Landsat and Sentinel-2 images. Comparative analysis demonstrated that SCOF maps accurately characterize the spatial heterogeneity of mountain snow, with strong correlations with in situ observations, providing significantly enhanced spatial details compared to MODIS-derived SCOF maps. Finally, the spatial patterns of SCOF, along with seasonal variations and their relationship with topography, were meticulously documented. Key findings include: (1) SCOF exhibits apparent seasonal variations at elevations between 1500 and 6300 m, with the highest value typically observed in February and the lowest in August. However, above 7100 m, the highest SCOF occurs in July and the lowest in February, presenting an almost opposite seasonal pattern. Notably, although SCOF remains high at elevations of 6300–7100 m, seasonal variation are minimal, with the snow remaining relatively balanced across the seasons. (2) Generally, SCOF increases with elevation below 6300 m, showing a gradual rise below 5000 m but becoming significantly more rapid above this elevation. Above 7100 m, an intriguing phenomenon is observed: SCOF is unexpectedly lower in winter than in summer. In this region, SCOF in the warm season remains constant with increasing elevation, with slight increases in individual months, whereas in the cold season, SCOF shows a decreasing trend. (3) Elevation, distance to the coastline, and the topographic relief index are found to be important factors influencing snow distribution on the TP. The high-resolution SCOF maps presented in this study enhance our understanding of hillslope-level snow cover patterns in alpine regions lacking in situ observations, contributing to improved research on snow hydrology.
•An innovative 30 m resolution snow cover frequency map of the Tibetan Plateau was developed using over 500,000 Landsat and Sentinel-2 images.•A specialized snow mapping algorithm was designed to improve detection in shaded and low-illumination areas.•The SCOF maps accurately characterize the spatial heterogeneity of mountain snow at the hillslope scale.•A 30 m resolution analysis of seasonal variations and topographic controls on snow cover across different elevation zones provides new insights into snow distribution on the Tibetan Plateau. Estimating snow parameters (e.g., snow cover, snow depth) at hillslope scales (<100 m) is an urgent but highly challenging research task. Remote sensing has become an indispensable tool for monitoring large-scale snow cover. However, existing studies on spatial patterns of snow cover typically focus on scales of 500–5000 m due to the trade-offs between temporal and spatial resolution in remote sensing sensors. This limitation hinders accurately representing the high spatial heterogeneity in mountain snow. To this end, we used a straightforward metric and developed an innovative 30 m average monthly Snow Cover Frequency (SCOF) map for the Tibetan Plateau (TP) utilizing high-resolution images from Landsat and Sentinel-2 satellites, spanning from 2000 to 2024. These maps provide a novel perspective for analyzing seasonal variations in snow cover and its relationship with topography. First, we designed a specific snow mapping algorithm tailored to shaded and low-illumination areas, which were depicted through terrain modeling. Validation against in situ observations and very-high-resolution remote sensing data demonstrated that snow could be effectively extracted even in challenging shadowed conditions. Next, SCOF maps were generated using snow cover data extracted from over 500,000 Landsat and Sentinel-2 images. Comparative analysis demonstrated that SCOF maps accurately characterize the spatial heterogeneity of mountain snow, with strong correlations with in situ observations, providing significantly enhanced spatial details compared to MODIS-derived SCOF maps. Finally, the spatial patterns of SCOF, along with seasonal variations and their relationship with topography, were meticulously documented. Key findings include: (1) SCOF exhibits apparent seasonal variations at elevations between 1500 and 6300 m, with the highest value typically observed in February and the lowest in August. However, above 7100 m, the highest SCOF occurs in July and the lowest in February, presenting an almost opposite seasonal pattern. Notably, although SCOF remains high at elevations of 6300–7100 m, seasonal variation are minimal, with the snow remaining relatively balanced across the seasons. (2) Generally, SCOF increases with elevation below 6300 m, showing a gradual rise below 5000 m but becoming significantly more rapid above this elevation. Above 7100 m, an intriguing phenomenon is observed: SCOF is unexpectedly lower in winter than in summer. In this region, SCOF in the warm season remains constant with increasing elevation, with slight increases in individual months, whereas in the cold season, SCOF shows a decreasing trend. (3) Elevation, distance to the coastline, and the topographic relief index are found to be important factors influencing snow distribution on the TP. The high-resolution SCOF maps presented in this study enhance our understanding of hillslope-level snow cover patterns in alpine regions lacking in situ observations, contributing to improved research on snow hydrology.
ArticleNumber 133303
Author Wu, Jun
Che, Tao
Feng, Dongdong
Meng, Saiyao
Kong, Chuilei
Dai, Liyun
Wang, Guigang
Hu, Yanxing
Wang, Jing
Li, Xuemei
Wang, Shijie
Author_xml – sequence: 1
  givenname: Guigang
  surname: Wang
  fullname: Wang, Guigang
  organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
– sequence: 2
  givenname: Tao
  surname: Che
  fullname: Che, Tao
  email: chetao@lzb.ac.cn
  organization: Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
– sequence: 3
  givenname: Liyun
  surname: Dai
  fullname: Dai, Liyun
  organization: Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
– sequence: 4
  givenname: Yanxing
  surname: Hu
  fullname: Hu, Yanxing
  organization: Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
– sequence: 5
  givenname: Jun
  surname: Wu
  fullname: Wu, Jun
  organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
– sequence: 6
  givenname: Saiyao
  surname: Meng
  fullname: Meng, Saiyao
  organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
– sequence: 7
  givenname: Chuilei
  surname: Kong
  fullname: Kong, Chuilei
  organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
– sequence: 8
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
  organization: Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
– sequence: 9
  givenname: Dongdong
  surname: Feng
  fullname: Feng, Dongdong
  organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
– sequence: 10
  givenname: Shijie
  surname: Wang
  fullname: Wang, Shijie
  organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
– sequence: 11
  givenname: Xuemei
  surname: Li
  fullname: Li, Xuemei
  organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
BookMark eNqFkE1PAjEQhnvAREB_gkmPXsB2u7tAPBhD_EowesBzM9tOoWRp17aL4d-7CCcvzGUu7_Nm5hmQnvMOCbnhbMwZL-824816r4OvxxnLijEXQjDRI33GsmzEy1l-SQYxblg3QuR90r5D01i3otH5H6r8DgM1Ab9bdGpPIVHB6JYaH2hMrd7_JRGid1DTHQQLyXoXKThNk2_8KkCztqorcqk7IlLvaFojXdoKEzj6WUNCaK_IhYE64vVpD8nX89Ny_jpafLy8zR8XIyXyPI1Q8GmlmeKlqVg5UROciEwYzSuuZiyD0ky15jrXfKqAmXzGhS41GFEUpiiqiRiS22NvE3z3Ukxya6PCugaHvo1SZKzks2mR8y56f4yq4GMMaKSy6e-7FMDWkjN5ECw38iRYHgTLo-COLv7RTbBbCPuz3MORw87CzmKQUdlOPWobUCWpvT3T8AulFp71
CitedBy_id crossref_primary_10_1109_TGRS_2025_3588200
Cites_doi 10.3137/ao.410101
10.5194/tc-12-1579-2018
10.1080/01431161.2018.1466075
10.5194/essd-13-4711-2021
10.3390/rs9090883
10.1080/17538947.2024.2308734
10.1002/hyp.14546
10.1016/j.rse.2009.01.007
10.1109/JSTARS.2018.2810094
10.3390/rs15051231
10.1016/j.rse.2017.11.021
10.3390/rs9090902
10.1371/journal.pone.0143619
10.1088/1748-9326/10/11/114016
10.1016/j.rse.2018.02.007
10.5194/essd-11-1483-2019
10.1016/j.rse.2007.08.010
10.1016/j.rse.2016.12.028
10.1038/nature04141
10.1126/science.1183188
10.1016/S0034-4257(97)00085-0
10.1016/j.advwatres.2012.03.002
10.5194/tc-11-1933-2017
10.5194/essd-11-493-2019
10.1016/j.rse.2014.12.014
10.3390/rs16010192
10.5194/gmd-15-5045-2022
10.5194/tc-14-1409-2020
10.3390/rs10121989
10.1080/01431161.2011.640964
10.1016/j.wse.2020.09.002
10.1016/j.rse.2021.112608
10.1016/j.rse.2011.11.026
10.5194/essd-16-2501-2024
10.1029/2022GL098888
10.1016/j.rse.2021.112474
10.1029/2019WR024935
10.1016/j.rse.2009.01.001
10.1029/2020WR027243
10.1002/hyp.13951
10.1007/s12145-023-01077-6
10.5194/tc-17-2387-2023
10.3390/rs71215882
10.1117/1.JRS.7.073582
10.3390/rs14122823
10.5194/hess-10-679-2006
10.1016/j.rse.2005.02.014
10.5194/tc-4-99-2010
10.3390/rs15020343
10.1080/20964471.2022.2032998
10.3189/172756408787814690
10.1016/j.advwatres.2012.07.013
10.1016/S0165-232X(02)00073-3
10.3390/rs15164044
10.5194/essd-14-4445-2022
10.1016/j.rse.2016.06.018
10.5194/tc-11-1647-2017
10.1002/hyp.6715
10.5194/gmd-9-307-2016
10.3390/rs14225661
10.1016/j.jhydrol.2024.130876
10.1029/2010WR009434
10.1016/j.rse.2017.06.031
10.1016/j.rse.2018.02.072
10.1016/j.rse.2015.02.028
10.1002/2016GL068520
10.5194/tc-8-1989-2014
10.1109/JSTARS.2018.2879666
10.1038/nature20584
10.5194/hess-19-2337-2015
10.1016/j.rse.2018.05.012
10.3390/rs13071250
10.1016/j.coldregions.2022.103561
10.1016/j.coldregions.2013.12.004
10.3390/rs13224513
10.5194/gmd-15-4853-2022
10.5194/gmd-8-3867-2015
10.1002/(SICI)1099-1085(199910)13:14/15<2149::AID-HYP847>3.0.CO;2-8
10.5194/tc-8-2381-2014
10.1016/j.jhydrol.2021.127027
10.1016/0034-4257(95)00137-P
10.5194/tc-17-2629-2023
10.1016/S0034-4257(02)00095-0
10.1002/hyp.6787
10.3390/rs12203341
10.5194/tc-17-673-2023
10.1029/95WR02718
10.1029/2007GL029262
10.1002/joc.4961
10.1175/1520-0450(1987)026<1210:SDMOSC>2.0.CO;2
10.1016/j.rse.2017.10.001
10.1016/j.rse.2013.12.009
10.3390/rs12182904
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2025.133303
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
ExternalDocumentID 10_1016_j_jhydrol_2025_133303
S0022169425006419
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
AAYWO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACRPL
ACSBN
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADQTV
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~HD
~KM
9DU
AAYXX
ABUFD
ACLOT
CITATION
7S9
L.6
ID FETCH-LOGICAL-c344t-e318bd0c16fb067c7e7323fd1b1c902a6f8dd1d4d18ca0f4913d6daf355f55b73
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001481881600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1694
IngestDate Fri Nov 14 18:41:03 EST 2025
Sat Nov 29 06:57:52 EST 2025
Tue Nov 18 21:11:16 EST 2025
Sat Sep 20 17:14:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Tibetan Plateau
Snow cover frequency
Snow mapping algorithm
Google Earth Engine
Hillslope scale
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-e318bd0c16fb067c7e7323fd1b1c902a6f8dd1d4d18ca0f4913d6daf355f55b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3206198541
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3206198541
crossref_citationtrail_10_1016_j_jhydrol_2025_133303
crossref_primary_10_1016_j_jhydrol_2025_133303
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2025_133303
PublicationCentury 2000
PublicationDate October 2025
2025-10-00
20251001
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: October 2025
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hall, Riggs, Salomonson (b0210) 1995; 54
Jasrotia, Kour, Singh (b0270) 2022; 199
Revuelto, López-Moreno, Azorin-Molina, Vicente-Serrano (b0410) 2014; 8
Wang, Wang, Jiang, Li, Hao (b0495) 2015; 7
Rittger (b0430) 2021; 264
Hao, Jiang, Shi, Wang, Liu (b0225) 2019; 12
Stigter (b0455) 2017; 11
Cuffey, Paterson (b0095) 2010
Parajka, Blöschl (b0355) 2006; 10
Du (b0135) 2022; 14
Chu, Liu, Wang (b0085) 2023; 15
Meadows, Jones, Reinke (b0330) 2024; 17
Gorelick (b0190) 2017; 202
Revuelto, Alonso-González, Gascoin, Rodríguez-López, López-Moreno (b0400) 2021; 13
Immerzeel, Van Beek, Bierkens (b0265) 2010; 328
JPL, N., 2020. NASADEM Merged DEM Global 1 arc second V001. NASA EOSDIS Land Processes Distributed Active Archive Center. DOI: https://doi.org/10.5067/MEaSUREs/NASADEM/NASADEM_HGT.001.
Hu, Che, Dai, Xiao (b0240) 2021; 13
Margulis (b0325) 2016; 43
Wang (b0490) 2018; 11
Barnett, Adam, Lettenmaier (b0025) 2005; 438
Che, Li, Jin, Armstrong, Zhang (b0060) 2008; 49
Gurung (b0200) 2017; 37
Chu (b0080) 2018; 39
Lute, Abatzoglou, Link (b0305) 2022; 15
Rosenthal, Dozier (b0440) 1996; 32
Lehning, Bartelt, Brown, Fierz, Satyawali (b0295) 2002; 35
Chander, Markham, Helder (b0050) 2009; 113
Mankin, Viviroli, Singh, Hoekstra, Diffenbaugh (b0320) 2015; 10
Portenier, Hüsler, Härer, Wunderle (b0380) 2020; 14
Drusch (b0130) 2012; 120
Richiardi, Siniscalco, Adamo (b0415) 2023; 15
Zhu, Wang, Woodcock (b0535) 2015; 159
Gascoin (b0180) 2015; 19
Kuter, Akyurek, Weber (b0290) 2018; 205
Bernhardt, Liston, Strasser, Zängl, Schulz (b0030) 2010; 4
Bair, Abreu Calfa, Rittger, Dozier (b0015) 2018; 12
Sun (b0470) 2024; 632
Wayand, Marsh, Shea, Pomeroy (b0500) 2018; 213
Derksen, Walker, Goodison (b0115) 2005; 96
Revuelto (b0405) 2020; 34
Hao (b0220) 2023; 17
Huang, Deng, Wang, Feng, Liang (b0250) 2017; 190
Brown, Brasnett, Robinson (b0040) 2003; 41
Gascoin, Grizonnet, Bouchet, Salgues, Hagolle (b0175) 2019; 11
Pan (b0350) 2024; 16
Yan, Ma, Zhang (b0515) 2022; 604
Keuris, Hetzenecker, Nagler, Mölg, Schwaizer (b0285) 2023; 15
Jiang (b0275) 2022; 6
Saydi, Ding (b0445) 2020; 13
Hu (b0245) 2023; 2022
Deng, Tang, Dong, Shao, Wang (b0110) 2024; 16
Li, Roy (b0300) 2017; 9
Painter (b0340) 2009; 113
Riggs, Hall, Vuyovich, DiGirolamo (b0420) 2022; 14
Dai, Che, Ding, Hao (b0100) 2017; 11
Raghubanshi, Agrawal, Rathore (b0395) 2023; 16
Xiao (b0510) 2022; 114
Macander, Swingley, Joly, Raynolds (b0310) 2015; 163
Pomeroy (b0375) 2007; 21
Gao, Dai, Yang, Che, Yao (b0165) 2023; 48
Huang (b0260) 2022; 14
Tang, Long, Hong, Gao, Wan (b0475) 2018; 208
Che, Li, Jin, Huang (b0065) 2014; 143
Hall, Riggs (b0205) 2007; 21
Durand, Molotch, Margulis (b0140) 2008; 112
Bair (b0020) 2023; 17
Hao (b0230) 2021; 13
Che (b0055) 2019; 34
Essery, Morin, Lejeune, Ménard, C. (b0155) 2013; 55
Pu, Xu, Salomonson (b0390) 2007; 34
Dietz, Kuenzer, Gessner, Dech (b0125) 2012; 33
Härer, Bernhardt, Schulz (b0235) 2016; 9
Yang (b0520) 2020; 590
Malmros, Mernild, Wilson, Tagesson, Fensholt (b0315) 2018; 209
Premier (b0385) 2023; 17
Che, Li, Li, Jiang (b0070) 2020; 35
Tang, Wang, Li, Yan (b0480) 2013; 7
Riggs, Hall, Román (b0425) 2015; 66
Dai, Che, Xie, Wu (b0105) 2018; 10
Armstrong, Brun (b0005) 2008
Foster (b0160) 1997; 62
Stigter (b0460) 2017; 11
Essery (b0150) 2015; 8
EROS, U., 2017. Landsat Collection 1 Level 1 Product Definition. USGS: Reston, WV, USA.
Huang (b0255) 2018; 204
Theobald, Harrison-Atlas, Monahan, Albano (b0485) 2015; 10
Schmucki, Marty, Fierz, Lehning (b0450) 2014; 99
Grünewald, Bühler, Lehning (b0195) 2014; 8
Girona-Mata, Miles, Ragettli, Pellicciotti (b0185) 2019; 55
Avanzi (b0010) 2022; 15
Rittger, Painter, Dozier (b0435) 2013; 51
Gascoin (b0170) 2020; 12
Pengsen, Shirong, Chongwei (b0365) 2004; 24
Dewey (b0120) 1987; 26
Painter (b0345) 2016; 184
Blöschl (b0035) 1999; 13
Xiao, Che, Chen, Xie, Dai (b0505) 2017; 9
Zanaga, D. et al., 2021. ESA WorldCover 10 m 2020 v100. Zenodo.
Hall, Riggs, Salomonson, DiGirolamo, Bayr (b0215) 2002; 83
Pekel, Cottam, Gorelick, Belward (b0360) 2016; 540
Zhang, Zhang, Zhang, Yan (b0530) 2022; 49
Meloche (b0335) 2022; 36
Carrera-Hernández (b0045) 2021; 261
Sturm, Wagner (b0465) 2010; 46
Pflug, J.M., Lundquist, J.D., 2020. Inferring Distributed Snow Depth by Leveraging Snow Pattern Repeatability: Investigation Using 47 Lidar Observations in the Tuolumne Watershed, Sierra Nevada, California. Water Resour. Res., 56(9). DOI: 10.1029/2020wr027243.
Che (b0075) 2019; 11
Crumley, Palomaki, Nolin, Sproles, Mar (b0090) 2020; 12
Blöschl (10.1016/j.jhydrol.2025.133303_b0035) 1999; 13
Zhang (10.1016/j.jhydrol.2025.133303_b0530) 2022; 49
Malmros (10.1016/j.jhydrol.2025.133303_b0315) 2018; 209
10.1016/j.jhydrol.2025.133303_b0145
Rosenthal (10.1016/j.jhydrol.2025.133303_b0440) 1996; 32
Huang (10.1016/j.jhydrol.2025.133303_b0260) 2022; 14
Brown (10.1016/j.jhydrol.2025.133303_b0040) 2003; 41
Margulis (10.1016/j.jhydrol.2025.133303_b0325) 2016; 43
Saydi (10.1016/j.jhydrol.2025.133303_b0445) 2020; 13
Crumley (10.1016/j.jhydrol.2025.133303_b0090) 2020; 12
Che (10.1016/j.jhydrol.2025.133303_b0055) 2019; 34
Che (10.1016/j.jhydrol.2025.133303_b0070) 2020; 35
Tang (10.1016/j.jhydrol.2025.133303_b0480) 2013; 7
Huang (10.1016/j.jhydrol.2025.133303_b0255) 2018; 204
Sturm (10.1016/j.jhydrol.2025.133303_b0465) 2010; 46
Du (10.1016/j.jhydrol.2025.133303_b0135) 2022; 14
Pu (10.1016/j.jhydrol.2025.133303_b0390) 2007; 34
Stigter (10.1016/j.jhydrol.2025.133303_b0455) 2017; 11
Che (10.1016/j.jhydrol.2025.133303_b0060) 2008; 49
Pengsen (10.1016/j.jhydrol.2025.133303_b0365) 2004; 24
Carrera-Hernández (10.1016/j.jhydrol.2025.133303_b0045) 2021; 261
Essery (10.1016/j.jhydrol.2025.133303_b0150) 2015; 8
Bernhardt (10.1016/j.jhydrol.2025.133303_b0030) 2010; 4
10.1016/j.jhydrol.2025.133303_b0280
Bair (10.1016/j.jhydrol.2025.133303_b0020) 2023; 17
Pekel (10.1016/j.jhydrol.2025.133303_b0360) 2016; 540
Rittger (10.1016/j.jhydrol.2025.133303_b0430) 2021; 264
Chu (10.1016/j.jhydrol.2025.133303_b0085) 2023; 15
Mankin (10.1016/j.jhydrol.2025.133303_b0320) 2015; 10
Gascoin (10.1016/j.jhydrol.2025.133303_b0170) 2020; 12
Yang (10.1016/j.jhydrol.2025.133303_b0520) 2020; 590
Tang (10.1016/j.jhydrol.2025.133303_b0475) 2018; 208
Dewey (10.1016/j.jhydrol.2025.133303_b0120) 1987; 26
Bair (10.1016/j.jhydrol.2025.133303_b0015) 2018; 12
Deng (10.1016/j.jhydrol.2025.133303_b0110) 2024; 16
Dai (10.1016/j.jhydrol.2025.133303_b0105) 2018; 10
Gurung (10.1016/j.jhydrol.2025.133303_b0200) 2017; 37
Hall (10.1016/j.jhydrol.2025.133303_b0210) 1995; 54
Parajka (10.1016/j.jhydrol.2025.133303_b0355) 2006; 10
Painter (10.1016/j.jhydrol.2025.133303_b0340) 2009; 113
Keuris (10.1016/j.jhydrol.2025.133303_b0285) 2023; 15
Wayand (10.1016/j.jhydrol.2025.133303_b0500) 2018; 213
Foster (10.1016/j.jhydrol.2025.133303_b0160) 1997; 62
Härer (10.1016/j.jhydrol.2025.133303_b0235) 2016; 9
Schmucki (10.1016/j.jhydrol.2025.133303_b0450) 2014; 99
Jasrotia (10.1016/j.jhydrol.2025.133303_b0270) 2022; 199
Rittger (10.1016/j.jhydrol.2025.133303_b0435) 2013; 51
Xiao (10.1016/j.jhydrol.2025.133303_b0510) 2022; 114
Yan (10.1016/j.jhydrol.2025.133303_b0515) 2022; 604
Chu (10.1016/j.jhydrol.2025.133303_b0080) 2018; 39
Girona-Mata (10.1016/j.jhydrol.2025.133303_b0185) 2019; 55
Revuelto (10.1016/j.jhydrol.2025.133303_b0410) 2014; 8
Hao (10.1016/j.jhydrol.2025.133303_b0225) 2019; 12
Barnett (10.1016/j.jhydrol.2025.133303_b0025) 2005; 438
Grünewald (10.1016/j.jhydrol.2025.133303_b0195) 2014; 8
Gorelick (10.1016/j.jhydrol.2025.133303_b0190) 2017; 202
Pan (10.1016/j.jhydrol.2025.133303_b0350) 2024; 16
Drusch (10.1016/j.jhydrol.2025.133303_b0130) 2012; 120
Macander (10.1016/j.jhydrol.2025.133303_b0310) 2015; 163
Sun (10.1016/j.jhydrol.2025.133303_b0470) 2024; 632
Wang (10.1016/j.jhydrol.2025.133303_b0490) 2018; 11
Dai (10.1016/j.jhydrol.2025.133303_b0100) 2017; 11
Meloche (10.1016/j.jhydrol.2025.133303_b0335) 2022; 36
Revuelto (10.1016/j.jhydrol.2025.133303_b0405) 2020; 34
Derksen (10.1016/j.jhydrol.2025.133303_b0115) 2005; 96
Immerzeel (10.1016/j.jhydrol.2025.133303_b0265) 2010; 328
Lute (10.1016/j.jhydrol.2025.133303_b0305) 2022; 15
Xiao (10.1016/j.jhydrol.2025.133303_b0505) 2017; 9
Gao (10.1016/j.jhydrol.2025.133303_b0165) 2023; 48
Hao (10.1016/j.jhydrol.2025.133303_b0220) 2023; 17
Hu (10.1016/j.jhydrol.2025.133303_b0240) 2021; 13
Zhu (10.1016/j.jhydrol.2025.133303_b0535) 2015; 159
Gascoin (10.1016/j.jhydrol.2025.133303_b0175) 2019; 11
Armstrong (10.1016/j.jhydrol.2025.133303_b0005) 2008
Lehning (10.1016/j.jhydrol.2025.133303_b0295) 2002; 35
Portenier (10.1016/j.jhydrol.2025.133303_b0380) 2020; 14
Riggs (10.1016/j.jhydrol.2025.133303_b0425) 2015; 66
Wang (10.1016/j.jhydrol.2025.133303_b0495) 2015; 7
Richiardi (10.1016/j.jhydrol.2025.133303_b0415) 2023; 15
Painter (10.1016/j.jhydrol.2025.133303_b0345) 2016; 184
Kuter (10.1016/j.jhydrol.2025.133303_b0290) 2018; 205
Meadows (10.1016/j.jhydrol.2025.133303_b0330) 2024; 17
Gascoin (10.1016/j.jhydrol.2025.133303_b0180) 2015; 19
10.1016/j.jhydrol.2025.133303_b0525
Raghubanshi (10.1016/j.jhydrol.2025.133303_b0395) 2023; 16
Hao (10.1016/j.jhydrol.2025.133303_b0230) 2021; 13
Essery (10.1016/j.jhydrol.2025.133303_b0155) 2013; 55
Revuelto (10.1016/j.jhydrol.2025.133303_b0400) 2021; 13
Che (10.1016/j.jhydrol.2025.133303_b0065) 2014; 143
Cuffey (10.1016/j.jhydrol.2025.133303_b0095) 2010
Avanzi (10.1016/j.jhydrol.2025.133303_b0010) 2022; 15
Li (10.1016/j.jhydrol.2025.133303_b0300) 2017; 9
Premier (10.1016/j.jhydrol.2025.133303_b0385) 2023; 17
Theobald (10.1016/j.jhydrol.2025.133303_b0485) 2015; 10
Riggs (10.1016/j.jhydrol.2025.133303_b0420) 2022; 14
Jiang (10.1016/j.jhydrol.2025.133303_b0275) 2022; 6
Dietz (10.1016/j.jhydrol.2025.133303_b0125) 2012; 33
10.1016/j.jhydrol.2025.133303_b0370
Hu (10.1016/j.jhydrol.2025.133303_b0245) 2023; 2022
Durand (10.1016/j.jhydrol.2025.133303_b0140) 2008; 112
Hall (10.1016/j.jhydrol.2025.133303_b0205) 2007; 21
Pomeroy (10.1016/j.jhydrol.2025.133303_b0375) 2007; 21
Huang (10.1016/j.jhydrol.2025.133303_b0250) 2017; 190
Chander (10.1016/j.jhydrol.2025.133303_b0050) 2009; 113
Hall (10.1016/j.jhydrol.2025.133303_b0215) 2002; 83
Stigter (10.1016/j.jhydrol.2025.133303_b0460) 2017; 11
Che (10.1016/j.jhydrol.2025.133303_b0075) 2019; 11
References_xml – volume: 11
  start-page: 1647
  year: 2017
  end-page: 1664
  ident: b0455
  article-title: Assimilation of snow cover and snow depth into a snow model to
  publication-title: Cryosphere
– volume: 604
  year: 2022
  ident: b0515
  article-title: Development of a fine-resolution snow depth product based on the snow cover probability for the Tibetan Plateau: validation and spatial–temporal analyses
  publication-title: J. Hydrol.,
– volume: 4
  start-page: 99
  year: 2010
  end-page: 113
  ident: b0030
  article-title: High resolution modelling of snow transport in complex terrain using downscaled MM5 wind fields
  publication-title: Cryosphere
– volume: 49
  start-page: 145
  year: 2008
  end-page: 154
  ident: b0060
  article-title: Snow depth derived from passive microwave remote-sensing data in China
  publication-title: Ann. Glaciol.,
– volume: 120
  start-page: 25
  year: 2012
  end-page: 36
  ident: b0130
  article-title: Sentinel-2: ESA's optical high-resolution mission for GMES operational services
  publication-title: Remote Sens. Environ.,
– volume: 51
  start-page: 367
  year: 2013
  end-page: 380
  ident: b0435
  article-title: Assessment of methods for mapping snow cover from MODIS
  publication-title: Adv. Water Resour.,
– volume: 99
  start-page: 27
  year: 2014
  end-page: 37
  ident: b0450
  article-title: Evaluation of modelled snow depth and snow water equivalent at three contrasting sites in Switzerland using SNOWPACK simulations driven by different meteorological data input
  publication-title: Cold Reg. Sci. Technol.,
– volume: 41
  start-page: 1
  year: 2003
  end-page: 14
  ident: b0040
  article-title: Gridded North American monthly snow depth and snow water equivalent for GCM evaluation
  publication-title: Atmos. Ocean
– volume: 66
  start-page: 545
  year: 2015
  ident: b0425
  article-title: MODIS snow products collection 6 user guide
  publication-title: National Snow and Ice Data Center: Boulder, CO, USA
– volume: 33
  start-page: 4094
  year: 2012
  end-page: 4134
  ident: b0125
  article-title: Remote sensing of snow – a review of available methods
  publication-title: Int. J. Remote Sens.,
– year: 2010
  ident: b0095
  article-title: The physics of glaciers
– volume: 143
  start-page: 54
  year: 2014
  end-page: 63
  ident: b0065
  article-title: Assimilating passive microwave remote sensing data into a land surface model to improve the estimation of snow depth
  publication-title: Remote Sens. Environ.,
– volume: 36
  year: 2022
  ident: b0335
  article-title: High‐resolution snow depth prediction using Random Forest algorithm with topographic parameters: a case study in the Greiner watershed, Nunavut
  publication-title: Hydrol. Processes
– volume: 39
  start-page: 6784
  year: 2018
  end-page: 6804
  ident: b0080
  article-title: Spatiotemporal variability of snow cover on Tibet, China using MODIS remote-sensing data
  publication-title: Int. J. Remote Sens.,
– volume: 7
  start-page: 17246
  year: 2015
  end-page: 17257
  ident: b0495
  article-title: An effective method for snow-cover mapping of dense coniferous forests in the upper heihe river basin using landsat operational land imager data
  publication-title: Remote Sens.,
– volume: 8
  start-page: 2381
  year: 2014
  end-page: 2394
  ident: b0195
  article-title: Elevation dependency of mountain snow depth
  publication-title: Cryosphere
– volume: 199
  year: 2022
  ident: b0270
  article-title: Effect of shadow on atmospheric and topographic processed NDSI values in Chenab basin, western Himalayas
  publication-title: Cold Reg. Sci. Technol.,
– volume: 13
  start-page: 4711
  year: 2021
  end-page: 4726
  ident: b0230
  article-title: The NIEER AVHRR snow cover extent product over China – a long-term daily snow record for regional climate research
  publication-title: Earth Syst. Sci. Data
– volume: 35
  start-page: 147
  year: 2002
  end-page: 167
  ident: b0295
  article-title: A physical SNOWPACK model for the Swiss avalanche warning
  publication-title: Cold Reg. Sci. Technol.,
– volume: 264
  year: 2021
  ident: b0430
  article-title: Multi-sensor fusion using random forests for daily fractional snow cover at 30
  publication-title: Remote Sens. Environ.,
– volume: 32
  start-page: 115
  year: 1996
  end-page: 130
  ident: b0440
  article-title: Automated mapping of montane snow cover at subpixel resolution from the Landsat Thematic Mapper
  publication-title: Water Resour. Res.,
– volume: 11
  start-page: 493
  year: 2019
  end-page: 514
  ident: b0175
  article-title: Theia Snow collection: high-resolution operational snow cover maps from Sentinel-2 and Landsat-8 data
  publication-title: Earth Syst. Sci. Data
– volume: 54
  start-page: 127
  year: 1995
  end-page: 140
  ident: b0210
  article-title: Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data
  publication-title: Remote Sens. Environ.,
– volume: 202
  start-page: 18
  year: 2017
  end-page: 27
  ident: b0190
  article-title: Google Earth Engine: Planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.,
– volume: 13
  start-page: 1250
  year: 2021
  ident: b0240
  article-title: Snow depth fusion based on machine learning methods for the northern hemisphere
  publication-title: Remote Sens.,
– volume: 26
  start-page: 1210
  year: 1987
  end-page: 1229
  ident: b0120
  article-title: Satellite-derived maps of snow cover frequency for the northern hemisphere
  publication-title: J. Appl. Meteorol. Climatol.
– volume: 6
  start-page: 420
  year: 2022
  end-page: 434
  ident: b0275
  article-title: Daily snow water equivalent product with SMMR, SSM/I and SSMIS from 1980 to 2020 over China
  publication-title: Big Earth Data
– volume: 11
  start-page: 1483
  year: 2019
  end-page: 1499
  ident: b0075
  article-title: Integrated hydrometeorological, snow and frozen-ground observations in the alpine region of the Heihe River Basin, China
  publication-title: Earth Syst. Sci. Data
– volume: 15
  start-page: 4044
  year: 2023
  ident: b0085
  article-title: Snow cover on the tibetan plateau and topographic controls
  publication-title: Remote Sens.,
– volume: 113
  start-page: 893
  year: 2009
  end-page: 903
  ident: b0050
  article-title: Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors
  publication-title: Remote Sens. Environ.,
– volume: 43
  start-page: 6341
  year: 2016
  end-page: 6349
  ident: b0325
  article-title: Characterizing the extreme 2015 snowpack deficit in the Sierra Nevada (USA) and the implications for drought recovery
  publication-title: Geophys. Res. Lett.,
– volume: 2022
  start-page: 1
  year: 2023
  end-page: 28
  ident: b0245
  article-title: A long-term daily gridded snow depth dataset for the Northern Hemisphere from 1980 to 2019 based on machine learning
  publication-title: Big Earth Data
– volume: 55
  start-page: 6754
  year: 2019
  end-page: 6772
  ident: b0185
  article-title: High‐Resolution snowline delineation from landsat imagery to infer snow cover controls in a himalayan catchment
  publication-title: Water Resour. Res.,
– volume: 14
  start-page: 5661
  year: 2022
  ident: b0420
  article-title: Development of snow cover frequency maps from MODIS snow cover products
  publication-title: Remote Sens.,
– volume: 12
  start-page: 2904
  year: 2020
  ident: b0170
  article-title: Estimating Fractional Snow Cover in Open Terrain from Sentinel-2 Using the Normalized Difference Snow Index
  publication-title: Remote Sens.,
– volume: 14
  start-page: 2823
  year: 2022
  ident: b0135
  article-title: Spatiotemporal Variation of Snow Cover Frequency in the Qilian Mountains (Northwestern China) during 2000-2020 and Associated Circulation Mechanisms
  publication-title: Remote Sens.,
– volume: 15
  start-page: 4853
  year: 2022
  end-page: 4879
  ident: b0010
  article-title: Snow Multidata Mapping and Modeling (S3M) 5.1: a distributed cryospheric model with dry and wet snow, data assimilation, glacier mass balance, and debris-driven melt
  publication-title: Geosci. Model Dev.,
– volume: 62
  start-page: 132
  year: 1997
  end-page: 142
  ident: b0160
  article-title: Comparison of snow mass estimates from a prototype passive microwave snow algorithm, a revised algorithm and a snow depth climatology
  publication-title: Remote Sens. Environ.,
– volume: 184
  start-page: 139
  year: 2016
  end-page: 152
  ident: b0345
  article-title: The Airborne Snow Observatory: fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo
  publication-title: Remote Sens. Environ.,
– year: 2008
  ident: b0005
  article-title: Snow and climate: physical processes, surface energy exchange and modeling
– volume: 17
  start-page: 2629
  year: 2023
  end-page: 2643
  ident: b0020
  article-title: How do tradeoffs in satellite spatial and temporal resolution impact snow water equivalent reconstruction?
  publication-title: Cryosphere
– volume: 34
  start-page: 1247
  year: 2019
  end-page: 1253
  ident: b0055
  article-title: Snow cover variation and its impacts over the Qinghai-Tibet Plateau
  publication-title: Bulletin of Chinese Academy of Sciences.
– volume: 10
  start-page: 1989
  year: 2018
  ident: b0105
  article-title: Estimation of snow depth over the qinghai-tibetan plateau based on AMSR-E and MODIS data
  publication-title: Remote Sens.,
– volume: 55
  start-page: 131
  year: 2013
  end-page: 148
  ident: b0155
  article-title: A comparison of 1701 snow models using observations from an alpine site
  publication-title: Adv. Water Resour.,
– volume: 16
  start-page: 2813
  year: 2023
  end-page: 2824
  ident: b0395
  article-title: Enhanced snow cover mapping using object-based classification and normalized difference snow index (NDSI)
  publication-title: Earth Sci. Inf.,
– volume: 163
  start-page: 23
  year: 2015
  end-page: 31
  ident: b0310
  article-title: Landsat-based snow persistence map for northwest Alaska
  publication-title: Remote Sens. Environ.,
– volume: 113
  start-page: 868
  year: 2009
  end-page: 879
  ident: b0340
  article-title: Retrieval of subpixel snow covered area, grain size, and albedo from MODIS
  publication-title: Remote Sens. Environ.,
– volume: 438
  start-page: 303
  year: 2005
  end-page: 309
  ident: b0025
  article-title: Potential impacts of a warming climate on water availability in snow-dominated regions
  publication-title: Nature
– volume: 204
  start-page: 568
  year: 2018
  end-page: 582
  ident: b0255
  article-title: Improving MODIS snow products with a HMRF-based spatio-temporal modeling technique in the Upper Rio Grande Basin
  publication-title: Remote Sens. Environ.,
– volume: 7
  year: 2013
  ident: b0480
  article-title: Spatiotemporal changes of snow cover over the Tibetan plateau based on cloud-removed moderate resolution imaging spectroradiometer fractional snow cover product from 2001 to 2011
  publication-title: J. Appl. Remote Sens.,
– volume: 209
  start-page: 240
  year: 2018
  end-page: 252
  ident: b0315
  article-title: Snow cover and snow albedo changes in the central Andes of Chile and Argentina from daily MODIS observations (2000–2016)
  publication-title: Remote Sens. Environ.,
– reference: Pflug, J.M., Lundquist, J.D., 2020. Inferring Distributed Snow Depth by Leveraging Snow Pattern Repeatability: Investigation Using 47 Lidar Observations in the Tuolumne Watershed, Sierra Nevada, California. Water Resour. Res., 56(9). DOI: 10.1029/2020wr027243.
– volume: 46
  year: 2010
  ident: b0465
  article-title: Using repeated patterns in snow distribution modeling: an Arctic example
  publication-title: Water Resour. Res.,
– volume: 10
  year: 2015
  ident: b0485
  article-title: Ecologically-Relevant maps of landforms and physiographic diversity for climate adaptation planning
  publication-title: PLoS One
– volume: 114
  year: 2022
  ident: b0510
  article-title: Estimating fractional snow cover in vegetated environments using MODIS surface reflectance data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.,
– volume: 12
  start-page: 1579
  year: 2018
  end-page: 1594
  ident: b0015
  article-title: Using machine learning for real-time estimates of snow water equivalent in the watersheds of Afghanistan
  publication-title: Cryosphere
– volume: 632
  year: 2024
  ident: b0470
  article-title: Fusing daily snow water equivalent from 1980 to 2020 in China using a spatiotemporal XGBoost model
  publication-title: J. Hydrol.,
– volume: 540
  start-page: 418
  year: 2016
  end-page: 422
  ident: b0360
  article-title: High-resolution mapping of global surface water and its long-term changes
  publication-title: Nature
– volume: 11
  start-page: 1647
  year: 2017
  end-page: 1664
  ident: b0460
  article-title: Assimilation of snow cover and snow depth into a snow model to
  publication-title: Cryosphere
– volume: 328
  start-page: 1382
  year: 2010
  end-page: 1385
  ident: b0265
  article-title: Climate change will affect the Asian water towers
  publication-title: Science
– reference: JPL, N., 2020. NASADEM Merged DEM Global 1 arc second V001. NASA EOSDIS Land Processes Distributed Active Archive Center. DOI: https://doi.org/10.5067/MEaSUREs/NASADEM/NASADEM_HGT.001.
– volume: 15
  start-page: 343
  year: 2023
  ident: b0415
  article-title: Comparison of three different random forest approaches to retrieve daily high-resolution snow cover maps from MODIS and Sentinel-2 in a Mountain Area, Gran Paradiso National Park (NW Alps)
  publication-title: Remote Sens.,
– volume: 34
  start-page: 5384
  year: 2020
  end-page: 5401
  ident: b0405
  article-title: Random forests as a tool to understand the snow depth distribution and its evolution in mountain areas
  publication-title: Hydrol. Processes
– volume: 208
  start-page: 82
  year: 2018
  end-page: 96
  ident: b0475
  article-title: Documentation of multifactorial relationships between precipitation and topography of the Tibetan Plateau using spaceborne precipitation radars
  publication-title: Remote Sens. Environ.,
– volume: 10
  year: 2015
  ident: b0320
  article-title: The potential for snow to supply human water demand in the present and future
  publication-title: Environ. Res. Lett.,
– volume: 11
  start-page: 1433
  year: 2018
  end-page: 1441
  ident: b0490
  article-title: Snow cover mapping for complex mountainous forested environments based on a multi-index technique
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,
– volume: 49
  year: 2022
  ident: b0530
  article-title: Why Do CMIP6 models fail to simulate snow depth in terms of temporal change and high mountain snow of China skillfully?
  publication-title: Geophys. Res. Lett.,
– volume: 16
  start-page: 192
  year: 2024
  ident: b0110
  article-title: Development and evaluation of a cloud-gap-filled MODIS normalized difference snow index product over high Mountain Asia
  publication-title: Remote Sens.,
– volume: 8
  start-page: 3867
  year: 2015
  end-page: 3876
  ident: b0150
  article-title: A factorial snowpack model (FSM 1.0)
  publication-title: Geosci. Model Dev.,
– volume: 17
  year: 2024
  ident: b0330
  article-title: Vertical accuracy assessment of freely available global DEMs (FABDEM, Copernicus DEM, NASADEM, AW3D30 and SRTM) in flood-prone environments
  publication-title: Int. J. Digital Earth
– volume: 15
  start-page: 5045
  year: 2022
  end-page: 5071
  ident: b0305
  article-title: SnowClim v1.0: high-resolution snow model and data for the western United States
  publication-title: Geosci. Model Dev.,
– volume: 13
  start-page: 4513
  year: 2021
  ident: b0400
  article-title: Spatial downscaling of MODIS snow cover observations using sentinel-2 snow products
  publication-title: Remote Sens.,
– volume: 9
  start-page: 883
  year: 2017
  ident: b0505
  article-title: Quantifying snow albedo radiative forcing and its feedback during 2003–2016
  publication-title: Remote Sens.,
– volume: 12
  start-page: 533
  year: 2019
  end-page: 548
  ident: b0225
  article-title: Assessment of MODIS-based fractional snow cover products over the Tibetan Plateau
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,
– volume: 9
  start-page: 307
  year: 2016
  end-page: 321
  ident: b0235
  article-title: PRACTISE – Photo Rectification And ClassificaTIon SoftwarE (V.2.1)
  publication-title: Geosci. Model Dev.,
– volume: 13
  start-page: 2149
  year: 1999
  end-page: 2175
  ident: b0035
  article-title: Scaling issues in snow hydrology
  publication-title: Hydrol. Processes
– volume: 17
  start-page: 673
  year: 2023
  end-page: 697
  ident: b0220
  article-title: Evaluation of E3SM land model snow simulations over the western United States
  publication-title: Cryosphere
– volume: 14
  start-page: 4445
  year: 2022
  end-page: 4462
  ident: b0260
  article-title: HMRFS–TP: long-term daily gap-free snow cover products over the Tibetan Plateau from 2002 to 2021 based on hidden Markov random field model
  publication-title: Earth Syst. Sci. Data
– reference: EROS, U., 2017. Landsat Collection 1 Level 1 Product Definition. USGS: Reston, WV, USA.
– volume: 205
  start-page: 236
  year: 2018
  end-page: 252
  ident: b0290
  article-title: Retrieval of fractional snow covered area from MODIS data by multivariate adaptive regression splines
  publication-title: Remote Sens. Environ.,
– volume: 21
  start-page: 2650
  year: 2007
  end-page: 2667
  ident: b0375
  article-title: The cold regions hydrological model: a platform for basing process representation and model structure on physical evidence
  publication-title: Hydrol. Processes
– volume: 17
  start-page: 2387
  year: 2023
  end-page: 2407
  ident: b0385
  article-title: Exploring the use of multi-source high-resolution satellite data for snow water equivalent reconstruction over mountainous catchments
  publication-title: Cryosphere
– volume: 34
  year: 2007
  ident: b0390
  article-title: MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau
  publication-title: Geophys. Res. Lett.,
– volume: 10
  start-page: 679
  year: 2006
  end-page: 689
  ident: b0355
  article-title: Validation of MODIS snow cover images over Austria
  publication-title: Hydrol. Earth Syst. Sci.,
– volume: 213
  start-page: 61
  year: 2018
  end-page: 72
  ident: b0500
  article-title: Globally scalable alpine snow metrics
  publication-title: Remote Sens. Environ.,
– volume: 35
  start-page: 484
  year: 2020
  end-page: 493
  ident: b0070
  article-title: Developing cryospheric remote sensing, promoting scientific programme of Earth's Three Poles. Bulletin of Chinese
  publication-title: Acad. Sci.
– volume: 8
  start-page: 1989
  year: 2014
  end-page: 2006
  ident: b0410
  article-title: Topographic control of snowpack distribution in a small catchment in the central Spanish Pyrenees: intra- and inter-annual persistence
  publication-title: Cryosphere
– volume: 15
  start-page: 1231
  year: 2023
  ident: b0285
  article-title: An adaptive method for the estimation of snow-covered fraction with error propagation for applications from local to global scales
  publication-title: Remote Sens.,
– volume: 19
  start-page: 2337
  year: 2015
  end-page: 2351
  ident: b0180
  article-title: A snow cover climatology for the Pyrenees from MODIS snow products
  publication-title: Hydrol. Earth Syst. Sci.,
– volume: 190
  start-page: 274
  year: 2017
  end-page: 288
  ident: b0250
  article-title: Impact of climate and elevation on snow cover using integrated remote sensing snow products in Tibetan Plateau
  publication-title: Remote Sens. Environ.,
– volume: 590
  year: 2020
  ident: b0520
  article-title: Improving snow simulation with more realistic vegetation parameters in a regional climate model in the Tianshan Mountains
  publication-title: Central Asia. J. Hydrol.,
– volume: 261
  year: 2021
  ident: b0045
  article-title: Not all DEMs are equal: An evaluation of six globally available 30
  publication-title: Remote Sens. Environ.,
– volume: 12
  start-page: 3341
  year: 2020
  ident: b0090
  article-title: SnowCloudMetrics: snow information for everyone
  publication-title: Remote Sens.,
– volume: 96
  start-page: 315
  year: 2005
  end-page: 327
  ident: b0115
  article-title: Evaluation of passive microwave snow water equivalent retrievals across the boreal forest/tundra transition of western Canada
  publication-title: Remote Sens. Environ.,
– volume: 112
  start-page: 1212
  year: 2008
  end-page: 1225
  ident: b0140
  article-title: Merging complementary remote sensing datasets in the context of snow water equivalent reconstruction
  publication-title: Remote Sens. Environ.,
– volume: 21
  start-page: 1534
  year: 2007
  end-page: 1547
  ident: b0205
  article-title: Accuracy assessment of the MODIS snow products
  publication-title: Hydrol. Processes
– volume: 9
  start-page: 902
  year: 2017
  ident: b0300
  article-title: A global analysis of sentinel-2A, sentinel-2B and landsat-8 data revisit intervals and implications for terrestrial monitoring
  publication-title: Remote Sens.,
– volume: 24
  start-page: 1910
  year: 2004
  end-page: 1915
  ident: b0365
  article-title: Estimation of precipitation using altitude and prevailing wind direction effect index in Mountainous region
  publication-title: Acta Ecol. Sin.,
– volume: 37
  start-page: 3873
  year: 2017
  end-page: 3882
  ident: b0200
  article-title: Climate and topographic controls on snow cover dynamics in the Hindu Kush Himalaya
  publication-title: Int. J. Climatol.,
– volume: 48
  year: 2023
  ident: b0165
  article-title: Estimation of snow bulk density and snow water equivalent on the Tibetan Plateau using snow cover duration and snow depth
  publication-title: J Hydrol.: Reg. Stud.,
– volume: 11
  start-page: 1933
  year: 2017
  end-page: 1948
  ident: b0100
  article-title: Evaluation of snow cover and snow depth on the Qinghai–Tibetan Plateau derived from passive microwave remote sensing
  publication-title: Cryosphere
– volume: 16
  start-page: 2501
  year: 2024
  end-page: 2523
  ident: b0350
  article-title: MODIS daily cloud-gap-filled fractional snow cover dataset of the Asian Water Tower region (2000–2022)
  publication-title: Earth Syst. Sci. Data
– volume: 159
  start-page: 269
  year: 2015
  end-page: 277
  ident: b0535
  article-title: Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images
  publication-title: Remote Sens. Environ.
– volume: 83
  start-page: 181
  year: 2002
  end-page: 194
  ident: b0215
  article-title: MODIS snow-cover products
  publication-title: Remote Sens. Environ.,
– volume: 13
  start-page: 171
  year: 2020
  end-page: 180
  ident: b0445
  article-title: Impacts of topographic factors on regional snow cover characteristics
  publication-title: Water Sci. Eng.,
– volume: 14
  start-page: 1409
  year: 2020
  end-page: 1423
  ident: b0380
  article-title: Towards a webcam-based snow cover monitoring network: methodology and evaluation
  publication-title: Cryosphere
– reference: Zanaga, D. et al., 2021. ESA WorldCover 10 m 2020 v100. Zenodo.
– volume: 41
  start-page: 1
  issue: 1
  year: 2003
  ident: 10.1016/j.jhydrol.2025.133303_b0040
  article-title: Gridded North American monthly snow depth and snow water equivalent for GCM evaluation
  publication-title: Atmos. Ocean
  doi: 10.3137/ao.410101
– volume: 12
  start-page: 1579
  issue: 5
  year: 2018
  ident: 10.1016/j.jhydrol.2025.133303_b0015
  article-title: Using machine learning for real-time estimates of snow water equivalent in the watersheds of Afghanistan
  publication-title: Cryosphere
  doi: 10.5194/tc-12-1579-2018
– volume: 39
  start-page: 6784
  issue: 20
  year: 2018
  ident: 10.1016/j.jhydrol.2025.133303_b0080
  article-title: Spatiotemporal variability of snow cover on Tibet, China using MODIS remote-sensing data
  publication-title: Int. J. Remote Sens.,
  doi: 10.1080/01431161.2018.1466075
– volume: 13
  start-page: 4711
  issue: 10
  year: 2021
  ident: 10.1016/j.jhydrol.2025.133303_b0230
  article-title: The NIEER AVHRR snow cover extent product over China – a long-term daily snow record for regional climate research
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-13-4711-2021
– volume: 9
  start-page: 883
  issue: 9
  year: 2017
  ident: 10.1016/j.jhydrol.2025.133303_b0505
  article-title: Quantifying snow albedo radiative forcing and its feedback during 2003–2016
  publication-title: Remote Sens.,
  doi: 10.3390/rs9090883
– volume: 17
  issue: 1
  year: 2024
  ident: 10.1016/j.jhydrol.2025.133303_b0330
  article-title: Vertical accuracy assessment of freely available global DEMs (FABDEM, Copernicus DEM, NASADEM, AW3D30 and SRTM) in flood-prone environments
  publication-title: Int. J. Digital Earth
  doi: 10.1080/17538947.2024.2308734
– volume: 36
  issue: 3
  year: 2022
  ident: 10.1016/j.jhydrol.2025.133303_b0335
  article-title: High‐resolution snow depth prediction using Random Forest algorithm with topographic parameters: a case study in the Greiner watershed, Nunavut
  publication-title: Hydrol. Processes
  doi: 10.1002/hyp.14546
– volume: 113
  start-page: 893
  issue: 5
  year: 2009
  ident: 10.1016/j.jhydrol.2025.133303_b0050
  article-title: Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors
  publication-title: Remote Sens. Environ.,
  doi: 10.1016/j.rse.2009.01.007
– volume: 11
  start-page: 1433
  issue: 5
  year: 2018
  ident: 10.1016/j.jhydrol.2025.133303_b0490
  article-title: Snow cover mapping for complex mountainous forested environments based on a multi-index technique
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,
  doi: 10.1109/JSTARS.2018.2810094
– volume: 15
  start-page: 1231
  issue: 5
  year: 2023
  ident: 10.1016/j.jhydrol.2025.133303_b0285
  article-title: An adaptive method for the estimation of snow-covered fraction with error propagation for applications from local to global scales
  publication-title: Remote Sens.,
  doi: 10.3390/rs15051231
– volume: 205
  start-page: 236
  year: 2018
  ident: 10.1016/j.jhydrol.2025.133303_b0290
  article-title: Retrieval of fractional snow covered area from MODIS data by multivariate adaptive regression splines
  publication-title: Remote Sens. Environ.,
  doi: 10.1016/j.rse.2017.11.021
– volume: 9
  start-page: 902
  issue: 9
  year: 2017
  ident: 10.1016/j.jhydrol.2025.133303_b0300
  article-title: A global analysis of sentinel-2A, sentinel-2B and landsat-8 data revisit intervals and implications for terrestrial monitoring
  publication-title: Remote Sens.,
  doi: 10.3390/rs9090902
– volume: 10
  issue: 12
  year: 2015
  ident: 10.1016/j.jhydrol.2025.133303_b0485
  article-title: Ecologically-Relevant maps of landforms and physiographic diversity for climate adaptation planning
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0143619
– volume: 10
  issue: 11
  year: 2015
  ident: 10.1016/j.jhydrol.2025.133303_b0320
  article-title: The potential for snow to supply human water demand in the present and future
  publication-title: Environ. Res. Lett.,
  doi: 10.1088/1748-9326/10/11/114016
– volume: 208
  start-page: 82
  year: 2018
  ident: 10.1016/j.jhydrol.2025.133303_b0475
  article-title: Documentation of multifactorial relationships between precipitation and topography of the Tibetan Plateau using spaceborne precipitation radars
  publication-title: Remote Sens. Environ.,
  doi: 10.1016/j.rse.2018.02.007
– volume: 11
  start-page: 1483
  issue: 3
  year: 2019
  ident: 10.1016/j.jhydrol.2025.133303_b0075
  article-title: Integrated hydrometeorological, snow and frozen-ground observations in the alpine region of the Heihe River Basin, China
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-11-1483-2019
– ident: 10.1016/j.jhydrol.2025.133303_b0145
– volume: 112
  start-page: 1212
  issue: 3
  year: 2008
  ident: 10.1016/j.jhydrol.2025.133303_b0140
  article-title: Merging complementary remote sensing datasets in the context of snow water equivalent reconstruction
  publication-title: Remote Sens. Environ.,
  doi: 10.1016/j.rse.2007.08.010
– volume: 190
  start-page: 274
  year: 2017
  ident: 10.1016/j.jhydrol.2025.133303_b0250
  article-title: Impact of climate and elevation on snow cover using integrated remote sensing snow products in Tibetan Plateau
  publication-title: Remote Sens. Environ.,
  doi: 10.1016/j.rse.2016.12.028
– volume: 66
  start-page: 545
  year: 2015
  ident: 10.1016/j.jhydrol.2025.133303_b0425
  article-title: MODIS snow products collection 6 user guide
  publication-title: National Snow and Ice Data Center: Boulder, CO, USA
– volume: 438
  start-page: 303
  issue: 7066
  year: 2005
  ident: 10.1016/j.jhydrol.2025.133303_b0025
  article-title: Potential impacts of a warming climate on water availability in snow-dominated regions
  publication-title: Nature
  doi: 10.1038/nature04141
– volume: 328
  start-page: 1382
  issue: 5984
  year: 2010
  ident: 10.1016/j.jhydrol.2025.133303_b0265
  article-title: Climate change will affect the Asian water towers
  publication-title: Science
  doi: 10.1126/science.1183188
– volume: 35
  start-page: 484
  issue: 04
  year: 2020
  ident: 10.1016/j.jhydrol.2025.133303_b0070
  article-title: Developing cryospheric remote sensing, promoting scientific programme of Earth's Three Poles. Bulletin of Chinese
  publication-title: Acad. Sci.
– volume: 62
  start-page: 132
  issue: 2
  year: 1997
  ident: 10.1016/j.jhydrol.2025.133303_b0160
  article-title: Comparison of snow mass estimates from a prototype passive microwave snow algorithm, a revised algorithm and a snow depth climatology
  publication-title: Remote Sens. Environ.,
  doi: 10.1016/S0034-4257(97)00085-0
– volume: 51
  start-page: 367
  year: 2013
  ident: 10.1016/j.jhydrol.2025.133303_b0435
  article-title: Assessment of methods for mapping snow cover from MODIS
  publication-title: Adv. Water Resour.,
  doi: 10.1016/j.advwatres.2012.03.002
– volume: 11
  start-page: 1933
  issue: 4
  year: 2017
  ident: 10.1016/j.jhydrol.2025.133303_b0100
  article-title: Evaluation of snow cover and snow depth on the Qinghai–Tibetan Plateau derived from passive microwave remote sensing
  publication-title: Cryosphere
  doi: 10.5194/tc-11-1933-2017
– volume: 34
  start-page: 1247
  issue: 11
  year: 2019
  ident: 10.1016/j.jhydrol.2025.133303_b0055
  article-title: Snow cover variation and its impacts over the Qinghai-Tibet Plateau
  publication-title: Bulletin of Chinese Academy of Sciences.
– volume: 11
  start-page: 493
  issue: 2
  year: 2019
  ident: 10.1016/j.jhydrol.2025.133303_b0175
  article-title: Theia Snow collection: high-resolution operational snow cover maps from Sentinel-2 and Landsat-8 data
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-11-493-2019
– volume: 159
  start-page: 269
  year: 2015
  ident: 10.1016/j.jhydrol.2025.133303_b0535
  article-title: Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.12.014
– volume: 16
  start-page: 192
  issue: 1
  year: 2024
  ident: 10.1016/j.jhydrol.2025.133303_b0110
  article-title: Development and evaluation of a cloud-gap-filled MODIS normalized difference snow index product over high Mountain Asia
  publication-title: Remote Sens.,
  doi: 10.3390/rs16010192
– volume: 114
  year: 2022
  ident: 10.1016/j.jhydrol.2025.133303_b0510
  article-title: Estimating fractional snow cover in vegetated environments using MODIS surface reflectance data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.,
– volume: 15
  start-page: 5045
  issue: 13
  year: 2022
  ident: 10.1016/j.jhydrol.2025.133303_b0305
  article-title: SnowClim v1.0: high-resolution snow model and data for the western United States
  publication-title: Geosci. Model Dev.,
  doi: 10.5194/gmd-15-5045-2022
– volume: 14
  start-page: 1409
  issue: 4
  year: 2020
  ident: 10.1016/j.jhydrol.2025.133303_b0380
  article-title: Towards a webcam-based snow cover monitoring network: methodology and evaluation
  publication-title: Cryosphere
  doi: 10.5194/tc-14-1409-2020
– volume: 10
  start-page: 1989
  issue: 12
  year: 2018
  ident: 10.1016/j.jhydrol.2025.133303_b0105
  article-title: Estimation of snow depth over the qinghai-tibetan plateau based on AMSR-E and MODIS data
  publication-title: Remote Sens.,
  doi: 10.3390/rs10121989
– volume: 33
  start-page: 4094
  issue: 13
  year: 2012
  ident: 10.1016/j.jhydrol.2025.133303_b0125
  article-title: Remote sensing of snow – a review of available methods
  publication-title: Int. J. Remote Sens.,
  doi: 10.1080/01431161.2011.640964
– volume: 13
  start-page: 171
  issue: 3
  year: 2020
  ident: 10.1016/j.jhydrol.2025.133303_b0445
  article-title: Impacts of topographic factors on regional snow cover characteristics
  publication-title: Water Sci. Eng.,
  doi: 10.1016/j.wse.2020.09.002
– ident: 10.1016/j.jhydrol.2025.133303_b0525
– volume: 264
  year: 2021
  ident: 10.1016/j.jhydrol.2025.133303_b0430
  article-title: Multi-sensor fusion using random forests for daily fractional snow cover at 30m
  publication-title: Remote Sens. Environ.,
  doi: 10.1016/j.rse.2021.112608
– volume: 120
  start-page: 25
  year: 2012
  ident: 10.1016/j.jhydrol.2025.133303_b0130
  article-title: Sentinel-2: ESA's optical high-resolution mission for GMES operational services
  publication-title: Remote Sens. Environ.,
  doi: 10.1016/j.rse.2011.11.026
– volume: 16
  start-page: 2501
  issue: 5
  year: 2024
  ident: 10.1016/j.jhydrol.2025.133303_b0350
  article-title: MODIS daily cloud-gap-filled fractional snow cover dataset of the Asian Water Tower region (2000–2022)
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-16-2501-2024
– volume: 49
  issue: 15
  year: 2022
  ident: 10.1016/j.jhydrol.2025.133303_b0530
  article-title: Why Do CMIP6 models fail to simulate snow depth in terms of temporal change and high mountain snow of China skillfully?
  publication-title: Geophys. Res. Lett.,
  doi: 10.1029/2022GL098888
– volume: 261
  year: 2021
  ident: 10.1016/j.jhydrol.2025.133303_b0045
  article-title: Not all DEMs are equal: An evaluation of six globally available 30m resolution DEMs with geodetic benchmarks and LiDAR in Mexico
  publication-title: Remote Sens. Environ.,
  doi: 10.1016/j.rse.2021.112474
– volume: 55
  start-page: 6754
  issue: 8
  year: 2019
  ident: 10.1016/j.jhydrol.2025.133303_b0185
  article-title: High‐Resolution snowline delineation from landsat imagery to infer snow cover controls in a himalayan catchment
  publication-title: Water Resour. Res.,
  doi: 10.1029/2019WR024935
– volume: 113
  start-page: 868
  issue: 4
  year: 2009
  ident: 10.1016/j.jhydrol.2025.133303_b0340
  article-title: Retrieval of subpixel snow covered area, grain size, and albedo from MODIS
  publication-title: Remote Sens. Environ.,
  doi: 10.1016/j.rse.2009.01.001
– ident: 10.1016/j.jhydrol.2025.133303_b0370
  doi: 10.1029/2020WR027243
– volume: 34
  start-page: 5384
  issue: 26
  year: 2020
  ident: 10.1016/j.jhydrol.2025.133303_b0405
  article-title: Random forests as a tool to understand the snow depth distribution and its evolution in mountain areas
  publication-title: Hydrol. Processes
  doi: 10.1002/hyp.13951
– volume: 16
  start-page: 2813
  issue: 3
  year: 2023
  ident: 10.1016/j.jhydrol.2025.133303_b0395
  article-title: Enhanced snow cover mapping using object-based classification and normalized difference snow index (NDSI)
  publication-title: Earth Sci. Inf.,
  doi: 10.1007/s12145-023-01077-6
– year: 2008
  ident: 10.1016/j.jhydrol.2025.133303_b0005
– volume: 17
  start-page: 2387
  issue: 6
  year: 2023
  ident: 10.1016/j.jhydrol.2025.133303_b0385
  article-title: Exploring the use of multi-source high-resolution satellite data for snow water equivalent reconstruction over mountainous catchments
  publication-title: Cryosphere
  doi: 10.5194/tc-17-2387-2023
– volume: 7
  start-page: 17246
  issue: 12
  year: 2015
  ident: 10.1016/j.jhydrol.2025.133303_b0495
  article-title: An effective method for snow-cover mapping of dense coniferous forests in the upper heihe river basin using landsat operational land imager data
  publication-title: Remote Sens.,
  doi: 10.3390/rs71215882
– volume: 7
  issue: 1
  year: 2013
  ident: 10.1016/j.jhydrol.2025.133303_b0480
  article-title: Spatiotemporal changes of snow cover over the Tibetan plateau based on cloud-removed moderate resolution imaging spectroradiometer fractional snow cover product from 2001 to 2011
  publication-title: J. Appl. Remote Sens.,
  doi: 10.1117/1.JRS.7.073582
– volume: 14
  start-page: 2823
  issue: 12
  year: 2022
  ident: 10.1016/j.jhydrol.2025.133303_b0135
  article-title: Spatiotemporal Variation of Snow Cover Frequency in the Qilian Mountains (Northwestern China) during 2000-2020 and Associated Circulation Mechanisms
  publication-title: Remote Sens.,
  doi: 10.3390/rs14122823
– volume: 10
  start-page: 679
  issue: 5
  year: 2006
  ident: 10.1016/j.jhydrol.2025.133303_b0355
  article-title: Validation of MODIS snow cover images over Austria
  publication-title: Hydrol. Earth Syst. Sci.,
  doi: 10.5194/hess-10-679-2006
– volume: 96
  start-page: 315
  issue: 3–4
  year: 2005
  ident: 10.1016/j.jhydrol.2025.133303_b0115
  article-title: Evaluation of passive microwave snow water equivalent retrievals across the boreal forest/tundra transition of western Canada
  publication-title: Remote Sens. Environ.,
  doi: 10.1016/j.rse.2005.02.014
– volume: 4
  start-page: 99
  issue: 1
  year: 2010
  ident: 10.1016/j.jhydrol.2025.133303_b0030
  article-title: High resolution modelling of snow transport in complex terrain using downscaled MM5 wind fields
  publication-title: Cryosphere
  doi: 10.5194/tc-4-99-2010
– volume: 15
  start-page: 343
  issue: 2
  year: 2023
  ident: 10.1016/j.jhydrol.2025.133303_b0415
  article-title: Comparison of three different random forest approaches to retrieve daily high-resolution snow cover maps from MODIS and Sentinel-2 in a Mountain Area, Gran Paradiso National Park (NW Alps)
  publication-title: Remote Sens.,
  doi: 10.3390/rs15020343
– volume: 6
  start-page: 420
  issue: 4
  year: 2022
  ident: 10.1016/j.jhydrol.2025.133303_b0275
  article-title: Daily snow water equivalent product with SMMR, SSM/I and SSMIS from 1980 to 2020 over China
  publication-title: Big Earth Data
  doi: 10.1080/20964471.2022.2032998
– volume: 49
  start-page: 145
  year: 2008
  ident: 10.1016/j.jhydrol.2025.133303_b0060
  article-title: Snow depth derived from passive microwave remote-sensing data in China
  publication-title: Ann. Glaciol.,
  doi: 10.3189/172756408787814690
– volume: 55
  start-page: 131
  year: 2013
  ident: 10.1016/j.jhydrol.2025.133303_b0155
  article-title: A comparison of 1701 snow models using observations from an alpine site
  publication-title: Adv. Water Resour.,
  doi: 10.1016/j.advwatres.2012.07.013
– volume: 35
  start-page: 147
  issue: 3
  year: 2002
  ident: 10.1016/j.jhydrol.2025.133303_b0295
  article-title: A physical SNOWPACK model for the Swiss avalanche warning
  publication-title: Cold Reg. Sci. Technol.,
  doi: 10.1016/S0165-232X(02)00073-3
– year: 2010
  ident: 10.1016/j.jhydrol.2025.133303_b0095
– volume: 15
  start-page: 4044
  issue: 16
  year: 2023
  ident: 10.1016/j.jhydrol.2025.133303_b0085
  article-title: Snow cover on the tibetan plateau and topographic controls
  publication-title: Remote Sens.,
  doi: 10.3390/rs15164044
– volume: 24
  start-page: 1910
  issue: 9
  year: 2004
  ident: 10.1016/j.jhydrol.2025.133303_b0365
  article-title: Estimation of precipitation using altitude and prevailing wind direction effect index in Mountainous region
  publication-title: Acta Ecol. Sin.,
– volume: 14
  start-page: 4445
  issue: 9
  year: 2022
  ident: 10.1016/j.jhydrol.2025.133303_b0260
  article-title: HMRFS–TP: long-term daily gap-free snow cover products over the Tibetan Plateau from 2002 to 2021 based on hidden Markov random field model
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-14-4445-2022
– volume: 184
  start-page: 139
  year: 2016
  ident: 10.1016/j.jhydrol.2025.133303_b0345
  article-title: The Airborne Snow Observatory: fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo
  publication-title: Remote Sens. Environ.,
  doi: 10.1016/j.rse.2016.06.018
– volume: 11
  start-page: 1647
  issue: 4
  year: 2017
  ident: 10.1016/j.jhydrol.2025.133303_b0455
  article-title: Assimilation of snow cover and snow depth into a snow model toestimate snow water equivalent and snowmelt runoff in a Himalayan catchment
  publication-title: Cryosphere
  doi: 10.5194/tc-11-1647-2017
– volume: 21
  start-page: 1534
  issue: 12
  year: 2007
  ident: 10.1016/j.jhydrol.2025.133303_b0205
  article-title: Accuracy assessment of the MODIS snow products
  publication-title: Hydrol. Processes
  doi: 10.1002/hyp.6715
– volume: 9
  start-page: 307
  issue: 1
  year: 2016
  ident: 10.1016/j.jhydrol.2025.133303_b0235
  article-title: PRACTISE – Photo Rectification And ClassificaTIon SoftwarE (V.2.1)
  publication-title: Geosci. Model Dev.,
  doi: 10.5194/gmd-9-307-2016
– volume: 14
  start-page: 5661
  issue: 22
  year: 2022
  ident: 10.1016/j.jhydrol.2025.133303_b0420
  article-title: Development of snow cover frequency maps from MODIS snow cover products
  publication-title: Remote Sens.,
  doi: 10.3390/rs14225661
– volume: 632
  year: 2024
  ident: 10.1016/j.jhydrol.2025.133303_b0470
  article-title: Fusing daily snow water equivalent from 1980 to 2020 in China using a spatiotemporal XGBoost model
  publication-title: J. Hydrol.,
  doi: 10.1016/j.jhydrol.2024.130876
– volume: 46
  issue: 12
  year: 2010
  ident: 10.1016/j.jhydrol.2025.133303_b0465
  article-title: Using repeated patterns in snow distribution modeling: an Arctic example
  publication-title: Water Resour. Res.,
  doi: 10.1029/2010WR009434
– volume: 202
  start-page: 18
  year: 2017
  ident: 10.1016/j.jhydrol.2025.133303_b0190
  article-title: Google Earth Engine: Planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.,
  doi: 10.1016/j.rse.2017.06.031
– volume: 48
  year: 2023
  ident: 10.1016/j.jhydrol.2025.133303_b0165
  article-title: Estimation of snow bulk density and snow water equivalent on the Tibetan Plateau using snow cover duration and snow depth
  publication-title: J Hydrol.: Reg. Stud.,
– volume: 209
  start-page: 240
  year: 2018
  ident: 10.1016/j.jhydrol.2025.133303_b0315
  article-title: Snow cover and snow albedo changes in the central Andes of Chile and Argentina from daily MODIS observations (2000–2016)
  publication-title: Remote Sens. Environ.,
  doi: 10.1016/j.rse.2018.02.072
– volume: 11
  start-page: 1647
  issue: 4
  year: 2017
  ident: 10.1016/j.jhydrol.2025.133303_b0460
  article-title: Assimilation of snow cover and snow depth into a snow model toestimate snow water equivalent and snowmelt runoff in aHimalayan catchment
  publication-title: Cryosphere
  doi: 10.5194/tc-11-1647-2017
– volume: 163
  start-page: 23
  year: 2015
  ident: 10.1016/j.jhydrol.2025.133303_b0310
  article-title: Landsat-based snow persistence map for northwest Alaska
  publication-title: Remote Sens. Environ.,
  doi: 10.1016/j.rse.2015.02.028
– volume: 43
  start-page: 6341
  issue: 12
  year: 2016
  ident: 10.1016/j.jhydrol.2025.133303_b0325
  article-title: Characterizing the extreme 2015 snowpack deficit in the Sierra Nevada (USA) and the implications for drought recovery
  publication-title: Geophys. Res. Lett.,
  doi: 10.1002/2016GL068520
– volume: 8
  start-page: 1989
  issue: 5
  year: 2014
  ident: 10.1016/j.jhydrol.2025.133303_b0410
  article-title: Topographic control of snowpack distribution in a small catchment in the central Spanish Pyrenees: intra- and inter-annual persistence
  publication-title: Cryosphere
  doi: 10.5194/tc-8-1989-2014
– volume: 12
  start-page: 533
  issue: 2
  year: 2019
  ident: 10.1016/j.jhydrol.2025.133303_b0225
  article-title: Assessment of MODIS-based fractional snow cover products over the Tibetan Plateau
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,
  doi: 10.1109/JSTARS.2018.2879666
– volume: 540
  start-page: 418
  issue: 7633
  year: 2016
  ident: 10.1016/j.jhydrol.2025.133303_b0360
  article-title: High-resolution mapping of global surface water and its long-term changes
  publication-title: Nature
  doi: 10.1038/nature20584
– volume: 590
  year: 2020
  ident: 10.1016/j.jhydrol.2025.133303_b0520
  article-title: Improving snow simulation with more realistic vegetation parameters in a regional climate model in the Tianshan Mountains
  publication-title: Central Asia. J. Hydrol.,
– volume: 2022
  start-page: 1
  year: 2023
  ident: 10.1016/j.jhydrol.2025.133303_b0245
  article-title: A long-term daily gridded snow depth dataset for the Northern Hemisphere from 1980 to 2019 based on machine learning
  publication-title: Big Earth Data
– volume: 19
  start-page: 2337
  issue: 5
  year: 2015
  ident: 10.1016/j.jhydrol.2025.133303_b0180
  article-title: A snow cover climatology for the Pyrenees from MODIS snow products
  publication-title: Hydrol. Earth Syst. Sci.,
  doi: 10.5194/hess-19-2337-2015
– volume: 213
  start-page: 61
  year: 2018
  ident: 10.1016/j.jhydrol.2025.133303_b0500
  article-title: Globally scalable alpine snow metrics
  publication-title: Remote Sens. Environ.,
  doi: 10.1016/j.rse.2018.05.012
– volume: 13
  start-page: 1250
  issue: 7
  year: 2021
  ident: 10.1016/j.jhydrol.2025.133303_b0240
  article-title: Snow depth fusion based on machine learning methods for the northern hemisphere
  publication-title: Remote Sens.,
  doi: 10.3390/rs13071250
– volume: 199
  year: 2022
  ident: 10.1016/j.jhydrol.2025.133303_b0270
  article-title: Effect of shadow on atmospheric and topographic processed NDSI values in Chenab basin, western Himalayas
  publication-title: Cold Reg. Sci. Technol.,
  doi: 10.1016/j.coldregions.2022.103561
– volume: 99
  start-page: 27
  year: 2014
  ident: 10.1016/j.jhydrol.2025.133303_b0450
  article-title: Evaluation of modelled snow depth and snow water equivalent at three contrasting sites in Switzerland using SNOWPACK simulations driven by different meteorological data input
  publication-title: Cold Reg. Sci. Technol.,
  doi: 10.1016/j.coldregions.2013.12.004
– ident: 10.1016/j.jhydrol.2025.133303_b0280
– volume: 13
  start-page: 4513
  issue: 22
  year: 2021
  ident: 10.1016/j.jhydrol.2025.133303_b0400
  article-title: Spatial downscaling of MODIS snow cover observations using sentinel-2 snow products
  publication-title: Remote Sens.,
  doi: 10.3390/rs13224513
– volume: 15
  start-page: 4853
  issue: 12
  year: 2022
  ident: 10.1016/j.jhydrol.2025.133303_b0010
  article-title: Snow Multidata Mapping and Modeling (S3M) 5.1: a distributed cryospheric model with dry and wet snow, data assimilation, glacier mass balance, and debris-driven melt
  publication-title: Geosci. Model Dev.,
  doi: 10.5194/gmd-15-4853-2022
– volume: 8
  start-page: 3867
  issue: 12
  year: 2015
  ident: 10.1016/j.jhydrol.2025.133303_b0150
  article-title: A factorial snowpack model (FSM 1.0)
  publication-title: Geosci. Model Dev.,
  doi: 10.5194/gmd-8-3867-2015
– volume: 13
  start-page: 2149
  issue: 14–15
  year: 1999
  ident: 10.1016/j.jhydrol.2025.133303_b0035
  article-title: Scaling issues in snow hydrology
  publication-title: Hydrol. Processes
  doi: 10.1002/(SICI)1099-1085(199910)13:14/15<2149::AID-HYP847>3.0.CO;2-8
– volume: 8
  start-page: 2381
  issue: 6
  year: 2014
  ident: 10.1016/j.jhydrol.2025.133303_b0195
  article-title: Elevation dependency of mountain snow depth
  publication-title: Cryosphere
  doi: 10.5194/tc-8-2381-2014
– volume: 604
  year: 2022
  ident: 10.1016/j.jhydrol.2025.133303_b0515
  article-title: Development of a fine-resolution snow depth product based on the snow cover probability for the Tibetan Plateau: validation and spatial–temporal analyses
  publication-title: J. Hydrol.,
  doi: 10.1016/j.jhydrol.2021.127027
– volume: 54
  start-page: 127
  issue: 2
  year: 1995
  ident: 10.1016/j.jhydrol.2025.133303_b0210
  article-title: Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data
  publication-title: Remote Sens. Environ.,
  doi: 10.1016/0034-4257(95)00137-P
– volume: 17
  start-page: 2629
  issue: 7
  year: 2023
  ident: 10.1016/j.jhydrol.2025.133303_b0020
  article-title: How do tradeoffs in satellite spatial and temporal resolution impact snow water equivalent reconstruction?
  publication-title: Cryosphere
  doi: 10.5194/tc-17-2629-2023
– volume: 83
  start-page: 181
  issue: 1–2
  year: 2002
  ident: 10.1016/j.jhydrol.2025.133303_b0215
  article-title: MODIS snow-cover products
  publication-title: Remote Sens. Environ.,
  doi: 10.1016/S0034-4257(02)00095-0
– volume: 21
  start-page: 2650
  issue: 19
  year: 2007
  ident: 10.1016/j.jhydrol.2025.133303_b0375
  article-title: The cold regions hydrological model: a platform for basing process representation and model structure on physical evidence
  publication-title: Hydrol. Processes
  doi: 10.1002/hyp.6787
– volume: 12
  start-page: 3341
  issue: 20
  year: 2020
  ident: 10.1016/j.jhydrol.2025.133303_b0090
  article-title: SnowCloudMetrics: snow information for everyone
  publication-title: Remote Sens.,
  doi: 10.3390/rs12203341
– volume: 17
  start-page: 673
  issue: 2
  year: 2023
  ident: 10.1016/j.jhydrol.2025.133303_b0220
  article-title: Evaluation of E3SM land model snow simulations over the western United States
  publication-title: Cryosphere
  doi: 10.5194/tc-17-673-2023
– volume: 32
  start-page: 115
  issue: 1
  year: 1996
  ident: 10.1016/j.jhydrol.2025.133303_b0440
  article-title: Automated mapping of montane snow cover at subpixel resolution from the Landsat Thematic Mapper
  publication-title: Water Resour. Res.,
  doi: 10.1029/95WR02718
– volume: 34
  issue: 6
  year: 2007
  ident: 10.1016/j.jhydrol.2025.133303_b0390
  article-title: MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau
  publication-title: Geophys. Res. Lett.,
  doi: 10.1029/2007GL029262
– volume: 37
  start-page: 3873
  issue: 10
  year: 2017
  ident: 10.1016/j.jhydrol.2025.133303_b0200
  article-title: Climate and topographic controls on snow cover dynamics in the Hindu Kush Himalaya
  publication-title: Int. J. Climatol.,
  doi: 10.1002/joc.4961
– volume: 26
  start-page: 1210
  issue: 9
  year: 1987
  ident: 10.1016/j.jhydrol.2025.133303_b0120
  article-title: Satellite-derived maps of snow cover frequency for the northern hemisphere
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/1520-0450(1987)026<1210:SDMOSC>2.0.CO;2
– volume: 204
  start-page: 568
  year: 2018
  ident: 10.1016/j.jhydrol.2025.133303_b0255
  article-title: Improving MODIS snow products with a HMRF-based spatio-temporal modeling technique in the Upper Rio Grande Basin
  publication-title: Remote Sens. Environ.,
  doi: 10.1016/j.rse.2017.10.001
– volume: 143
  start-page: 54
  year: 2014
  ident: 10.1016/j.jhydrol.2025.133303_b0065
  article-title: Assimilating passive microwave remote sensing data into a land surface model to improve the estimation of snow depth
  publication-title: Remote Sens. Environ.,
  doi: 10.1016/j.rse.2013.12.009
– volume: 12
  start-page: 2904
  issue: 18
  year: 2020
  ident: 10.1016/j.jhydrol.2025.133303_b0170
  article-title: Estimating Fractional Snow Cover in Open Terrain from Sentinel-2 Using the Normalized Difference Snow Index
  publication-title: Remote Sens.,
  doi: 10.3390/rs12182904
SSID ssj0000334
Score 2.4944258
Snippet •An innovative 30 m resolution snow cover frequency map of the Tibetan Plateau was developed using over 500,000 Landsat and Sentinel-2 images.•A specialized...
Estimating snow parameters (e.g., snow cover, snow depth) at hillslope scales (<100 m) is an urgent but highly challenging research task. Remote sensing has...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 133303
SubjectTerms algorithms
China
coasts
cold season
Google Earth Engine
Hillslope scale
hydrology
Landsat
landscapes
seasonal variation
snow
Snow cover frequency
Snow mapping algorithm
snowpack
spatial variation
summer
Tibetan Plateau
topographic slope
warm season
winter
Title Mapping snow cover frequency at 30 m for studying seasonal variations and topographic controls on the Tibetan Plateau
URI https://dx.doi.org/10.1016/j.jhydrol.2025.133303
https://www.proquest.com/docview/3206198541
Volume 660
WOSCitedRecordID wos001481881600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0022-1694
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000334
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqXSS4IJ5il4eMxK1KiWO3To4VWhaQWHFYRG-RYzvQqk2qNqlafj3jV4JYVgtIXKIqqh2135eZz-OZMUKviChBJMc8SsAuRqwgOhKF1FHJZMpEwuD9k_awCX5xkc5m2afB4HuohdkteVWl-322_q9Qwz0A25TO_gXc3aRwAz4D6HAF2OH6R8B_FGtbA7U1VW7SZGgOy41LmD6Y0kUaD1c2udB2lrXf1MIK8uEOFs4-Nc4mVtZr19B6LkNKe9hcAIwL3RgDugSxKtprNO63g9q4Jk8gZKcr05RBGQZ20YcvPlx93s6_Cu9EbbKBawYs6j6S7sq454e26qloHYio9sH_-vBFMu4S4XxM7UpdTVdjQCbu-ONgpyfu4IErNt-FHxajhftNI_OUESy9aUx7J9elHprd6cRMDdoP5JjpGHuc8HEGRv14-v5s9qH345Sy0GveDOjrv17_9mHXKZtffLwVLpf30F2PBp46ptxHA109QLfPte9V_hC1njHYMAZbxuCOMVg0mMZ4hYExODAGB8bgnjEYGIN_YgwOjMF1hYEx2DMGe8Y8Qp_fnl2-eRf50zgiSRlrIhMsL1QsyaQsQOJIrjlNaKlIQWQWJ2JSpkoRxRRJpYhLlhGqJkqUIGjL8bjg9DE6qupKP0GYwhqcp5KksalOMk0IBc94oVQCeknz5ASx8E_m0reqNyemLPOQk7jIPQC5ASB3AJygUTds7Xq13DQgDTDlXnA6IZkDt24a-jLAmoNBNrtsotJ1u81pAhI5S8eMnP779E_Rnf5leYaOmk2rn6NbctfMt5sXnqk_AC3ltm4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+snow+cover+frequency+at+30+m+for+studying+seasonal+variations+and+topographic+controls+on+the+Tibetan+Plateau&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Wang%2C+Guigang&rft.au=Che%2C+Tao&rft.au=Dai%2C+Liyun&rft.au=Hu%2C+Yanxing&rft.date=2025-10-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.volume=660&rft_id=info:doi/10.1016%2Fj.jhydrol.2025.133303&rft.externalDocID=S0022169425006419
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon