Higher derivatives of operator functions in ideals of von Neumann algebras

Let M be a von Neumann algebra and a be a self-adjoint operator affiliated with M. We define the notion of an “integral symmetrically normed ideal” of M and introduce a space OC[k](R)⊆Ck(R) of functions R→C such that the following holds: for any integral symmetrically normed ideal I of M and any f∈O...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications Jg. 519; H. 1; S. 126705
1. Verfasser: Nikitopoulos, Evangelos A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.03.2023
Schlagworte:
ISSN:0022-247X, 1096-0813
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let M be a von Neumann algebra and a be a self-adjoint operator affiliated with M. We define the notion of an “integral symmetrically normed ideal” of M and introduce a space OC[k](R)⊆Ck(R) of functions R→C such that the following holds: for any integral symmetrically normed ideal I of M and any f∈OC[k](R), the operator function Isa∋b↦f(a+b)−f(a)∈I is k-times continuously Fréchet differentiable, and the formula for its derivatives may be written in terms of multiple operator integrals. Moreover, we prove that if f∈B˙11,∞(R)∩B˙1k,∞(R) and f′ is bounded, then f∈OC[k](R). Finally, we prove that all of the following ideals are integral symmetrically normed: M itself, separable symmetrically normed ideals, Schatten p-ideals, the ideal of compact operators, and – when M is semifinite – ideals induced by fully symmetric spaces of measurable operators.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2022.126705