Accelerated genetic algorithm based on search-space decomposition for change detection in remote sensing images
Detecting change areas among two or more remote sensing images is a key technique in remote sensing. It usually consists of generating and analyzing a difference image thus to produce a change map. Analyzing the difference image to obtain the change map is essentially a binary classification problem...
Uloženo v:
| Vydáno v: | Applied soft computing Ročník 84; s. 105727 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.11.2019
|
| Témata: | |
| ISSN: | 1568-4946, 1872-9681 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Detecting change areas among two or more remote sensing images is a key technique in remote sensing. It usually consists of generating and analyzing a difference image thus to produce a change map. Analyzing the difference image to obtain the change map is essentially a binary classification problem, and can be solved by optimization algorithms. This paper proposes an accelerated genetic algorithm based on search-space decomposition (SD-aGA) for change detection in remote sensing images. Firstly, the BM3D algorithm is used to preprocess the remote sensing image to enhance useful information and suppress noises. The difference image is then obtained using the logarithmic ratio method. Secondly, after saliency detection, fuzzy c-means algorithm is conducted on the salient region detected in the difference image to identify the changed, unchanged and undetermined pixels. Only those undetermined pixels are considered by the optimization algorithm, which reduces the search space significantly. Inspired by the idea of the divide-and-conquer strategy, the difference image is decomposed into sub-blocks with a method similar to down-sampling, where only those undetermined pixels are analyzed and optimized by SD-aGA in parallel. The category labels of the undetermined pixels in each sub-block are optimized according to an improved objective function with neighborhood information. Finally the decision results of the category labels of all the pixels in the sub-blocks are remapped to their original positions in the difference image and then merged globally. Decision fusion is conducted on each pixel based on the decision results in the local neighborhood to produce the final change map. The proposed method is tested on six diverse remote sensing image benchmark datasets and compared against six state-of-the-art methods. Segmentations on the synthetic image and natural image corrupted by different noise are also carried out for comparison. Results demonstrate the excellent performance of the proposed SD-aGA on handling noises and detecting the changed areas accurately. In particular, compared with the traditional genetic algorithm, SD-aGA can obtain a much higher degree of detection accuracy with much less computational time.
[Display omitted]
•An accelerated genetic algorithm (SD-aGA) is proposed for change detection.•The BM3D algorithm is used to enhance useful information and suppress noises.•The difference image is decomposed into sub-blocks for parallelization.•Decision fusion is conducted on each pixel to produce the final change map.•Results show SD-aGA can handle noises well and detect the changed areas accurately. |
|---|---|
| AbstractList | Detecting change areas among two or more remote sensing images is a key technique in remote sensing. It usually consists of generating and analyzing a difference image thus to produce a change map. Analyzing the difference image to obtain the change map is essentially a binary classification problem, and can be solved by optimization algorithms. This paper proposes an accelerated genetic algorithm based on search-space decomposition (SD-aGA) for change detection in remote sensing images. Firstly, the BM3D algorithm is used to preprocess the remote sensing image to enhance useful information and suppress noises. The difference image is then obtained using the logarithmic ratio method. Secondly, after saliency detection, fuzzy c-means algorithm is conducted on the salient region detected in the difference image to identify the changed, unchanged and undetermined pixels. Only those undetermined pixels are considered by the optimization algorithm, which reduces the search space significantly. Inspired by the idea of the divide-and-conquer strategy, the difference image is decomposed into sub-blocks with a method similar to down-sampling, where only those undetermined pixels are analyzed and optimized by SD-aGA in parallel. The category labels of the undetermined pixels in each sub-block are optimized according to an improved objective function with neighborhood information. Finally the decision results of the category labels of all the pixels in the sub-blocks are remapped to their original positions in the difference image and then merged globally. Decision fusion is conducted on each pixel based on the decision results in the local neighborhood to produce the final change map. The proposed method is tested on six diverse remote sensing image benchmark datasets and compared against six state-of-the-art methods. Segmentations on the synthetic image and natural image corrupted by different noise are also carried out for comparison. Results demonstrate the excellent performance of the proposed SD-aGA on handling noises and detecting the changed areas accurately. In particular, compared with the traditional genetic algorithm, SD-aGA can obtain a much higher degree of detection accuracy with much less computational time.
[Display omitted]
•An accelerated genetic algorithm (SD-aGA) is proposed for change detection.•The BM3D algorithm is used to enhance useful information and suppress noises.•The difference image is decomposed into sub-blocks for parallelization.•Decision fusion is conducted on each pixel to produce the final change map.•Results show SD-aGA can handle noises well and detect the changed areas accurately. |
| ArticleNumber | 105727 |
| Author | Mu, Cai-Hong Qu, Rong Jiao, Li-Cheng Li, Cheng-Zhou Liu, Yi |
| Author_xml | – sequence: 1 givenname: Cai-Hong orcidid: 0000-0003-4373-3661 surname: Mu fullname: Mu, Cai-Hong email: caihongm@mail.xidian.edu.cn organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, International Research Center for Intelligent Perception and Computation, Joint International Research Laboratory of Intelligent Perception and Computation, School of Artificial Intelligence, Xidian University, Xi’an, 710071, China – sequence: 2 givenname: Cheng-Zhou surname: Li fullname: Li, Cheng-Zhou organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, International Research Center for Intelligent Perception and Computation, Joint International Research Laboratory of Intelligent Perception and Computation, School of Artificial Intelligence, Xidian University, Xi’an, 710071, China – sequence: 3 givenname: Yi surname: Liu fullname: Liu, Yi organization: School of Electronic Engineering, Xidian University, Xi’an 710071, China – sequence: 4 givenname: Rong surname: Qu fullname: Qu, Rong organization: School of Computer Science, University of Nottingham, Nottingham, NG8 1BB, UK – sequence: 5 givenname: Li-Cheng surname: Jiao fullname: Jiao, Li-Cheng organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, International Research Center for Intelligent Perception and Computation, Joint International Research Laboratory of Intelligent Perception and Computation, School of Artificial Intelligence, Xidian University, Xi’an, 710071, China |
| BookMark | eNp9kM9qwzAMh83oYG23F9gpL5DOcRIngV1K2T8o7LKdjaIoqUtiF9sM9vZz1p126EniJz4hfSu2MNYQY_cZ32Q8kw_HDXiLG8GzJgZlJaortszqSqSNrLNF7EtZp0VTyBu28v7II9SIesnsFpFGchCoSwYyFDQmMA7W6XCYkhZ8zK1JPIHDQ-pPgJR0hHY6Wa-DjqPeugQPYIZ5EAh_Q20SR5MNFEnjtRkSPcFA_pZd9zB6uvura_b5_PSxe0337y9vu-0-xbwoQkqioIrLPM8L3nTAuahFmyMX0JFEgRLapoG-IQFAmHctgKiyqivLPpccZL5m9XkvOuu9o16hDjCfFhzoUWVczeLUUc3i1CxOncVFVPxDTy4e774vQ49niOJTX5qc8qjJIHXaRSWqs_oS_gPhFYwy |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2020_106510 crossref_primary_10_1109_JSTARS_2020_3037070 crossref_primary_10_1177_1094342020945026 crossref_primary_10_1109_JLT_2024_3458988 crossref_primary_10_1016_j_jvcir_2021_103132 crossref_primary_10_1109_ACCESS_2021_3083837 crossref_primary_10_1007_s11760_024_03173_6 crossref_primary_10_3390_ijgi9070462 crossref_primary_10_1016_j_asoc_2022_109200 |
| Cites_doi | 10.1109/TEVC.2016.2641477 10.1016/j.jag.2015.09.003 10.1109/TFUZZ.2013.2249072 10.1109/TKDE.2005.28 10.1109/TGRS.2006.876288 10.1109/IGARSS.2016.7730489 10.1016/j.sigpro.2017.07.023 10.1109/LGRS.2009.2037024 10.1016/j.asoc.2015.10.044 10.1109/LGRS.2015.2484220 10.1016/j.asoc.2017.12.031 10.1109/TIP.2011.2170702 10.1016/j.eswa.2011.01.136 10.1109/CVPRW.2009.5206596 10.1109/TNNLS.2015.2435783 10.1016/S0167-8655(03)00060-6 10.1109/TPAMI.2011.272 10.1109/TIP.2007.901238 10.1109/TSMC.1979.4310076 10.1109/42.996338 10.1109/LGRS.2016.2611001 10.1109/TGRS.2009.2012407 10.1016/j.asoc.2015.05.034 10.1016/j.eswa.2017.12.038 10.1109/21.478444 10.1109/ICMCS.2012.6320144 10.1109/CEC.2017.7969436 10.1109/36.843009 10.1016/j.ijleo.2016.11.040 10.1109/ChinaSIP.2014.6889219 10.1016/j.asoc.2018.01.040 10.1109/TGRS.2010.2045506 10.1109/TGRS.2004.842441 10.1109/TIP.2002.999678 10.1016/j.ins.2016.12.023 10.1109/TIP.2010.2040763 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. |
| Copyright_xml | – notice: 2019 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2019.105727 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| ExternalDocumentID | 10_1016_j_asoc_2019_105727 S1568494619305083 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c344t-e24e706333409da00282b3c02ade6c2c6ab99af9e2aaec3dbaa2717d55f360a63 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000490753200039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Tue Nov 18 20:00:29 EST 2025 Sat Nov 29 03:05:38 EST 2025 Fri Feb 23 02:24:49 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Remote sensing image Change detection Genetic algorithm Evolutionary optimization Search space decomposition |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c344t-e24e706333409da00282b3c02ade6c2c6ab99af9e2aaec3dbaa2717d55f360a63 |
| ORCID | 0000-0003-4373-3661 |
| OpenAccessLink | https://nottingham-repository.worktribe.com/output/2507730 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2019_105727 crossref_primary_10_1016_j_asoc_2019_105727 elsevier_sciencedirect_doi_10_1016_j_asoc_2019_105727 |
| PublicationCentury | 2000 |
| PublicationDate | November 2019 2019-11-00 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: November 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Sumaiya, Shantha Selva Kumar (b11) 2017; 130 Li, Celik, Longbotham, Emery (b17) 2015; 12 Luo, Hou, Zhong, Cai, Ma (b24) 2017; 382–383 Moser, Serpico (b12) 2009; 47 W. Ren, J. Song, S. Tian, W. Wu, Survey on unsupervised change detection techniques in SAR images1, in: Signal and Information Processing (ChinaSIP) 2014 IEEE China Summit & International Conference on, 2014, pp. 143–147. C. Mu, C. Li, Y. Liu, M. Sun, L. Jiao, R. Qu, Change detection in SAR images based on the salient map guidance and an accelerated genetic algorithm, in: IEEE Cong. on Evolut. Comput. Donostia, Spain, 2017, pp. 1150–1157. Bazi, Bruzzone, Melgani (b9) 2005; 43 Gong, Su, Jia, Chen (b16) 2014; 22 Zhou, Song, Pedrycz (b25) 2018; 64 Krömer, Platoš, Nowaková, Snášel (b32) 2018 Bazi, Melgani, Al-Sharari (b6) 2010; 48 Segura, Hernández-Aguirre, Luna, Alba (b27) 2017; 21 Moser, Serpico (b10) 2006; 44 Bhanu, Lee, Ming (b29) 1995; 25 N. Bruce, J. Tsotsos, Saliency Based on Information Maximization, in: International conference on Neural Information Processing Systems, vol. 18, 2006, pp. 155–162. Chance, Hermosilla, Coops, Wulder, White (b3) 2016; 44 Mu, Xie, Liu, Chen, Liu, Jiao (b28) 2015; 34 R. Achanta, S. Hemami, F. Estrada, S. Susstrunk, Frequency-Tuned Salient Region Detection, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2009, pp. 1597–1604. Gong, Zhou, Ma (b7) 2012; 21 A. Reigber, M. Jäger, E. Krogager, Polarimetric SAR change detection in multiple frequency bands for environmental monitoring in Arctic regions, in: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, 2016, pp. 5702–5705. Shang, Yuan, Jiao, Meng, Ghalamzan (b21) 2017; 142 Liu, Sun, Yan, Kang (b39) 2011; 38 Gao, Dong, Li, Xu (b20) 2016; 13 Bruzzone, Prieto (b5) 2002; 11 Das, Sengupta, Bhattacharyya (b26) 2018; 65 Otsu (b38) 1979; 9 Krinidis, Chatzis (b15) 2010; 19 Ahmed, Yamany, Mohamed, Farag, Moriarty (b13) 2002; 21 Goferman, Zelnik-Manor, Tal (b37) 2012; 34 A. Sheta, M.S. Braik, S. Aljahdali, Genetic Algorithms: A tool for image segmentation, in: IEEE International Conference on Multimedia Computing and Systems, 2012, pp. 84–90. Fazel, Homayouni, Amini (b4) 2013; XL-1/W3 Celik (b23) 2010; 7 Bruzzone, Prieto (b8) 2000; 38 L. Szilagyi, Z. Benyo, S. Szilagyii, H. Adam, MR brain image segmentation using an enhanced fuzzy C-means algorithm, in: Proc. 25th Annu. Int. Conf. IEEE EMBS, 2003, pp. 17–21. Qin, Zhou, Zhou, Huang, Ren, Horan, He, Kito (b2) 2018; 97 Cho, Chi (b31) 2005; 17 Rosin, Ioannidis (b41) 2003; 24 Gong, Zhao, Liu, Miao, Jiao (b19) 2015; 27 Li, Gong, Wang, Liu, Su (b18) 2015; 46 Dabov, Foi, Katkovnik, Egiazarian (b34) 2007; 16 Sirag, Weisser (b40) 1987 Li (10.1016/j.asoc.2019.105727_b18) 2015; 46 Sumaiya (10.1016/j.asoc.2019.105727_b11) 2017; 130 Li (10.1016/j.asoc.2019.105727_b17) 2015; 12 Gong (10.1016/j.asoc.2019.105727_b19) 2015; 27 Bhanu (10.1016/j.asoc.2019.105727_b29) 1995; 25 Cho (10.1016/j.asoc.2019.105727_b31) 2005; 17 Otsu (10.1016/j.asoc.2019.105727_b38) 1979; 9 Das (10.1016/j.asoc.2019.105727_b26) 2018; 65 Sirag (10.1016/j.asoc.2019.105727_b40) 1987 Gong (10.1016/j.asoc.2019.105727_b16) 2014; 22 Chance (10.1016/j.asoc.2019.105727_b3) 2016; 44 Gao (10.1016/j.asoc.2019.105727_b20) 2016; 13 10.1016/j.asoc.2019.105727_b30 Krinidis (10.1016/j.asoc.2019.105727_b15) 2010; 19 10.1016/j.asoc.2019.105727_b33 Moser (10.1016/j.asoc.2019.105727_b10) 2006; 44 10.1016/j.asoc.2019.105727_b35 Moser (10.1016/j.asoc.2019.105727_b12) 2009; 47 10.1016/j.asoc.2019.105727_b14 10.1016/j.asoc.2019.105727_b36 Rosin (10.1016/j.asoc.2019.105727_b41) 2003; 24 10.1016/j.asoc.2019.105727_b1 Bazi (10.1016/j.asoc.2019.105727_b9) 2005; 43 Fazel (10.1016/j.asoc.2019.105727_b4) 2013; XL-1/W3 Bruzzone (10.1016/j.asoc.2019.105727_b5) 2002; 11 Gong (10.1016/j.asoc.2019.105727_b7) 2012; 21 Ahmed (10.1016/j.asoc.2019.105727_b13) 2002; 21 Celik (10.1016/j.asoc.2019.105727_b23) 2010; 7 Segura (10.1016/j.asoc.2019.105727_b27) 2017; 21 Qin (10.1016/j.asoc.2019.105727_b2) 2018; 97 Goferman (10.1016/j.asoc.2019.105727_b37) 2012; 34 Shang (10.1016/j.asoc.2019.105727_b21) 2017; 142 Bazi (10.1016/j.asoc.2019.105727_b6) 2010; 48 Krömer (10.1016/j.asoc.2019.105727_b32) 2018 Bruzzone (10.1016/j.asoc.2019.105727_b8) 2000; 38 10.1016/j.asoc.2019.105727_b22 Liu (10.1016/j.asoc.2019.105727_b39) 2011; 38 Zhou (10.1016/j.asoc.2019.105727_b25) 2018; 64 Mu (10.1016/j.asoc.2019.105727_b28) 2015; 34 Luo (10.1016/j.asoc.2019.105727_b24) 2017; 382–383 Dabov (10.1016/j.asoc.2019.105727_b34) 2007; 16 |
| References_xml | – volume: 25 start-page: 1543 year: 1995 end-page: 1567 ident: b29 article-title: Adaptive image segmentation using a genetic algorithm publication-title: IEEE Trans. Syst. Man Cybern. – start-page: 116 year: 1987 end-page: 122 ident: b40 article-title: Toward a unified thermodynamic genetic operator publication-title: International Conference on Genetic Algorithms on Genetic Algorithms and their Application – reference: W. Ren, J. Song, S. Tian, W. Wu, Survey on unsupervised change detection techniques in SAR images1, in: Signal and Information Processing (ChinaSIP) 2014 IEEE China Summit & International Conference on, 2014, pp. 143–147. – volume: 16 start-page: 2080 year: 2007 end-page: 2095 ident: b34 article-title: Image denoising by sparse 3d transform-domain collaborative filtering publication-title: IEEE Trans. Image Process. – reference: N. Bruce, J. Tsotsos, Saliency Based on Information Maximization, in: International conference on Neural Information Processing Systems, vol. 18, 2006, pp. 155–162. – volume: 22 start-page: 98 year: 2014 end-page: 109 ident: b16 article-title: Fuzzy clustering with a modified MRF energy function for change detection in synthetic aperture radar images publication-title: IEEE Trans. Fuzzy Syst. – volume: 47 start-page: 2114 year: 2009 end-page: 2128 ident: b12 article-title: Unsupervised change detection from multichannel SAR data by Markovian data fusion publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 24 start-page: 2345 year: 2003 end-page: 2356 ident: b41 article-title: Evaluation of global image thresholding for change detection publication-title: Pattern Recognit. Lett. – start-page: 1 year: 2018 end-page: 18 ident: b32 article-title: Optimal column subset selection for image classification by genetic algorithms publication-title: Ann. Oper. Res. – volume: 38 start-page: 1171 year: 2000 end-page: 1182 ident: b8 article-title: Automatic analysis of the difference image for unsupervised change detection publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 44 start-page: 186 year: 2016 end-page: 194 ident: b3 article-title: Effect of topographic correction on forest change detection using spectral trend analysis of landsat pixel-based composites publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 21 start-page: 539 year: 2017 end-page: 553 ident: b27 article-title: Improving diversity in evolutionary algorithms: New best solutions for frequency assignment publication-title: IEEE Trans. Evol. Comput. – volume: 48 start-page: 3178 year: 2010 end-page: 3187 ident: b6 article-title: Unsupervised change detection in multispectral remotely sensed imagery with level set methods publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 17 start-page: 216 year: 2005 end-page: 231 ident: b31 article-title: Genetic evolution processing of classification publication-title: IEEE Trans. Knowl. Data Eng. – volume: 43 start-page: 874 year: 2005 end-page: 887 ident: b9 article-title: An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 21 start-page: 2141 year: 2012 end-page: 2151 ident: b7 article-title: Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering publication-title: IEEE Trans. Image Process. – volume: 34 start-page: 485 year: 2015 end-page: 501 ident: b28 article-title: Memetic algorithm with simulated annealing strategy and tightness greedy optimization for community detection in networks publication-title: Appl. Soft Comput. – volume: 97 start-page: 372 year: 2018 end-page: 383 ident: b2 article-title: MSIM: A change detection framework for damage assessment in natural disasters publication-title: Expert Syst. Appl. – volume: 7 start-page: 386 year: 2010 end-page: 390 ident: b23 article-title: Change detection in satellite images using genetic algorithm publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 382–383 start-page: 216 year: 2017 end-page: 233 ident: b24 article-title: Sampling-based adaptive bounding evolutionary algorithm for continuous optimization problems publication-title: Inform. Sci. – volume: 27 start-page: 125 year: 2015 end-page: 138 ident: b19 article-title: Change detection in synthetic aperture radar images based on deep neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. – reference: C. Mu, C. Li, Y. Liu, M. Sun, L. Jiao, R. Qu, Change detection in SAR images based on the salient map guidance and an accelerated genetic algorithm, in: IEEE Cong. on Evolut. Comput. Donostia, Spain, 2017, pp. 1150–1157. – volume: 19 start-page: 1328 year: 2010 end-page: 1337 ident: b15 article-title: A robust fuzzy local information C-means clustering algorithm publication-title: IEEE Trans. Image Process. – volume: 13 start-page: 1792 year: 2016 end-page: 1796 ident: b20 article-title: Automatic change detection in synthetic aperture radar images based on pcanet publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 9 start-page: 62 year: 1979 end-page: 66 ident: b38 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst. Man Cybern. – volume: 65 start-page: 400 year: 2018 end-page: 411 ident: b26 article-title: A group incremental feature selection for classification using rough set theory based genetic algorithm publication-title: Appl. Soft Comput. – reference: A. Sheta, M.S. Braik, S. Aljahdali, Genetic Algorithms: A tool for image segmentation, in: IEEE International Conference on Multimedia Computing and Systems, 2012, pp. 84–90. – volume: 11 start-page: 452 year: 2002 end-page: 466 ident: b5 article-title: An adaptive semiparametric and context-based approach to unsupervised change detection in multitemporal remote-sensing images publication-title: IEEE Trans. Image Process. – volume: 44 start-page: 2972 year: 2006 end-page: 2982 ident: b10 article-title: Generalized minimum-error thresholding for unsupervised change detection from SAR amplitude imagery publication-title: IEEE Trans. Geosci. Remote Sens. – volume: XL-1/W3 start-page: 169 year: 2013 end-page: 173 ident: b4 article-title: Kernel-based unsupervised change detection of agricultural lands using multi-temporal polarimetric SAR data, ISPRS - international archives of the photogrammetry publication-title: Remote Sens. Spat. Inf. Sci. – volume: 12 start-page: 2458 year: 2015 end-page: 2462 ident: b17 article-title: Gabor feature based unsupervised change detection of multitemporal SAR images based on two-level clustering publication-title: IEEE Geosci. Remote Sens. Lett. – reference: R. Achanta, S. Hemami, F. Estrada, S. Susstrunk, Frequency-Tuned Salient Region Detection, in: Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2009, pp. 1597–1604. – volume: 46 start-page: 767 year: 2015 end-page: 777 ident: b18 article-title: A multiobjective fuzzy clustering method for change detection in SAR images publication-title: Appl. Soft Comput. – reference: L. Szilagyi, Z. Benyo, S. Szilagyii, H. Adam, MR brain image segmentation using an enhanced fuzzy C-means algorithm, in: Proc. 25th Annu. Int. Conf. IEEE EMBS, 2003, pp. 17–21. – volume: 142 start-page: 375 year: 2017 end-page: 387 ident: b21 article-title: A self-paced learning algorithm for change detection in synthetic aperture radar images publication-title: Signal Process. – volume: 21 start-page: 193 year: 2002 end-page: 199 ident: b13 article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data publication-title: IEEE Trans. Med. Imaging – volume: 130 start-page: 114 year: 2017 end-page: 122 ident: b11 article-title: Gabor filter based change detection in SAR images by KI thresholding publication-title: Optik – reference: A. Reigber, M. Jäger, E. Krogager, Polarimetric SAR change detection in multiple frequency bands for environmental monitoring in Arctic regions, in: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, 2016, pp. 5702–5705. – volume: 64 start-page: 564 year: 2018 end-page: 580 ident: b25 article-title: A comparative study of improved GA and PSO in solving multiple traveling salesmen problem publication-title: Appl. Soft Comput. – volume: 34 start-page: 1915 year: 2012 end-page: 1926 ident: b37 article-title: Context-aware saliency detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 38 start-page: 9248 year: 2011 end-page: 9255 ident: b39 article-title: An adaptive annealing genetic algorithm for the job-shop planning and scheduling problem publication-title: Expert Syst. Appl. – volume: 21 start-page: 539 issue: 4 year: 2017 ident: 10.1016/j.asoc.2019.105727_b27 article-title: Improving diversity in evolutionary algorithms: New best solutions for frequency assignment publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2641477 – volume: 44 start-page: 186 year: 2016 ident: 10.1016/j.asoc.2019.105727_b3 article-title: Effect of topographic correction on forest change detection using spectral trend analysis of landsat pixel-based composites publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2015.09.003 – volume: 22 start-page: 98 issue: 1 year: 2014 ident: 10.1016/j.asoc.2019.105727_b16 article-title: Fuzzy clustering with a modified MRF energy function for change detection in synthetic aperture radar images publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2013.2249072 – volume: 17 start-page: 216 issue: 2 year: 2005 ident: 10.1016/j.asoc.2019.105727_b31 article-title: Genetic evolution processing of classification publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2005.28 – volume: 44 start-page: 2972 issue: 10 year: 2006 ident: 10.1016/j.asoc.2019.105727_b10 article-title: Generalized minimum-error thresholding for unsupervised change detection from SAR amplitude imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2006.876288 – ident: 10.1016/j.asoc.2019.105727_b1 doi: 10.1109/IGARSS.2016.7730489 – volume: 142 start-page: 375 year: 2017 ident: 10.1016/j.asoc.2019.105727_b21 article-title: A self-paced learning algorithm for change detection in synthetic aperture radar images publication-title: Signal Process. doi: 10.1016/j.sigpro.2017.07.023 – volume: 7 start-page: 386 issue: 2 year: 2010 ident: 10.1016/j.asoc.2019.105727_b23 article-title: Change detection in satellite images using genetic algorithm publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2009.2037024 – volume: 46 start-page: 767 year: 2015 ident: 10.1016/j.asoc.2019.105727_b18 article-title: A multiobjective fuzzy clustering method for change detection in SAR images publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.10.044 – volume: 12 start-page: 2458 issue: 12 year: 2015 ident: 10.1016/j.asoc.2019.105727_b17 article-title: Gabor feature based unsupervised change detection of multitemporal SAR images based on two-level clustering publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2015.2484220 – volume: 64 start-page: 564 year: 2018 ident: 10.1016/j.asoc.2019.105727_b25 article-title: A comparative study of improved GA and PSO in solving multiple traveling salesmen problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.12.031 – volume: 21 start-page: 2141 issue: 4 year: 2012 ident: 10.1016/j.asoc.2019.105727_b7 article-title: Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2011.2170702 – volume: 38 start-page: 9248 issue: 8 year: 2011 ident: 10.1016/j.asoc.2019.105727_b39 article-title: An adaptive annealing genetic algorithm for the job-shop planning and scheduling problem publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.01.136 – ident: 10.1016/j.asoc.2019.105727_b36 doi: 10.1109/CVPRW.2009.5206596 – volume: XL-1/W3 start-page: 169 year: 2013 ident: 10.1016/j.asoc.2019.105727_b4 article-title: Kernel-based unsupervised change detection of agricultural lands using multi-temporal polarimetric SAR data, ISPRS - international archives of the photogrammetry publication-title: Remote Sens. Spat. Inf. Sci. – volume: 27 start-page: 125 issue: 1 year: 2015 ident: 10.1016/j.asoc.2019.105727_b19 article-title: Change detection in synthetic aperture radar images based on deep neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2015.2435783 – start-page: 1 year: 2018 ident: 10.1016/j.asoc.2019.105727_b32 article-title: Optimal column subset selection for image classification by genetic algorithms publication-title: Ann. Oper. Res. – volume: 24 start-page: 2345 issue: 14 year: 2003 ident: 10.1016/j.asoc.2019.105727_b41 article-title: Evaluation of global image thresholding for change detection publication-title: Pattern Recognit. Lett. doi: 10.1016/S0167-8655(03)00060-6 – volume: 34 start-page: 1915 issue: 10 year: 2012 ident: 10.1016/j.asoc.2019.105727_b37 article-title: Context-aware saliency detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.272 – volume: 16 start-page: 2080 issue: 8 year: 2007 ident: 10.1016/j.asoc.2019.105727_b34 article-title: Image denoising by sparse 3d transform-domain collaborative filtering publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.901238 – volume: 9 start-page: 62 issue: 1 year: 1979 ident: 10.1016/j.asoc.2019.105727_b38 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1979.4310076 – volume: 21 start-page: 193 issue: 3 year: 2002 ident: 10.1016/j.asoc.2019.105727_b13 article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.996338 – volume: 13 start-page: 1792 issue: 12 year: 2016 ident: 10.1016/j.asoc.2019.105727_b20 article-title: Automatic change detection in synthetic aperture radar images based on pcanet publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2016.2611001 – volume: 47 start-page: 2114 issue: 7 year: 2009 ident: 10.1016/j.asoc.2019.105727_b12 article-title: Unsupervised change detection from multichannel SAR data by Markovian data fusion publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2009.2012407 – volume: 34 start-page: 485 year: 2015 ident: 10.1016/j.asoc.2019.105727_b28 article-title: Memetic algorithm with simulated annealing strategy and tightness greedy optimization for community detection in networks publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.05.034 – volume: 97 start-page: 372 year: 2018 ident: 10.1016/j.asoc.2019.105727_b2 article-title: MSIM: A change detection framework for damage assessment in natural disasters publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.12.038 – volume: 25 start-page: 1543 issue: 12 year: 1995 ident: 10.1016/j.asoc.2019.105727_b29 article-title: Adaptive image segmentation using a genetic algorithm publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/21.478444 – ident: 10.1016/j.asoc.2019.105727_b35 – ident: 10.1016/j.asoc.2019.105727_b30 doi: 10.1109/ICMCS.2012.6320144 – ident: 10.1016/j.asoc.2019.105727_b33 doi: 10.1109/CEC.2017.7969436 – volume: 38 start-page: 1171 issue: 3 year: 2000 ident: 10.1016/j.asoc.2019.105727_b8 article-title: Automatic analysis of the difference image for unsupervised change detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.843009 – volume: 130 start-page: 114 year: 2017 ident: 10.1016/j.asoc.2019.105727_b11 article-title: Gabor filter based change detection in SAR images by KI thresholding publication-title: Optik doi: 10.1016/j.ijleo.2016.11.040 – ident: 10.1016/j.asoc.2019.105727_b14 – ident: 10.1016/j.asoc.2019.105727_b22 doi: 10.1109/ChinaSIP.2014.6889219 – volume: 65 start-page: 400 year: 2018 ident: 10.1016/j.asoc.2019.105727_b26 article-title: A group incremental feature selection for classification using rough set theory based genetic algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.01.040 – volume: 48 start-page: 3178 issue: 8 year: 2010 ident: 10.1016/j.asoc.2019.105727_b6 article-title: Unsupervised change detection in multispectral remotely sensed imagery with level set methods publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2045506 – volume: 43 start-page: 874 issue: 4 year: 2005 ident: 10.1016/j.asoc.2019.105727_b9 article-title: An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2004.842441 – start-page: 116 year: 1987 ident: 10.1016/j.asoc.2019.105727_b40 article-title: Toward a unified thermodynamic genetic operator – volume: 11 start-page: 452 issue: 4 year: 2002 ident: 10.1016/j.asoc.2019.105727_b5 article-title: An adaptive semiparametric and context-based approach to unsupervised change detection in multitemporal remote-sensing images publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2002.999678 – volume: 382–383 start-page: 216 year: 2017 ident: 10.1016/j.asoc.2019.105727_b24 article-title: Sampling-based adaptive bounding evolutionary algorithm for continuous optimization problems publication-title: Inform. Sci. doi: 10.1016/j.ins.2016.12.023 – volume: 19 start-page: 1328 issue: 5 year: 2010 ident: 10.1016/j.asoc.2019.105727_b15 article-title: A robust fuzzy local information C-means clustering algorithm publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2040763 |
| SSID | ssj0016928 |
| Score | 2.3302991 |
| Snippet | Detecting change areas among two or more remote sensing images is a key technique in remote sensing. It usually consists of generating and analyzing a... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 105727 |
| SubjectTerms | Change detection Evolutionary optimization Genetic algorithm Remote sensing image Search space decomposition |
| Title | Accelerated genetic algorithm based on search-space decomposition for change detection in remote sensing images |
| URI | https://dx.doi.org/10.1016/j.asoc.2019.105727 |
| Volume | 84 |
| WOSCitedRecordID | wos000490753200039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELa20EMvfVfQB_KhNxSUtZ04Pq4qKooQ6oFK214ix3YgaEnQbhZx6X_v-JEHtCA4VFpFK8d2kp1vZyb2NzMIfSZMWavGIkFlFjGt4kgYDn-8hGRlQXRMS5cy_4gfH2fzufg-mfzuYmGuFryus-trcflfRQ1tIGwbOvsIcfeTQgN8B6HDEcQOxwcJfqYUmBKbAULb-sjGZWRdnDbLqj272LVWS9sdAv_cESgUZUOnLLU88Lcc89AHBMOJ1qiOD7k0IFcDI2u3wFBdgC5ajb3bzqVdgW53ZPV121lGJ1PPMKmig2ZoPar8rr-pT6NfZ816aHfdf1bD0qxngoehYaViKkLI3ki5pgAHEZYcg_bN2Eh92qLDPlXAX5rdLzKc70kArWXkib2h88002rfMW0867Phs57mdI7dz5H6OJ2iT8ESAXt-cfdufH_bbUKlwxXn7Gw9RV54gePtO_u3ZjLyVk5foeXjNwDMPj1doYurX6EVXwgMHjf4GNSO04IAW3KMFO7TgpsZjtOAbaMGAFuzRgnu04KrGHi04oAV7tLxFP77un3w5iEINjkhRxtrIEGY4uLGUslho6V7RC6piIrVJFVGpLISQpTBESqOoLqQkfMp1kpQ0jWVK36GNuqnNFsKlLgpGiiROdcEKwSXlCkyxjuGTyZhuo2n3--UqJKi3dVIW-d2S20a7_ZhLn57l3t5JJ5Y8OJjeccwBZfeMe_-oq3xAzwb0f0Qb7XJtPqGn6qqtVsudALE_kx-eyw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+genetic+algorithm+based+on+search-space+decomposition+for+change+detection+in+remote+sensing+images&rft.jtitle=Applied+soft+computing&rft.au=Mu%2C+Cai-Hong&rft.au=Li%2C+Cheng-Zhou&rft.au=Liu%2C+Yi&rft.au=Qu%2C+Rong&rft.date=2019-11-01&rft.issn=1568-4946&rft.volume=84&rft.spage=105727&rft_id=info:doi/10.1016%2Fj.asoc.2019.105727&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2019_105727 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |