Transferability of graph neural networks: An extended graphon approach

We study spectral graph convolutional neural networks (GCNNs), where filters are defined as continuous functions of the graph shift operator (GSO) through functional calculus. A spectral GCNN is not tailored to one specific graph and can be transferred between different graphs. It is hence important...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied and computational harmonic analysis Ročník 63; s. 48 - 83
Hlavní autoři: Maskey, Sohir, Levie, Ron, Kutyniok, Gitta
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.03.2023
Témata:
ISSN:1063-5203, 1096-603X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We study spectral graph convolutional neural networks (GCNNs), where filters are defined as continuous functions of the graph shift operator (GSO) through functional calculus. A spectral GCNN is not tailored to one specific graph and can be transferred between different graphs. It is hence important to study the GCNN transferability: the capacity of the network to have approximately the same repercussion on different graphs that represent the same phenomenon. Transferability ensures that GCNNs trained on certain graphs generalize if the graphs in the test set represent the same phenomena as the graphs in the training set. In this paper, we consider a model of transferability based on graphon analysis. Graphons are limit objects of graphs, and, in the graph paradigm, two graphs represent the same phenomenon if both approximate the same graphon. Our main contributions can be summarized as follows: 1) we prove that any fixed GCNN with continuous filters is transferable under graphs that approximate the same graphon, 2) we prove transferability for graphs that approximate unbounded graphon shift operators, which are defined in this paper, and 3) we obtain non-asymptotic approximation results, proving linear stability of GCNNs. This extends current state-of-the-art results which show asymptotic transferability for polynomial filters under graphs that approximate bounded graphons. •We study the generalization error of graph convolutional neural networks.•Graphs representing the same phenomenon are modeled via graphon analysis.•We show that networks can be transferred between graphs sampling the same phenomenon.•Our analysis allows working with generic continuous filters.•By introducing unbounded graphons, Euclidean CNNs are a special case of our analysis.
AbstractList We study spectral graph convolutional neural networks (GCNNs), where filters are defined as continuous functions of the graph shift operator (GSO) through functional calculus. A spectral GCNN is not tailored to one specific graph and can be transferred between different graphs. It is hence important to study the GCNN transferability: the capacity of the network to have approximately the same repercussion on different graphs that represent the same phenomenon. Transferability ensures that GCNNs trained on certain graphs generalize if the graphs in the test set represent the same phenomena as the graphs in the training set. In this paper, we consider a model of transferability based on graphon analysis. Graphons are limit objects of graphs, and, in the graph paradigm, two graphs represent the same phenomenon if both approximate the same graphon. Our main contributions can be summarized as follows: 1) we prove that any fixed GCNN with continuous filters is transferable under graphs that approximate the same graphon, 2) we prove transferability for graphs that approximate unbounded graphon shift operators, which are defined in this paper, and 3) we obtain non-asymptotic approximation results, proving linear stability of GCNNs. This extends current state-of-the-art results which show asymptotic transferability for polynomial filters under graphs that approximate bounded graphons. •We study the generalization error of graph convolutional neural networks.•Graphs representing the same phenomenon are modeled via graphon analysis.•We show that networks can be transferred between graphs sampling the same phenomenon.•Our analysis allows working with generic continuous filters.•By introducing unbounded graphons, Euclidean CNNs are a special case of our analysis.
Author Kutyniok, Gitta
Maskey, Sohir
Levie, Ron
Author_xml – sequence: 1
  givenname: Sohir
  orcidid: 0000-0002-9691-6712
  surname: Maskey
  fullname: Maskey, Sohir
  email: maskey@math.lmu.de
  organization: Department of Mathematics, LMU Munich, 80333 Munich, Germany
– sequence: 2
  givenname: Ron
  surname: Levie
  fullname: Levie, Ron
  email: levieron@technion.ac.il
  organization: Faculty of Mathematics, Technion - Israel Institute of Technology, Israel
– sequence: 3
  givenname: Gitta
  orcidid: 0000-0001-9738-2487
  surname: Kutyniok
  fullname: Kutyniok, Gitta
  email: kutyniok@math.lmu.de
  organization: Department of Mathematics, LMU Munich, 80333 Munich, Germany
BookMark eNp9kMtOwzAQRS1UJNrCD7DKDyT4FddBbKqKAlIlNkViZznOhLoEO7LNo39PorJi0dWdxZw7mjNDE-cdIHRNcEEwETf7QpudLiimtCCkwFieoSnBlcgFZq-TcRYsLylmF2gW4x5jQnhZTdF6G7SLLQRd286mQ-bb7C3ofpc5-Ay6GyJ9-_Aeb7Oly-AngWugOa54l-m-D344fYnOW91FuPrLOXpZ329Xj_nm-eFptdzkhnGeclMxrak0vOIEl6xhhGghqpIvOBW4ltSIsq4kxXJBK2DARSlrQ5musQHeEjZH8thrgo8xQKuMTTpZ71LQtlMEq9GH2qvRhxp9KELU4GNA6T-0D_ZDh8Np6O4IwfDUl4WgorHgDDQ2gEmq8fYU_gufi3sO
CitedBy_id crossref_primary_10_1109_TSP_2023_3297848
crossref_primary_10_1109_TSP_2024_3392360
crossref_primary_10_1137_24M1651526
crossref_primary_10_1109_JSTSP_2024_3378887
crossref_primary_10_1109_TSIPN_2022_3188458
crossref_primary_10_1109_TSIPN_2025_3557584
crossref_primary_10_1007_s11432_023_3880_y
crossref_primary_10_1109_TSP_2024_3482350
crossref_primary_10_1016_j_jnca_2025_104116
crossref_primary_10_1109_TSP_2024_3378379
crossref_primary_10_1016_j_acha_2025_101756
crossref_primary_10_1007_s43670_025_00115_2
crossref_primary_10_1109_TSP_2025_3553378
Cites_doi 10.1007/s00440-018-0878-1
10.4007/annals.2012.176.1.2
10.1109/MSP.2017.2693418
10.1109/TNNLS.2020.2978386
10.1109/JPROC.2021.3055400
10.1109/TSP.2020.3026980
10.1109/TSP.2018.2879624
10.1109/TSP.2021.3061575
10.1016/j.aim.2009.12.018
10.1016/j.aim.2008.07.008
10.1007/s11511-012-0072-8
10.1109/5.726791
10.1016/j.jctb.2006.05.002
10.1070/RM9729
10.1109/TPAMI.2021.3054830
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.acha.2022.11.008
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1096-603X
EndPage 83
ExternalDocumentID 10_1016_j_acha_2022_11_008
S1063520322000987
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M26
M41
MCRUF
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c344t-c93aa28c4941053d311a6695474260b82c65b98208729e3e4658bc23ab0ce4f13
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000992876400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-5203
IngestDate Sat Nov 29 07:05:44 EST 2025
Tue Nov 18 22:38:12 EST 2025
Fri Feb 23 02:39:53 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Graphon
Stability
Graph neural network
68T07
Transferability
68R10
Generalization
47A60
Spectral methods
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-c93aa28c4941053d311a6695474260b82c65b98208729e3e4658bc23ab0ce4f13
ORCID 0000-0002-9691-6712
0000-0001-9738-2487
OpenAccessLink https://hdl.handle.net/10037/33224
PageCount 36
ParticipantIDs crossref_citationtrail_10_1016_j_acha_2022_11_008
crossref_primary_10_1016_j_acha_2022_11_008
elsevier_sciencedirect_doi_10_1016_j_acha_2022_11_008
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationTitle Applied and computational harmonic analysis
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Katznelson (br0150) 2004
Hamilton (br0120) 2020; vol. 14
Lovász (br0270) 2012
Aleksandrov, Peller (br0010) 2010; 224
Kipf, Welling (br0200) 2017
Ruiz, Gama, Ribeiro (br0320) 2021; 109
Grossmann, Roos, Stynes (br0110) 01 2007
Gama, Bruna, Ribeiro (br0100) 2020; 68
Aleksandrov, Peller (br0020) 2016; 71
Bianchi, Grattarola, Livi, Alippi (br0030) 2021
Morency, Leus (br0280) 2021; 69
Ruiz, Wang, Ribeiro (br0330) 2021
Levie, Monti, Bresson, Bronstein (br0250) 2019; 67
Kenlay, Thano, Dong (br0160) 2021
Klopp, Verzelen (br0210) 2019; 174
LeCun, Bottou, Bengio, Haffner (br0220) 1998; 86
Bojchevski, Günnemann (br0040) 2019
Keriven, Bietti, Vaiter (br0190) 2020
Levie, Isufi, Kutyniok (br0240) 2019
Potapov, Sukochev (br0290) 2011; 207
Ruiz, Chamon, Ribeiro (br0300) 2020
Ruiz, Chamon, Ribeiro (br0310) 2021
Bojchevski, Klicpera, Günnemann (br0050) 2020
Wu, Pan, Chen, Long, Zhang, Yu (br0350) 2021; 32
Borgs, Chayes, Lovasz, Sós, Vesztergombi (br0070) 2012; 176
Levie, Huang, Bucci, Bronstein, Kutyniok (br0230) 2019
Borgs, Chayes, Lovasz, Sós, Vesztergombi (br0060) 2008; 219
Bronstein, Bruna, LeCun, Szlam, Vandergheynst (br0080) 2017; 34
Werner (br0340) 01 2007
Lovász, Szegedy (br0260) 2006; 96
Defferrard, Bresson, Vandergheynst (br0090) 2016
Janson (br0140) 2010
Jackson (br0130) 1931
Kenlay, Thanou, Dong (br0170) 2020
Kenlay, Thanou, Dong (br0180) 2021
Werner (10.1016/j.acha.2022.11.008_br0340) 2007
Levie (10.1016/j.acha.2022.11.008_br0230)
Katznelson (10.1016/j.acha.2022.11.008_br0150) 2004
Bojchevski (10.1016/j.acha.2022.11.008_br0050) 2020
Ruiz (10.1016/j.acha.2022.11.008_br0310) 2021
Ruiz (10.1016/j.acha.2022.11.008_br0330) 2021
Lovász (10.1016/j.acha.2022.11.008_br0260) 2006; 96
Janson (10.1016/j.acha.2022.11.008_br0140) 2010
Levie (10.1016/j.acha.2022.11.008_br0240) 2019
Levie (10.1016/j.acha.2022.11.008_br0250) 2019; 67
Bronstein (10.1016/j.acha.2022.11.008_br0080) 2017; 34
Borgs (10.1016/j.acha.2022.11.008_br0070) 2012; 176
Potapov (10.1016/j.acha.2022.11.008_br0290) 2011; 207
Kenlay (10.1016/j.acha.2022.11.008_br0180) 2021
Kenlay (10.1016/j.acha.2022.11.008_br0170) 2020
Bianchi (10.1016/j.acha.2022.11.008_br0030) 2021
Kenlay (10.1016/j.acha.2022.11.008_br0160) 2021
Ruiz (10.1016/j.acha.2022.11.008_br0300)
Aleksandrov (10.1016/j.acha.2022.11.008_br0010) 2010; 224
Aleksandrov (10.1016/j.acha.2022.11.008_br0020) 2016; 71
Wu (10.1016/j.acha.2022.11.008_br0350) 2021; 32
Gama (10.1016/j.acha.2022.11.008_br0100) 2020; 68
Lovász (10.1016/j.acha.2022.11.008_br0270) 2012
Grossmann (10.1016/j.acha.2022.11.008_br0110) 2007
Bojchevski (10.1016/j.acha.2022.11.008_br0040) 2019
Keriven (10.1016/j.acha.2022.11.008_br0190)
Kipf (10.1016/j.acha.2022.11.008_br0200) 2017
Morency (10.1016/j.acha.2022.11.008_br0280) 2021; 69
LeCun (10.1016/j.acha.2022.11.008_br0220) 1998; 86
Hamilton (10.1016/j.acha.2022.11.008_br0120) 2020; vol. 14
Klopp (10.1016/j.acha.2022.11.008_br0210) 2019; 174
Defferrard (10.1016/j.acha.2022.11.008_br0090) 2016
Ruiz (10.1016/j.acha.2022.11.008_br0320) 2021; 109
Borgs (10.1016/j.acha.2022.11.008_br0060) 2008; 219
Jackson (10.1016/j.acha.2022.11.008_br0130) 1931
References_xml – year: 2021
  ident: br0180
  article-title: Interpretable stability bounds for spectral graph filters
  publication-title: Proceedings of the 38th International Conference on Machine Learning
– year: 01 2007
  ident: br0110
  article-title: Numerical Treatment of Partial Differential Equations
– volume: 96
  start-page: 933
  year: 2006
  end-page: 957
  ident: br0260
  article-title: Limits of dense graph sequences
  publication-title: J. Comb. Theory, Ser. B
– volume: 69
  start-page: 1740
  year: 2021
  end-page: 1754
  ident: br0280
  article-title: Graphon filters: graph signal processing in the limit
  publication-title: IEEE Trans. Signal Process.
– year: 2020
  ident: br0190
  article-title: Convergence and stability of graph convolutional networks on large random graphs
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: br0220
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– volume: 67
  start-page: 97
  year: 2019
  end-page: 109
  ident: br0250
  article-title: Cayleynets: graph convolutional neural networks with complex rational spectral filters
  publication-title: IEEE Trans. Signal Process.
– volume: 109
  start-page: 660
  year: 2021
  end-page: 682
  ident: br0320
  article-title: Graph neural networks: architectures, stability, and transferability
  publication-title: Proc. IEEE
– volume: 32
  start-page: 4
  year: 2021
  end-page: 24
  ident: br0350
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2021
  ident: br0330
  article-title: Graphon and graph neural network stability
  publication-title: International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– year: 2012
  ident: br0270
  article-title: Large Networks and Graph Limits
– volume: 174
  start-page: 1033
  year: 2019
  end-page: 1090
  ident: br0210
  article-title: Optimal graphon estimation in cut distance
  publication-title: Probab. Theory Relat. Fields
– start-page: 1050
  year: 2021
  end-page: 1054
  ident: br0310
  article-title: Graphon filters: signal processing in very large graphs
  publication-title: 2020 28th European Signal Processing Conference (EUSIPCO)
– volume: 68
  start-page: 5680
  year: 2020
  end-page: 5695
  ident: br0100
  article-title: Stability properties of graph neural networks
  publication-title: IEEE Trans. Signal Process.
– volume: 219
  start-page: 1801
  year: 2008
  end-page: 1851
  ident: br0060
  article-title: Convergent sequences of dense graphs I: Subgraph frequencies, metric properties and testing
  publication-title: Adv. Math.
– volume: 176
  start-page: 151
  year: 2012
  end-page: 219
  ident: br0070
  article-title: Convergent sequences of dense graphs II. Multiway cuts and statistical physics
  publication-title: Ann. Math.
– start-page: 1
  year: 2021
  ident: br0030
  article-title: Graph neural networks with convolutional ARMA filters
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2004
  ident: br0150
  article-title: An Introduction to Harmonic Analysis, Cambridge Mathematical Library
– volume: 224
  start-page: 910
  year: 2010
  end-page: 966
  ident: br0010
  article-title: Operator Hölder–Zygmund functions
  publication-title: Adv. Math.
– year: 2020
  ident: br0170
  article-title: On the stability of polynomial spectral graph filters
  publication-title: International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– year: 01 2007
  ident: br0340
  article-title: Funktionalanalysis
– volume: 207
  start-page: 375
  year: 2011
  end-page: 389
  ident: br0290
  article-title: Operator-Lipschitz functions in Schatten-von Neumann classes
  publication-title: Acta Math.
– year: 2019
  ident: br0230
  article-title: Transferability of spectral graph convolutional neural networks
– volume: 34
  start-page: 18
  year: 2017
  end-page: 42
  ident: br0080
  article-title: Geometric deep learning: going beyond euclidean data
  publication-title: IEEE Signal Process. Mag.
– year: 2020
  ident: br0300
  article-title: Graphon signal processing
– year: 2016
  ident: br0090
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Proceedings of the 30th International Conference on Neural Information Processing Systems
– year: 2010
  ident: br0140
  article-title: Graphons, Cut Norm and Distance, Couplings and Rearrangements
– volume: 71
  start-page: 605
  year: 2016
  end-page: 702
  ident: br0020
  article-title: Operator Lipschitz functions
  publication-title: Russ. Math. Surv.
– year: 2019
  ident: br0040
  article-title: Certifiable robustness to graph perturbations
  publication-title: Advances in Neural Information Processing Systems
– volume: vol. 14
  start-page: 1
  year: 2020
  end-page: 159
  ident: br0120
  article-title: Graph representation learning
  publication-title: Synthesis Lectures on Artifical Intelligence and Machine Learning
– year: 2017
  ident: br0200
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: Proceedings of the 5th International Conference on Learning Representations
– year: 2020
  ident: br0050
  article-title: Efficient robustness certificates for discrete data: sparsity-aware randomized smoothing for graphs, images and more
  publication-title: Proceedings of the 37th International Conference on Machine Learning
– year: 2021
  ident: br0160
  article-title: On the stability of graph convolutional neural networks under edge rewiring
  publication-title: International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– year: 1931
  ident: br0130
  article-title: The Theory of Approximation
– year: 2019
  ident: br0240
  article-title: On the transferability of spectral graph filters
  publication-title: 13th International Conference on Sampling Theory and Applications (SampTA)
– year: 2010
  ident: 10.1016/j.acha.2022.11.008_br0140
– ident: 10.1016/j.acha.2022.11.008_br0190
– volume: 174
  start-page: 1033
  year: 2019
  ident: 10.1016/j.acha.2022.11.008_br0210
  article-title: Optimal graphon estimation in cut distance
  publication-title: Probab. Theory Relat. Fields
  doi: 10.1007/s00440-018-0878-1
– volume: 176
  start-page: 151
  year: 2012
  ident: 10.1016/j.acha.2022.11.008_br0070
  article-title: Convergent sequences of dense graphs II. Multiway cuts and statistical physics
  publication-title: Ann. Math.
  doi: 10.4007/annals.2012.176.1.2
– volume: 34
  start-page: 18
  year: 2017
  ident: 10.1016/j.acha.2022.11.008_br0080
  article-title: Geometric deep learning: going beyond euclidean data
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2693418
– year: 2004
  ident: 10.1016/j.acha.2022.11.008_br0150
– year: 2021
  ident: 10.1016/j.acha.2022.11.008_br0160
  article-title: On the stability of graph convolutional neural networks under edge rewiring
– volume: 32
  start-page: 4
  year: 2021
  ident: 10.1016/j.acha.2022.11.008_br0350
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.2978386
– year: 2007
  ident: 10.1016/j.acha.2022.11.008_br0340
– year: 2016
  ident: 10.1016/j.acha.2022.11.008_br0090
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
– volume: 109
  start-page: 660
  year: 2021
  ident: 10.1016/j.acha.2022.11.008_br0320
  article-title: Graph neural networks: architectures, stability, and transferability
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2021.3055400
– volume: 68
  start-page: 5680
  year: 2020
  ident: 10.1016/j.acha.2022.11.008_br0100
  article-title: Stability properties of graph neural networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2020.3026980
– volume: 67
  start-page: 97
  year: 2019
  ident: 10.1016/j.acha.2022.11.008_br0250
  article-title: Cayleynets: graph convolutional neural networks with complex rational spectral filters
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2018.2879624
– volume: 69
  start-page: 1740
  year: 2021
  ident: 10.1016/j.acha.2022.11.008_br0280
  article-title: Graphon filters: graph signal processing in the limit
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2021.3061575
– year: 2021
  ident: 10.1016/j.acha.2022.11.008_br0330
  article-title: Graphon and graph neural network stability
– year: 2007
  ident: 10.1016/j.acha.2022.11.008_br0110
– volume: 224
  start-page: 910
  year: 2010
  ident: 10.1016/j.acha.2022.11.008_br0010
  article-title: Operator Hölder–Zygmund functions
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2009.12.018
– volume: vol. 14
  start-page: 1
  year: 2020
  ident: 10.1016/j.acha.2022.11.008_br0120
  article-title: Graph representation learning
– volume: 219
  start-page: 1801
  year: 2008
  ident: 10.1016/j.acha.2022.11.008_br0060
  article-title: Convergent sequences of dense graphs I: Subgraph frequencies, metric properties and testing
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2008.07.008
– year: 2020
  ident: 10.1016/j.acha.2022.11.008_br0170
  article-title: On the stability of polynomial spectral graph filters
– volume: 207
  start-page: 375
  year: 2011
  ident: 10.1016/j.acha.2022.11.008_br0290
  article-title: Operator-Lipschitz functions in Schatten-von Neumann classes
  publication-title: Acta Math.
  doi: 10.1007/s11511-012-0072-8
– year: 2020
  ident: 10.1016/j.acha.2022.11.008_br0050
  article-title: Efficient robustness certificates for discrete data: sparsity-aware randomized smoothing for graphs, images and more
– year: 2021
  ident: 10.1016/j.acha.2022.11.008_br0180
  article-title: Interpretable stability bounds for spectral graph filters
– ident: 10.1016/j.acha.2022.11.008_br0230
– start-page: 1050
  year: 2021
  ident: 10.1016/j.acha.2022.11.008_br0310
  article-title: Graphon filters: signal processing in very large graphs
– volume: 86
  start-page: 2278
  year: 1998
  ident: 10.1016/j.acha.2022.11.008_br0220
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– year: 1931
  ident: 10.1016/j.acha.2022.11.008_br0130
– year: 2019
  ident: 10.1016/j.acha.2022.11.008_br0040
  article-title: Certifiable robustness to graph perturbations
– volume: 96
  start-page: 933
  year: 2006
  ident: 10.1016/j.acha.2022.11.008_br0260
  article-title: Limits of dense graph sequences
  publication-title: J. Comb. Theory, Ser. B
  doi: 10.1016/j.jctb.2006.05.002
– year: 2012
  ident: 10.1016/j.acha.2022.11.008_br0270
– volume: 71
  start-page: 605
  year: 2016
  ident: 10.1016/j.acha.2022.11.008_br0020
  article-title: Operator Lipschitz functions
  publication-title: Russ. Math. Surv.
  doi: 10.1070/RM9729
– year: 2019
  ident: 10.1016/j.acha.2022.11.008_br0240
  article-title: On the transferability of spectral graph filters
– ident: 10.1016/j.acha.2022.11.008_br0300
– start-page: 1
  year: 2021
  ident: 10.1016/j.acha.2022.11.008_br0030
  article-title: Graph neural networks with convolutional ARMA filters
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2021.3054830
– year: 2017
  ident: 10.1016/j.acha.2022.11.008_br0200
  article-title: Semi-supervised classification with graph convolutional networks
SSID ssj0011459
Score 2.549962
Snippet We study spectral graph convolutional neural networks (GCNNs), where filters are defined as continuous functions of the graph shift operator (GSO) through...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 48
SubjectTerms Generalization
Graph neural network
Graphon
Spectral methods
Stability
Transferability
Title Transferability of graph neural networks: An extended graphon approach
URI https://dx.doi.org/10.1016/j.acha.2022.11.008
Volume 63
WOSCitedRecordID wos000992876400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-603X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011459
  issn: 1063-5203
  databaseCode: AIEXJ
  dateStart: 20211211
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbTQ_toSR90LRJ0aG34GJLsiXltoQ8GpJQaAp7M7Iqk02Cd9n1hvTfZ_SytyGENpCL2RV-CM0wMxp98w1CX0WluJYZSRhROmHgMhLFeZUQXgsuCsGkSV2zCX52JsZj-WMwmMVamJtr3jTi9lbOnlXUMAbCtqWz_yHu7qUwAL9B6HAFscP13wTvQlEz9wTc7gDdsVLvWOpKEEjjgd-LkBKMWXB_k8UmB5bx1bA1xqqhCG62bGMO0TJfuyY6KrCb9CnuxVUAkk0vJh0E-MQ6Yg_p7s__l-2fZjJ1dvlw0rZqNRVBaI_F8vmxWCPzF4QT9pwUtrupN2MmjMkiKVLXCbizw8HQeUPq6TejS6YPGnufd7gExbuwDFKEfLN8rKnoXVsHOPxpZ2EnQWxpkhT8BVojPJdiiNZG3_fHx93JU8Zcg71u1qHQymMC73_p4WBmJUA5X0dvws4Cj7xGbKCBad6i1yt8k_DvtCPpXbxDB_c0BU9r7JQAe03BUVN28ajBUU9w0BMc9eQ9-nWwf753lIS2GommjLWJllQpIjSTFuJLf9MsU0Uhc8Ztt4JKEF3klYTIUMDGy1DDIEitNKGqSrVhdUY_oGEzbcxHhEVlpKnBTeTwOgOhY10X4DEg7JO1RQ1soiyuT6kD57xtfXJdRnDhZWnXtLRrCpvREtZ0E-10z8w848qjd-dx2csQM_pYsAQteeS5T0987jN61Wv-Fhq286XZRi_1TTtZzL8EZboDLHCPXA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transferability+of+graph+neural+networks%3A+An+extended+graphon+approach&rft.jtitle=Applied+and+computational+harmonic+analysis&rft.au=Maskey%2C+Sohir&rft.au=Levie%2C+Ron&rft.au=Kutyniok%2C+Gitta&rft.date=2023-03-01&rft.pub=Elsevier+Inc&rft.issn=1063-5203&rft.eissn=1096-603X&rft.volume=63&rft.spage=48&rft.epage=83&rft_id=info:doi/10.1016%2Fj.acha.2022.11.008&rft.externalDocID=S1063520322000987
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-5203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-5203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-5203&client=summon