Accelerated genetic algorithm based on search-space decomposition for change detection in remote sensing images

Detecting change areas among two or more remote sensing images is a key technique in remote sensing. It usually consists of generating and analyzing a difference image thus to produce a change map. Analyzing the difference image to obtain the change map is essentially a binary classification problem...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied soft computing Ročník 84; s. 105727
Hlavní autoři: Mu, Cai-Hong, Li, Cheng-Zhou, Liu, Yi, Qu, Rong, Jiao, Li-Cheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.11.2019
Témata:
ISSN:1568-4946, 1872-9681
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Detecting change areas among two or more remote sensing images is a key technique in remote sensing. It usually consists of generating and analyzing a difference image thus to produce a change map. Analyzing the difference image to obtain the change map is essentially a binary classification problem, and can be solved by optimization algorithms. This paper proposes an accelerated genetic algorithm based on search-space decomposition (SD-aGA) for change detection in remote sensing images. Firstly, the BM3D algorithm is used to preprocess the remote sensing image to enhance useful information and suppress noises. The difference image is then obtained using the logarithmic ratio method. Secondly, after saliency detection, fuzzy c-means algorithm is conducted on the salient region detected in the difference image to identify the changed, unchanged and undetermined pixels. Only those undetermined pixels are considered by the optimization algorithm, which reduces the search space significantly. Inspired by the idea of the divide-and-conquer strategy, the difference image is decomposed into sub-blocks with a method similar to down-sampling, where only those undetermined pixels are analyzed and optimized by SD-aGA in parallel. The category labels of the undetermined pixels in each sub-block are optimized according to an improved objective function with neighborhood information. Finally the decision results of the category labels of all the pixels in the sub-blocks are remapped to their original positions in the difference image and then merged globally. Decision fusion is conducted on each pixel based on the decision results in the local neighborhood to produce the final change map. The proposed method is tested on six diverse remote sensing image benchmark datasets and compared against six state-of-the-art methods. Segmentations on the synthetic image and natural image corrupted by different noise are also carried out for comparison. Results demonstrate the excellent performance of the proposed SD-aGA on handling noises and detecting the changed areas accurately. In particular, compared with the traditional genetic algorithm, SD-aGA can obtain a much higher degree of detection accuracy with much less computational time. [Display omitted] •An accelerated genetic algorithm (SD-aGA) is proposed for change detection.•The BM3D algorithm is used to enhance useful information and suppress noises.•The difference image is decomposed into sub-blocks for parallelization.•Decision fusion is conducted on each pixel to produce the final change map.•Results show SD-aGA can handle noises well and detect the changed areas accurately.
AbstractList Detecting change areas among two or more remote sensing images is a key technique in remote sensing. It usually consists of generating and analyzing a difference image thus to produce a change map. Analyzing the difference image to obtain the change map is essentially a binary classification problem, and can be solved by optimization algorithms. This paper proposes an accelerated genetic algorithm based on search-space decomposition (SD-aGA) for change detection in remote sensing images. Firstly, the BM3D algorithm is used to preprocess the remote sensing image to enhance useful information and suppress noises. The difference image is then obtained using the logarithmic ratio method. Secondly, after saliency detection, fuzzy c-means algorithm is conducted on the salient region detected in the difference image to identify the changed, unchanged and undetermined pixels. Only those undetermined pixels are considered by the optimization algorithm, which reduces the search space significantly. Inspired by the idea of the divide-and-conquer strategy, the difference image is decomposed into sub-blocks with a method similar to down-sampling, where only those undetermined pixels are analyzed and optimized by SD-aGA in parallel. The category labels of the undetermined pixels in each sub-block are optimized according to an improved objective function with neighborhood information. Finally the decision results of the category labels of all the pixels in the sub-blocks are remapped to their original positions in the difference image and then merged globally. Decision fusion is conducted on each pixel based on the decision results in the local neighborhood to produce the final change map. The proposed method is tested on six diverse remote sensing image benchmark datasets and compared against six state-of-the-art methods. Segmentations on the synthetic image and natural image corrupted by different noise are also carried out for comparison. Results demonstrate the excellent performance of the proposed SD-aGA on handling noises and detecting the changed areas accurately. In particular, compared with the traditional genetic algorithm, SD-aGA can obtain a much higher degree of detection accuracy with much less computational time. [Display omitted] •An accelerated genetic algorithm (SD-aGA) is proposed for change detection.•The BM3D algorithm is used to enhance useful information and suppress noises.•The difference image is decomposed into sub-blocks for parallelization.•Decision fusion is conducted on each pixel to produce the final change map.•Results show SD-aGA can handle noises well and detect the changed areas accurately.
ArticleNumber 105727
Author Mu, Cai-Hong
Qu, Rong
Jiao, Li-Cheng
Li, Cheng-Zhou
Liu, Yi
Author_xml – sequence: 1
  givenname: Cai-Hong
  orcidid: 0000-0003-4373-3661
  surname: Mu
  fullname: Mu, Cai-Hong
  email: caihongm@mail.xidian.edu.cn
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, International Research Center for Intelligent Perception and Computation, Joint International Research Laboratory of Intelligent Perception and Computation, School of Artificial Intelligence, Xidian University, Xi’an, 710071, China
– sequence: 2
  givenname: Cheng-Zhou
  surname: Li
  fullname: Li, Cheng-Zhou
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, International Research Center for Intelligent Perception and Computation, Joint International Research Laboratory of Intelligent Perception and Computation, School of Artificial Intelligence, Xidian University, Xi’an, 710071, China
– sequence: 3
  givenname: Yi
  surname: Liu
  fullname: Liu, Yi
  organization: School of Electronic Engineering, Xidian University, Xi’an 710071, China
– sequence: 4
  givenname: Rong
  surname: Qu
  fullname: Qu, Rong
  organization: School of Computer Science, University of Nottingham, Nottingham, NG8 1BB, UK
– sequence: 5
  givenname: Li-Cheng
  surname: Jiao
  fullname: Jiao, Li-Cheng
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, International Research Center for Intelligent Perception and Computation, Joint International Research Laboratory of Intelligent Perception and Computation, School of Artificial Intelligence, Xidian University, Xi’an, 710071, China
BookMark eNp9kM9qwzAMh83oYG23F9gpL5DOcRIngV1K2T8o7LKdjaIoqUtiF9sM9vZz1p126EniJz4hfSu2MNYQY_cZ32Q8kw_HDXiLG8GzJgZlJaortszqSqSNrLNF7EtZp0VTyBu28v7II9SIesnsFpFGchCoSwYyFDQmMA7W6XCYkhZ8zK1JPIHDQ-pPgJR0hHY6Wa-DjqPeugQPYIZ5EAh_Q20SR5MNFEnjtRkSPcFA_pZd9zB6uvura_b5_PSxe0337y9vu-0-xbwoQkqioIrLPM8L3nTAuahFmyMX0JFEgRLapoG-IQFAmHctgKiyqivLPpccZL5m9XkvOuu9o16hDjCfFhzoUWVczeLUUc3i1CxOncVFVPxDTy4e774vQ49niOJTX5qc8qjJIHXaRSWqs_oS_gPhFYwy
CitedBy_id crossref_primary_10_1016_j_asoc_2020_106510
crossref_primary_10_1109_JSTARS_2020_3037070
crossref_primary_10_1177_1094342020945026
crossref_primary_10_1109_JLT_2024_3458988
crossref_primary_10_1016_j_jvcir_2021_103132
crossref_primary_10_1109_ACCESS_2021_3083837
crossref_primary_10_1007_s11760_024_03173_6
crossref_primary_10_3390_ijgi9070462
crossref_primary_10_1016_j_asoc_2022_109200
Cites_doi 10.1109/TEVC.2016.2641477
10.1016/j.jag.2015.09.003
10.1109/TFUZZ.2013.2249072
10.1109/TKDE.2005.28
10.1109/TGRS.2006.876288
10.1109/IGARSS.2016.7730489
10.1016/j.sigpro.2017.07.023
10.1109/LGRS.2009.2037024
10.1016/j.asoc.2015.10.044
10.1109/LGRS.2015.2484220
10.1016/j.asoc.2017.12.031
10.1109/TIP.2011.2170702
10.1016/j.eswa.2011.01.136
10.1109/CVPRW.2009.5206596
10.1109/TNNLS.2015.2435783
10.1016/S0167-8655(03)00060-6
10.1109/TPAMI.2011.272
10.1109/TIP.2007.901238
10.1109/TSMC.1979.4310076
10.1109/42.996338
10.1109/LGRS.2016.2611001
10.1109/TGRS.2009.2012407
10.1016/j.asoc.2015.05.034
10.1016/j.eswa.2017.12.038
10.1109/21.478444
10.1109/ICMCS.2012.6320144
10.1109/CEC.2017.7969436
10.1109/36.843009
10.1016/j.ijleo.2016.11.040
10.1109/ChinaSIP.2014.6889219
10.1016/j.asoc.2018.01.040
10.1109/TGRS.2010.2045506
10.1109/TGRS.2004.842441
10.1109/TIP.2002.999678
10.1016/j.ins.2016.12.023
10.1109/TIP.2010.2040763
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2019.105727
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2019_105727
S1568494619305083
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c344t-e24e706333409da00282b3c02ade6c2c6ab99af9e2aaec3dbaa2717d55f360a63
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000490753200039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Tue Nov 18 20:00:29 EST 2025
Sat Nov 29 03:05:38 EST 2025
Fri Feb 23 02:24:49 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Remote sensing image
Change detection
Genetic algorithm
Evolutionary optimization
Search space decomposition
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-e24e706333409da00282b3c02ade6c2c6ab99af9e2aaec3dbaa2717d55f360a63
ORCID 0000-0003-4373-3661
OpenAccessLink https://nottingham-repository.worktribe.com/output/2507730
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2019_105727
crossref_primary_10_1016_j_asoc_2019_105727
elsevier_sciencedirect_doi_10_1016_j_asoc_2019_105727
PublicationCentury 2000
PublicationDate November 2019
2019-11-00
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November 2019
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sumaiya, Shantha Selva Kumar (b11) 2017; 130
Li, Celik, Longbotham, Emery (b17) 2015; 12
Luo, Hou, Zhong, Cai, Ma (b24) 2017; 382–383
Moser, Serpico (b12) 2009; 47
W. Ren, J. Song, S. Tian, W. Wu, Survey on unsupervised change detection techniques in SAR images1, in: Signal and Information Processing (ChinaSIP) 2014 IEEE China Summit & International Conference on, 2014, pp. 143–147.
C. Mu, C. Li, Y. Liu, M. Sun, L. Jiao, R. Qu, Change detection in SAR images based on the salient map guidance and an accelerated genetic algorithm, in: IEEE Cong. on Evolut. Comput. Donostia, Spain, 2017, pp. 1150–1157.
Bazi, Bruzzone, Melgani (b9) 2005; 43
Gong, Su, Jia, Chen (b16) 2014; 22
Zhou, Song, Pedrycz (b25) 2018; 64
Krömer, Platoš, Nowaková, Snášel (b32) 2018
Bazi, Melgani, Al-Sharari (b6) 2010; 48
Segura, Hernández-Aguirre, Luna, Alba (b27) 2017; 21
Moser, Serpico (b10) 2006; 44
Bhanu, Lee, Ming (b29) 1995; 25
N. Bruce, J. Tsotsos, Saliency Based on Information Maximization, in: International conference on Neural Information Processing Systems, vol. 18, 2006, pp. 155–162.
Chance, Hermosilla, Coops, Wulder, White (b3) 2016; 44
Mu, Xie, Liu, Chen, Liu, Jiao (b28) 2015; 34
R. Achanta, S. Hemami, F. Estrada, S. Susstrunk, Frequency-Tuned Salient Region Detection, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2009, pp. 1597–1604.
Gong, Zhou, Ma (b7) 2012; 21
A. Reigber, M. Jäger, E. Krogager, Polarimetric SAR change detection in multiple frequency bands for environmental monitoring in Arctic regions, in: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, 2016, pp. 5702–5705.
Shang, Yuan, Jiao, Meng, Ghalamzan (b21) 2017; 142
Liu, Sun, Yan, Kang (b39) 2011; 38
Gao, Dong, Li, Xu (b20) 2016; 13
Bruzzone, Prieto (b5) 2002; 11
Das, Sengupta, Bhattacharyya (b26) 2018; 65
Otsu (b38) 1979; 9
Krinidis, Chatzis (b15) 2010; 19
Ahmed, Yamany, Mohamed, Farag, Moriarty (b13) 2002; 21
Goferman, Zelnik-Manor, Tal (b37) 2012; 34
A. Sheta, M.S. Braik, S. Aljahdali, Genetic Algorithms: A tool for image segmentation, in: IEEE International Conference on Multimedia Computing and Systems, 2012, pp. 84–90.
Fazel, Homayouni, Amini (b4) 2013; XL-1/W3
Celik (b23) 2010; 7
Bruzzone, Prieto (b8) 2000; 38
L. Szilagyi, Z. Benyo, S. Szilagyii, H. Adam, MR brain image segmentation using an enhanced fuzzy C-means algorithm, in: Proc. 25th Annu. Int. Conf. IEEE EMBS, 2003, pp. 17–21.
Qin, Zhou, Zhou, Huang, Ren, Horan, He, Kito (b2) 2018; 97
Cho, Chi (b31) 2005; 17
Rosin, Ioannidis (b41) 2003; 24
Gong, Zhao, Liu, Miao, Jiao (b19) 2015; 27
Li, Gong, Wang, Liu, Su (b18) 2015; 46
Dabov, Foi, Katkovnik, Egiazarian (b34) 2007; 16
Sirag, Weisser (b40) 1987
Li (10.1016/j.asoc.2019.105727_b18) 2015; 46
Sumaiya (10.1016/j.asoc.2019.105727_b11) 2017; 130
Li (10.1016/j.asoc.2019.105727_b17) 2015; 12
Gong (10.1016/j.asoc.2019.105727_b19) 2015; 27
Bhanu (10.1016/j.asoc.2019.105727_b29) 1995; 25
Cho (10.1016/j.asoc.2019.105727_b31) 2005; 17
Otsu (10.1016/j.asoc.2019.105727_b38) 1979; 9
Das (10.1016/j.asoc.2019.105727_b26) 2018; 65
Sirag (10.1016/j.asoc.2019.105727_b40) 1987
Gong (10.1016/j.asoc.2019.105727_b16) 2014; 22
Chance (10.1016/j.asoc.2019.105727_b3) 2016; 44
Gao (10.1016/j.asoc.2019.105727_b20) 2016; 13
10.1016/j.asoc.2019.105727_b30
Krinidis (10.1016/j.asoc.2019.105727_b15) 2010; 19
10.1016/j.asoc.2019.105727_b33
Moser (10.1016/j.asoc.2019.105727_b10) 2006; 44
10.1016/j.asoc.2019.105727_b35
Moser (10.1016/j.asoc.2019.105727_b12) 2009; 47
10.1016/j.asoc.2019.105727_b14
10.1016/j.asoc.2019.105727_b36
Rosin (10.1016/j.asoc.2019.105727_b41) 2003; 24
10.1016/j.asoc.2019.105727_b1
Bazi (10.1016/j.asoc.2019.105727_b9) 2005; 43
Fazel (10.1016/j.asoc.2019.105727_b4) 2013; XL-1/W3
Bruzzone (10.1016/j.asoc.2019.105727_b5) 2002; 11
Gong (10.1016/j.asoc.2019.105727_b7) 2012; 21
Ahmed (10.1016/j.asoc.2019.105727_b13) 2002; 21
Celik (10.1016/j.asoc.2019.105727_b23) 2010; 7
Segura (10.1016/j.asoc.2019.105727_b27) 2017; 21
Qin (10.1016/j.asoc.2019.105727_b2) 2018; 97
Goferman (10.1016/j.asoc.2019.105727_b37) 2012; 34
Shang (10.1016/j.asoc.2019.105727_b21) 2017; 142
Bazi (10.1016/j.asoc.2019.105727_b6) 2010; 48
Krömer (10.1016/j.asoc.2019.105727_b32) 2018
Bruzzone (10.1016/j.asoc.2019.105727_b8) 2000; 38
10.1016/j.asoc.2019.105727_b22
Liu (10.1016/j.asoc.2019.105727_b39) 2011; 38
Zhou (10.1016/j.asoc.2019.105727_b25) 2018; 64
Mu (10.1016/j.asoc.2019.105727_b28) 2015; 34
Luo (10.1016/j.asoc.2019.105727_b24) 2017; 382–383
Dabov (10.1016/j.asoc.2019.105727_b34) 2007; 16
References_xml – volume: 25
  start-page: 1543
  year: 1995
  end-page: 1567
  ident: b29
  article-title: Adaptive image segmentation using a genetic algorithm
  publication-title: IEEE Trans. Syst. Man Cybern.
– start-page: 116
  year: 1987
  end-page: 122
  ident: b40
  article-title: Toward a unified thermodynamic genetic operator
  publication-title: International Conference on Genetic Algorithms on Genetic Algorithms and their Application
– reference: W. Ren, J. Song, S. Tian, W. Wu, Survey on unsupervised change detection techniques in SAR images1, in: Signal and Information Processing (ChinaSIP) 2014 IEEE China Summit & International Conference on, 2014, pp. 143–147.
– volume: 16
  start-page: 2080
  year: 2007
  end-page: 2095
  ident: b34
  article-title: Image denoising by sparse 3d transform-domain collaborative filtering
  publication-title: IEEE Trans. Image Process.
– reference: N. Bruce, J. Tsotsos, Saliency Based on Information Maximization, in: International conference on Neural Information Processing Systems, vol. 18, 2006, pp. 155–162.
– volume: 22
  start-page: 98
  year: 2014
  end-page: 109
  ident: b16
  article-title: Fuzzy clustering with a modified MRF energy function for change detection in synthetic aperture radar images
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 47
  start-page: 2114
  year: 2009
  end-page: 2128
  ident: b12
  article-title: Unsupervised change detection from multichannel SAR data by Markovian data fusion
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 24
  start-page: 2345
  year: 2003
  end-page: 2356
  ident: b41
  article-title: Evaluation of global image thresholding for change detection
  publication-title: Pattern Recognit. Lett.
– start-page: 1
  year: 2018
  end-page: 18
  ident: b32
  article-title: Optimal column subset selection for image classification by genetic algorithms
  publication-title: Ann. Oper. Res.
– volume: 38
  start-page: 1171
  year: 2000
  end-page: 1182
  ident: b8
  article-title: Automatic analysis of the difference image for unsupervised change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 44
  start-page: 186
  year: 2016
  end-page: 194
  ident: b3
  article-title: Effect of topographic correction on forest change detection using spectral trend analysis of landsat pixel-based composites
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 21
  start-page: 539
  year: 2017
  end-page: 553
  ident: b27
  article-title: Improving diversity in evolutionary algorithms: New best solutions for frequency assignment
  publication-title: IEEE Trans. Evol. Comput.
– volume: 48
  start-page: 3178
  year: 2010
  end-page: 3187
  ident: b6
  article-title: Unsupervised change detection in multispectral remotely sensed imagery with level set methods
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 17
  start-page: 216
  year: 2005
  end-page: 231
  ident: b31
  article-title: Genetic evolution processing of classification
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 43
  start-page: 874
  year: 2005
  end-page: 887
  ident: b9
  article-title: An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 21
  start-page: 2141
  year: 2012
  end-page: 2151
  ident: b7
  article-title: Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering
  publication-title: IEEE Trans. Image Process.
– volume: 34
  start-page: 485
  year: 2015
  end-page: 501
  ident: b28
  article-title: Memetic algorithm with simulated annealing strategy and tightness greedy optimization for community detection in networks
  publication-title: Appl. Soft Comput.
– volume: 97
  start-page: 372
  year: 2018
  end-page: 383
  ident: b2
  article-title: MSIM: A change detection framework for damage assessment in natural disasters
  publication-title: Expert Syst. Appl.
– volume: 7
  start-page: 386
  year: 2010
  end-page: 390
  ident: b23
  article-title: Change detection in satellite images using genetic algorithm
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 382–383
  start-page: 216
  year: 2017
  end-page: 233
  ident: b24
  article-title: Sampling-based adaptive bounding evolutionary algorithm for continuous optimization problems
  publication-title: Inform. Sci.
– volume: 27
  start-page: 125
  year: 2015
  end-page: 138
  ident: b19
  article-title: Change detection in synthetic aperture radar images based on deep neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– reference: C. Mu, C. Li, Y. Liu, M. Sun, L. Jiao, R. Qu, Change detection in SAR images based on the salient map guidance and an accelerated genetic algorithm, in: IEEE Cong. on Evolut. Comput. Donostia, Spain, 2017, pp. 1150–1157.
– volume: 19
  start-page: 1328
  year: 2010
  end-page: 1337
  ident: b15
  article-title: A robust fuzzy local information C-means clustering algorithm
  publication-title: IEEE Trans. Image Process.
– volume: 13
  start-page: 1792
  year: 2016
  end-page: 1796
  ident: b20
  article-title: Automatic change detection in synthetic aperture radar images based on pcanet
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  ident: b38
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 65
  start-page: 400
  year: 2018
  end-page: 411
  ident: b26
  article-title: A group incremental feature selection for classification using rough set theory based genetic algorithm
  publication-title: Appl. Soft Comput.
– reference: A. Sheta, M.S. Braik, S. Aljahdali, Genetic Algorithms: A tool for image segmentation, in: IEEE International Conference on Multimedia Computing and Systems, 2012, pp. 84–90.
– volume: 11
  start-page: 452
  year: 2002
  end-page: 466
  ident: b5
  article-title: An adaptive semiparametric and context-based approach to unsupervised change detection in multitemporal remote-sensing images
  publication-title: IEEE Trans. Image Process.
– volume: 44
  start-page: 2972
  year: 2006
  end-page: 2982
  ident: b10
  article-title: Generalized minimum-error thresholding for unsupervised change detection from SAR amplitude imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: XL-1/W3
  start-page: 169
  year: 2013
  end-page: 173
  ident: b4
  article-title: Kernel-based unsupervised change detection of agricultural lands using multi-temporal polarimetric SAR data, ISPRS - international archives of the photogrammetry
  publication-title: Remote Sens. Spat. Inf. Sci.
– volume: 12
  start-page: 2458
  year: 2015
  end-page: 2462
  ident: b17
  article-title: Gabor feature based unsupervised change detection of multitemporal SAR images based on two-level clustering
  publication-title: IEEE Geosci. Remote Sens. Lett.
– reference: R. Achanta, S. Hemami, F. Estrada, S. Susstrunk, Frequency-Tuned Salient Region Detection, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2009, pp. 1597–1604.
– volume: 46
  start-page: 767
  year: 2015
  end-page: 777
  ident: b18
  article-title: A multiobjective fuzzy clustering method for change detection in SAR images
  publication-title: Appl. Soft Comput.
– reference: L. Szilagyi, Z. Benyo, S. Szilagyii, H. Adam, MR brain image segmentation using an enhanced fuzzy C-means algorithm, in: Proc. 25th Annu. Int. Conf. IEEE EMBS, 2003, pp. 17–21.
– volume: 142
  start-page: 375
  year: 2017
  end-page: 387
  ident: b21
  article-title: A self-paced learning algorithm for change detection in synthetic aperture radar images
  publication-title: Signal Process.
– volume: 21
  start-page: 193
  year: 2002
  end-page: 199
  ident: b13
  article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data
  publication-title: IEEE Trans. Med. Imaging
– volume: 130
  start-page: 114
  year: 2017
  end-page: 122
  ident: b11
  article-title: Gabor filter based change detection in SAR images by KI thresholding
  publication-title: Optik
– reference: A. Reigber, M. Jäger, E. Krogager, Polarimetric SAR change detection in multiple frequency bands for environmental monitoring in Arctic regions, in: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, 2016, pp. 5702–5705.
– volume: 64
  start-page: 564
  year: 2018
  end-page: 580
  ident: b25
  article-title: A comparative study of improved GA and PSO in solving multiple traveling salesmen problem
  publication-title: Appl. Soft Comput.
– volume: 34
  start-page: 1915
  year: 2012
  end-page: 1926
  ident: b37
  article-title: Context-aware saliency detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 38
  start-page: 9248
  year: 2011
  end-page: 9255
  ident: b39
  article-title: An adaptive annealing genetic algorithm for the job-shop planning and scheduling problem
  publication-title: Expert Syst. Appl.
– volume: 21
  start-page: 539
  issue: 4
  year: 2017
  ident: 10.1016/j.asoc.2019.105727_b27
  article-title: Improving diversity in evolutionary algorithms: New best solutions for frequency assignment
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2641477
– volume: 44
  start-page: 186
  year: 2016
  ident: 10.1016/j.asoc.2019.105727_b3
  article-title: Effect of topographic correction on forest change detection using spectral trend analysis of landsat pixel-based composites
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2015.09.003
– volume: 22
  start-page: 98
  issue: 1
  year: 2014
  ident: 10.1016/j.asoc.2019.105727_b16
  article-title: Fuzzy clustering with a modified MRF energy function for change detection in synthetic aperture radar images
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2013.2249072
– volume: 17
  start-page: 216
  issue: 2
  year: 2005
  ident: 10.1016/j.asoc.2019.105727_b31
  article-title: Genetic evolution processing of classification
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2005.28
– volume: 44
  start-page: 2972
  issue: 10
  year: 2006
  ident: 10.1016/j.asoc.2019.105727_b10
  article-title: Generalized minimum-error thresholding for unsupervised change detection from SAR amplitude imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.876288
– ident: 10.1016/j.asoc.2019.105727_b1
  doi: 10.1109/IGARSS.2016.7730489
– volume: 142
  start-page: 375
  year: 2017
  ident: 10.1016/j.asoc.2019.105727_b21
  article-title: A self-paced learning algorithm for change detection in synthetic aperture radar images
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2017.07.023
– volume: 7
  start-page: 386
  issue: 2
  year: 2010
  ident: 10.1016/j.asoc.2019.105727_b23
  article-title: Change detection in satellite images using genetic algorithm
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2009.2037024
– volume: 46
  start-page: 767
  year: 2015
  ident: 10.1016/j.asoc.2019.105727_b18
  article-title: A multiobjective fuzzy clustering method for change detection in SAR images
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.10.044
– volume: 12
  start-page: 2458
  issue: 12
  year: 2015
  ident: 10.1016/j.asoc.2019.105727_b17
  article-title: Gabor feature based unsupervised change detection of multitemporal SAR images based on two-level clustering
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2015.2484220
– volume: 64
  start-page: 564
  year: 2018
  ident: 10.1016/j.asoc.2019.105727_b25
  article-title: A comparative study of improved GA and PSO in solving multiple traveling salesmen problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.12.031
– volume: 21
  start-page: 2141
  issue: 4
  year: 2012
  ident: 10.1016/j.asoc.2019.105727_b7
  article-title: Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2170702
– volume: 38
  start-page: 9248
  issue: 8
  year: 2011
  ident: 10.1016/j.asoc.2019.105727_b39
  article-title: An adaptive annealing genetic algorithm for the job-shop planning and scheduling problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.01.136
– ident: 10.1016/j.asoc.2019.105727_b36
  doi: 10.1109/CVPRW.2009.5206596
– volume: XL-1/W3
  start-page: 169
  year: 2013
  ident: 10.1016/j.asoc.2019.105727_b4
  article-title: Kernel-based unsupervised change detection of agricultural lands using multi-temporal polarimetric SAR data, ISPRS - international archives of the photogrammetry
  publication-title: Remote Sens. Spat. Inf. Sci.
– volume: 27
  start-page: 125
  issue: 1
  year: 2015
  ident: 10.1016/j.asoc.2019.105727_b19
  article-title: Change detection in synthetic aperture radar images based on deep neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2435783
– start-page: 1
  year: 2018
  ident: 10.1016/j.asoc.2019.105727_b32
  article-title: Optimal column subset selection for image classification by genetic algorithms
  publication-title: Ann. Oper. Res.
– volume: 24
  start-page: 2345
  issue: 14
  year: 2003
  ident: 10.1016/j.asoc.2019.105727_b41
  article-title: Evaluation of global image thresholding for change detection
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/S0167-8655(03)00060-6
– volume: 34
  start-page: 1915
  issue: 10
  year: 2012
  ident: 10.1016/j.asoc.2019.105727_b37
  article-title: Context-aware saliency detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.272
– volume: 16
  start-page: 2080
  issue: 8
  year: 2007
  ident: 10.1016/j.asoc.2019.105727_b34
  article-title: Image denoising by sparse 3d transform-domain collaborative filtering
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.901238
– volume: 9
  start-page: 62
  issue: 1
  year: 1979
  ident: 10.1016/j.asoc.2019.105727_b38
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1979.4310076
– volume: 21
  start-page: 193
  issue: 3
  year: 2002
  ident: 10.1016/j.asoc.2019.105727_b13
  article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.996338
– volume: 13
  start-page: 1792
  issue: 12
  year: 2016
  ident: 10.1016/j.asoc.2019.105727_b20
  article-title: Automatic change detection in synthetic aperture radar images based on pcanet
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2611001
– volume: 47
  start-page: 2114
  issue: 7
  year: 2009
  ident: 10.1016/j.asoc.2019.105727_b12
  article-title: Unsupervised change detection from multichannel SAR data by Markovian data fusion
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2009.2012407
– volume: 34
  start-page: 485
  year: 2015
  ident: 10.1016/j.asoc.2019.105727_b28
  article-title: Memetic algorithm with simulated annealing strategy and tightness greedy optimization for community detection in networks
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.05.034
– volume: 97
  start-page: 372
  year: 2018
  ident: 10.1016/j.asoc.2019.105727_b2
  article-title: MSIM: A change detection framework for damage assessment in natural disasters
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.12.038
– volume: 25
  start-page: 1543
  issue: 12
  year: 1995
  ident: 10.1016/j.asoc.2019.105727_b29
  article-title: Adaptive image segmentation using a genetic algorithm
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.478444
– ident: 10.1016/j.asoc.2019.105727_b35
– ident: 10.1016/j.asoc.2019.105727_b30
  doi: 10.1109/ICMCS.2012.6320144
– ident: 10.1016/j.asoc.2019.105727_b33
  doi: 10.1109/CEC.2017.7969436
– volume: 38
  start-page: 1171
  issue: 3
  year: 2000
  ident: 10.1016/j.asoc.2019.105727_b8
  article-title: Automatic analysis of the difference image for unsupervised change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.843009
– volume: 130
  start-page: 114
  year: 2017
  ident: 10.1016/j.asoc.2019.105727_b11
  article-title: Gabor filter based change detection in SAR images by KI thresholding
  publication-title: Optik
  doi: 10.1016/j.ijleo.2016.11.040
– ident: 10.1016/j.asoc.2019.105727_b14
– ident: 10.1016/j.asoc.2019.105727_b22
  doi: 10.1109/ChinaSIP.2014.6889219
– volume: 65
  start-page: 400
  year: 2018
  ident: 10.1016/j.asoc.2019.105727_b26
  article-title: A group incremental feature selection for classification using rough set theory based genetic algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.01.040
– volume: 48
  start-page: 3178
  issue: 8
  year: 2010
  ident: 10.1016/j.asoc.2019.105727_b6
  article-title: Unsupervised change detection in multispectral remotely sensed imagery with level set methods
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2045506
– volume: 43
  start-page: 874
  issue: 4
  year: 2005
  ident: 10.1016/j.asoc.2019.105727_b9
  article-title: An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2004.842441
– start-page: 116
  year: 1987
  ident: 10.1016/j.asoc.2019.105727_b40
  article-title: Toward a unified thermodynamic genetic operator
– volume: 11
  start-page: 452
  issue: 4
  year: 2002
  ident: 10.1016/j.asoc.2019.105727_b5
  article-title: An adaptive semiparametric and context-based approach to unsupervised change detection in multitemporal remote-sensing images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2002.999678
– volume: 382–383
  start-page: 216
  year: 2017
  ident: 10.1016/j.asoc.2019.105727_b24
  article-title: Sampling-based adaptive bounding evolutionary algorithm for continuous optimization problems
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2016.12.023
– volume: 19
  start-page: 1328
  issue: 5
  year: 2010
  ident: 10.1016/j.asoc.2019.105727_b15
  article-title: A robust fuzzy local information C-means clustering algorithm
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2040763
SSID ssj0016928
Score 2.3302991
Snippet Detecting change areas among two or more remote sensing images is a key technique in remote sensing. It usually consists of generating and analyzing a...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105727
SubjectTerms Change detection
Evolutionary optimization
Genetic algorithm
Remote sensing image
Search space decomposition
Title Accelerated genetic algorithm based on search-space decomposition for change detection in remote sensing images
URI https://dx.doi.org/10.1016/j.asoc.2019.105727
Volume 84
WOSCitedRecordID wos000490753200039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELa20EMvfVfQB_KhNxSUtZ04Pq4qKooQ6oFK214ix3YgaEnQbhZx6X_v-JEHtCA4VFpFK8d2kp1vZyb2NzMIfSZMWavGIkFlFjGt4kgYDn-8hGRlQXRMS5cy_4gfH2fzufg-mfzuYmGuFryus-trcflfRQ1tIGwbOvsIcfeTQgN8B6HDEcQOxwcJfqYUmBKbAULb-sjGZWRdnDbLqj272LVWS9sdAv_cESgUZUOnLLU88Lcc89AHBMOJ1qiOD7k0IFcDI2u3wFBdgC5ajb3bzqVdgW53ZPV121lGJ1PPMKmig2ZoPar8rr-pT6NfZ816aHfdf1bD0qxngoehYaViKkLI3ki5pgAHEZYcg_bN2Eh92qLDPlXAX5rdLzKc70kArWXkib2h88002rfMW0867Phs57mdI7dz5H6OJ2iT8ESAXt-cfdufH_bbUKlwxXn7Gw9RV54gePtO_u3ZjLyVk5foeXjNwDMPj1doYurX6EVXwgMHjf4GNSO04IAW3KMFO7TgpsZjtOAbaMGAFuzRgnu04KrGHi04oAV7tLxFP77un3w5iEINjkhRxtrIEGY4uLGUslho6V7RC6piIrVJFVGpLISQpTBESqOoLqQkfMp1kpQ0jWVK36GNuqnNFsKlLgpGiiROdcEKwSXlCkyxjuGTyZhuo2n3--UqJKi3dVIW-d2S20a7_ZhLn57l3t5JJ5Y8OJjeccwBZfeMe_-oq3xAzwb0f0Qb7XJtPqGn6qqtVsudALE_kx-eyw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+genetic+algorithm+based+on+search-space+decomposition+for+change+detection+in+remote+sensing+images&rft.jtitle=Applied+soft+computing&rft.au=Mu%2C+Cai-Hong&rft.au=Li%2C+Cheng-Zhou&rft.au=Liu%2C+Yi&rft.au=Qu%2C+Rong&rft.date=2019-11-01&rft.issn=1568-4946&rft.volume=84&rft.spage=105727&rft_id=info:doi/10.1016%2Fj.asoc.2019.105727&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2019_105727
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon