GLC: A dual-perspective approach for identifying influential nodes in complex networks

Identifying influential spreaders is crucial for understanding the dynamics of information diffusion within complex networks. Several centrality methods have been proposed to address this, but these studies often concentrate on only one aspect. To solve this problem, we introduce a dual-perspective...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications Jg. 268; S. 126292
Hauptverfasser: Ruan, Yirun, Liu, Sizheng, Tang, Jun, Guo, Yanming, Yu, Tianyuan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 05.04.2025
Schlagworte:
ISSN:0957-4174
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Identifying influential spreaders is crucial for understanding the dynamics of information diffusion within complex networks. Several centrality methods have been proposed to address this, but these studies often concentrate on only one aspect. To solve this problem, we introduce a dual-perspective approach which considers both global and local perspectives for identifying influential nodes in complex networks. From a global perspective, if a node has the capability to efficiently transmit information to various clusters within a network, then the information originating from that node will quickly spread across a large area. From a local perspective, when a node has a greater number of neighbors—especially those that are significant within the network—the information emanating from that node is less likely to be confined to a localized region. Based on this understanding, we first design a novel clustering method to detect groups in which the connections among nodes are denser than those with the rest of the network. The most influential nodes in each group are identified as global critical nodes. Subsequently, the local influence of a node is defined by the number and significance of its neighboring nodes. Ultimately, nodes are ranked according to their local influence, their proximity to the global critical nodes using the shortest paths, and the importance of these global critical nodes. To evaluate the performance of the proposed method, the susceptible-infected-removed (SIR) diffusion model is used. Results of the investigation on real networks and realistic synthetic benchmarks show that the proposed method can identify nodes with high influence better than other centrality methods.
AbstractList Identifying influential spreaders is crucial for understanding the dynamics of information diffusion within complex networks. Several centrality methods have been proposed to address this, but these studies often concentrate on only one aspect. To solve this problem, we introduce a dual-perspective approach which considers both global and local perspectives for identifying influential nodes in complex networks. From a global perspective, if a node has the capability to efficiently transmit information to various clusters within a network, then the information originating from that node will quickly spread across a large area. From a local perspective, when a node has a greater number of neighbors—especially those that are significant within the network—the information emanating from that node is less likely to be confined to a localized region. Based on this understanding, we first design a novel clustering method to detect groups in which the connections among nodes are denser than those with the rest of the network. The most influential nodes in each group are identified as global critical nodes. Subsequently, the local influence of a node is defined by the number and significance of its neighboring nodes. Ultimately, nodes are ranked according to their local influence, their proximity to the global critical nodes using the shortest paths, and the importance of these global critical nodes. To evaluate the performance of the proposed method, the susceptible-infected-removed (SIR) diffusion model is used. Results of the investigation on real networks and realistic synthetic benchmarks show that the proposed method can identify nodes with high influence better than other centrality methods.
ArticleNumber 126292
Author Yu, Tianyuan
Ruan, Yirun
Liu, Sizheng
Tang, Jun
Guo, Yanming
Author_xml – sequence: 1
  givenname: Yirun
  surname: Ruan
  fullname: Ruan, Yirun
  email: ruanyirun@nudt.edu.cn
– sequence: 2
  givenname: Sizheng
  surname: Liu
  fullname: Liu, Sizheng
  email: liusizheng20@nudt.edu.cn
– sequence: 3
  givenname: Jun
  surname: Tang
  fullname: Tang, Jun
  email: tangjun06@nudt.edu.cn
– sequence: 4
  givenname: Yanming
  surname: Guo
  fullname: Guo, Yanming
  email: guoyanming@nudt.edu.cn
– sequence: 5
  givenname: Tianyuan
  surname: Yu
  fullname: Yu, Tianyuan
  email: ty.yu@nudt.edu.cn
BookMark eNp9kLFOwzAURT0UibbwA0z-gQTbTZMGsVQVFKRKLMBqPdvP4JLakZ228PckKhNDp6f7pHOleyZk5INHQm44yznj5e02x3SEXDBR5FyUohYjMmb1vMoKXhWXZJLSljFeMVaNyft6s7qjS2r20GQtxtSi7twBKbRtDKA_qQ2ROoO-c_bH-Q_qvG32Q4SG-mAw9R-qw65t8Jt67I4hfqUrcmGhSXj9d6fk7fHhdfWUbV7Wz6vlJtOzougyXdnZokArBDClOZjSqLrSqBlHUJWYm4JzAGOMUKpWpRWWGxSlsVqp0sBsSsSpV8eQUkQr2-h2EH8kZ3KwIbdysCEHG_Jko4cW_yDtOuhc8F0E15xH708o9qMODqNM2qHXaFzsxUkT3Dn8FwnngoU
CitedBy_id crossref_primary_10_1007_s13278_025_01480_5
crossref_primary_10_1186_s40537_025_01220_8
crossref_primary_10_1016_j_engappai_2025_111088
crossref_primary_10_1038_s41540_025_00526_w
crossref_primary_10_1016_j_ipm_2025_104201
crossref_primary_10_7498_aps_74_20250621
crossref_primary_10_7498_aps_74_20250329
crossref_primary_10_1016_j_omega_2025_103387
Cites_doi 10.1038/s41598-019-44930-9
10.1103/PhysRevLett.96.040601
10.1038/nature04209
10.1016/j.physleta.2013.02.039
10.1137/S003614450342480
10.1103/PhysRevE.74.036104
10.1016/j.physa.2022.126885
10.1016/j.knosys.2019.105464
10.1016/j.physa.2013.10.047
10.1016/j.chaos.2015.08.019
10.1016/j.eswa.2021.115778
10.1016/j.knosys.2021.107198
10.1371/journal.pone.0077455
10.1063/1.5086059
10.1103/PhysRevLett.105.218701
10.1093/biomet/33.3.239
10.1016/j.ins.2021.01.053
10.1016/j.physa.2015.12.162
10.1109/JSYST.2022.3227632
10.1103/PhysRevE.78.046110
10.1038/srep09602
10.1002/sim.5408
10.1007/s12652-020-01760-2
10.1016/j.eswa.2023.121154
10.1016/j.physa.2011.12.055
10.1088/1367-2630/13/12/123005
10.1080/01621459.1966.10480879
10.7498/aps.71.20220565
10.1016/j.knosys.2013.01.017
10.1016/j.knosys.2022.110163
10.1016/j.physleta.2014.09.054
10.1038/nphys1746
10.1016/j.chaos.2020.110456
10.1016/j.ins.2022.07.084
10.1109/ACCESS.2024.3424834
10.1146/annurev.psych.55.090902.142015
10.3233/JIFS-169667
10.1016/S0169-7552(98)00110-X
10.1016/j.chaos.2019.01.011
10.1016/j.jtbi.2010.11.033
10.1103/PhysRevE.66.016128
10.1016/j.ins.2022.10.070
10.1038/ncomms10168
10.1038/35075138
10.1109/ACCESS.2022.3232288
10.1007/s11390-018-1820-9
10.1016/j.chaos.2018.03.014
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.eswa.2024.126292
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2024_126292
S0957417424031592
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAYWO
AAYXX
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY1
LY7
M41
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c344t-c7f384ef22a0bc1ad6db97cec01eab725d411aaddd2bb9b6f2f1de26dfcbb6da3
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001421913100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Tue Nov 18 21:12:14 EST 2025
Sat Nov 29 08:17:44 EST 2025
Sat Feb 15 15:52:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Cluster algorithm
Local influence
Global critical nodes
Node influence
Complex network
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-c7f384ef22a0bc1ad6db97cec01eab725d411aaddd2bb9b6f2f1de26dfcbb6da3
OpenAccessLink https://dx.doi.org/10.1016/j.eswa.2024.126292
ParticipantIDs crossref_primary_10_1016_j_eswa_2024_126292
crossref_citationtrail_10_1016_j_eswa_2024_126292
elsevier_sciencedirect_doi_10_1016_j_eswa_2024_126292
PublicationCentury 2000
PublicationDate 2025-04-05
PublicationDateYYYYMMDD 2025-04-05
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-05
  day: 05
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Wang, Deng (b0120) 2020; 193
Tidke, Mehta, Dhanani, Tiwari, Trivedi, Kohle (b0190) 2018; 35
Zhang, Shuai, Lü (b0230) 2022; 618
Ma, Ma, Zhang, Wang (b0135) 2016; 451
Jeong, Mason, Barabási, Oltvai (b0075) 2001; 411
Zeng, Zhang (b0225) 2013; 377
Li, Shang, Deng (b0100) 2021; 143
(17), 176401. https://doi.org/10.7498/aps.71.20220565.
Qu, Zhan, Wang, Wu, Zhang (b0165) 2019; 29
Rual, Venkatesan, Hao, Hirozane-Kishikawa, Dricot, Li, Berriz, Gibbons, Dreze, Ayivi-Guedehoussou, Klitgord, Simon, Boxem, Milstein, Rosenberg, Goldberg, Zhang, Wong, Franklin, Vidal (b0170) 2005; 437
Beni, Bouyer (b0010) 2020; 11
Shang, Deng, Cheong (b0185) 2021; 577
Blagus, Šubelj, Bajec (b0020) 2012; 391
Wang, Sun, Gan, Fan, Shi, Hu (b0200) 2022; 593
Christakis, Fowler (b0045) 2013; 32
Li, Ren, Ma, Liu, Zhang, Zhou (b0105) 2019; 9
Xu, Dong (b0215) 2024; 235
Mehdi Azaouzi;Lotfi Ben Romdhane (b0140) 2018; 33
Chen, Gao, Lü, Zhou (b0035) 2013; 8
,
Pastor-Satorras, Vespignanj (b0160) 2011
Castellano, Pastor-Satorras (b0030) 2010; 105
Ullah, Wang, Sheng, Long, Khan, Sun (b0195) 2021; 186
Kitsak, Gallos, Havlin, Liljeros, Muchnik, Stanley, Makse (b0085) 2010; 6
Newman (b0150) 2003; 45
Cialdini, Goldstein (b0050) 2004; 55
Hajarathaiah, Enduri, Dhuli, Anamalamudi, Cenkeramaddi (b0065) 2023; 11
Fan, Shu, Li, Li (b0060) 2023; 17
Ruan, Lao, Xiao, Wang, Bai (b0180) 2016; 33
Lü, Chen, Zhou (b0115) 2011; 13
Berahmand, Bouyer, Samadi (b0015) 2018; 110
Zhao, Wen, Jahanshahi, Cheong (b0240) 2022; 609
Zhao, Li, Sun, Zhang, Liu (b0245) 2023; 260
Knight (b0090) 1966; 61
Liu, Tang, Zhou, Do (b0125) 2015; 5
Bae, Kim (b0005) 2014; 395
Lancichinetti, Fortunato, Radicchi (b0095) 2008; 78
Brin, Page (b0025) 1998; 30
Dorogovtsev, Goltsev, Mendes (b0055) 2006; 96
Newman (b0145) 2002; 66
Wen, Jiang (b0205) 2019; 119
Zhang, Zhu, Wang, Zhao (b0235) 2013; 42
Yang, Xiao (b0220) 2021; 227
Lü, Zhou, Zhang, Stanley (b0130) 2016; 7
Chiranjeevi, Dhuli, Enduri, Hajarathaiah, Cenkeramaddi (b0040) 2024; 12
Kendall (b0080) 1945; 33
Xu, Wang, Zhang (b0210) 2015; 81
Isella, Stehlé, Barrat, Cattuto, Pinton, Van Den Broeck (b0070) 2011; 271
Lin, Guo, Dong, Tang, Liu (b0110) 2014; 378
Newman (b0155) 2006; 74
Ruan, Y.-R., Lao, S.-Y., Tang, J., Bai, L., Guo, Y.-M., & College of Systems Engineering, National University of Defense Technology, Changsha 410073, China. (2022). Node importance ranking method in complex network based on gravity method.
Zhao (10.1016/j.eswa.2024.126292_b0240) 2022; 609
Zhao (10.1016/j.eswa.2024.126292_b0245) 2023; 260
10.1016/j.eswa.2024.126292_b0175
Ullah (10.1016/j.eswa.2024.126292_b0195) 2021; 186
Christakis (10.1016/j.eswa.2024.126292_b0045) 2013; 32
Hajarathaiah (10.1016/j.eswa.2024.126292_b0065) 2023; 11
Ruan (10.1016/j.eswa.2024.126292_b0180) 2016; 33
Mehdi Azaouzi;Lotfi Ben Romdhane (10.1016/j.eswa.2024.126292_b0140) 2018; 33
Castellano (10.1016/j.eswa.2024.126292_b0030) 2010; 105
Lü (10.1016/j.eswa.2024.126292_b0130) 2016; 7
Newman (10.1016/j.eswa.2024.126292_b0150) 2003; 45
Lancichinetti (10.1016/j.eswa.2024.126292_b0095) 2008; 78
Qu (10.1016/j.eswa.2024.126292_b0165) 2019; 29
Pastor-Satorras (10.1016/j.eswa.2024.126292_b0160) 2011
Isella (10.1016/j.eswa.2024.126292_b0070) 2011; 271
Xu (10.1016/j.eswa.2024.126292_b0210) 2015; 81
Ma (10.1016/j.eswa.2024.126292_b0135) 2016; 451
Wen (10.1016/j.eswa.2024.126292_b0205) 2019; 119
Li (10.1016/j.eswa.2024.126292_b0105) 2019; 9
Beni (10.1016/j.eswa.2024.126292_b0010) 2020; 11
Knight (10.1016/j.eswa.2024.126292_b0090) 1966; 61
Rual (10.1016/j.eswa.2024.126292_b0170) 2005; 437
Kitsak (10.1016/j.eswa.2024.126292_b0085) 2010; 6
Wang (10.1016/j.eswa.2024.126292_b0200) 2022; 593
Lü (10.1016/j.eswa.2024.126292_b0115) 2011; 13
Xu (10.1016/j.eswa.2024.126292_b0215) 2024; 235
Brin (10.1016/j.eswa.2024.126292_b0025) 1998; 30
Chen (10.1016/j.eswa.2024.126292_b0035) 2013; 8
Cialdini (10.1016/j.eswa.2024.126292_b0050) 2004; 55
Lin (10.1016/j.eswa.2024.126292_b0110) 2014; 378
Newman (10.1016/j.eswa.2024.126292_b0145) 2002; 66
Zhang (10.1016/j.eswa.2024.126292_b0235) 2013; 42
Blagus (10.1016/j.eswa.2024.126292_b0020) 2012; 391
Shang (10.1016/j.eswa.2024.126292_b0185) 2021; 577
Chiranjeevi (10.1016/j.eswa.2024.126292_b0040) 2024; 12
Jeong (10.1016/j.eswa.2024.126292_b0075) 2001; 411
Liu (10.1016/j.eswa.2024.126292_b0120) 2020; 193
Kendall (10.1016/j.eswa.2024.126292_b0080) 1945; 33
Liu (10.1016/j.eswa.2024.126292_b0125) 2015; 5
Yang (10.1016/j.eswa.2024.126292_b0220) 2021; 227
Newman (10.1016/j.eswa.2024.126292_b0155) 2006; 74
Dorogovtsev (10.1016/j.eswa.2024.126292_b0055) 2006; 96
Fan (10.1016/j.eswa.2024.126292_b0060) 2023; 17
Bae (10.1016/j.eswa.2024.126292_b0005) 2014; 395
Li (10.1016/j.eswa.2024.126292_b0100) 2021; 143
Zhang (10.1016/j.eswa.2024.126292_b0230) 2022; 618
Berahmand (10.1016/j.eswa.2024.126292_b0015) 2018; 110
Tidke (10.1016/j.eswa.2024.126292_b0190) 2018; 35
Zeng (10.1016/j.eswa.2024.126292_b0225) 2013; 377
References_xml – volume: 395
  start-page: 549
  year: 2014
  end-page: 559
  ident: b0005
  article-title: Identifying and ranking influential spreaders in complex networks by neighborhood coreness
– volume: 33
  start-page: 286
  year: 2018
  end-page: 304
  ident: b0140
  article-title: An efficient two-phase model for computing influential nodes in social networks using social actions
– reference: (17), 176401. https://doi.org/10.7498/aps.71.20220565.
– volume: 42
  start-page: 74
  year: 2013
  end-page: 84
  ident: b0235
  article-title: Identifying influential nodes in complex networks with community structure
– volume: 271
  start-page: 166
  year: 2011
  end-page: 180
  ident: b0070
  article-title: What’s in a crowd? Analysis of face-to-face behavioral networks
– volume: 6
  start-page: 888
  year: 2010
  end-page: 893
  ident: b0085
  article-title: Identification of influential spreaders in complex networks
– volume: 451
  start-page: 205
  year: 2016
  end-page: 212
  ident: b0135
  article-title: Identifying influential spreaders in complex networks based on gravity formula
– volume: 55
  start-page: 591
  year: 2004
  end-page: 621
  ident: b0050
  article-title: Social influence: Compliance and conformity
– volume: 11
  start-page: 808
  year: 2023
  end-page: 824
  ident: b0065
  article-title: Generalization of relative change in a centrality measure to identify vital nodes in complex networks
– start-page: 493
  year: 2011
  end-page: 496
  ident: b0160
  article-title: Epidemic spreading in scale-free networks
– volume: 32
  start-page: 556
  year: 2013
  end-page: 577
  ident: b0045
  article-title: Social contagion theory: Examining dynamic social networks and human behavior
– volume: 17
  start-page: 4874
  year: 2023
  end-page: 4884
  ident: b0060
  article-title: Critical nodes identification for power grid based on electrical topology and power flow distribution
– volume: 378
  start-page: 3279
  year: 2014
  end-page: 3284
  ident: b0110
  article-title: Identifying the node spreading influence with largest
– volume: 227
  year: 2021
  ident: b0220
  article-title: An improved gravity model to identify influential nodes in complex networks based on k-shell method
– volume: 577
  start-page: 162
  year: 2021
  end-page: 179
  ident: b0185
  article-title: Identifying influential nodes in complex networks: Effective distance gravity model
– volume: 30
  start-page: 107
  year: 1998
  end-page: 117
  ident: b0025
  article-title: The anatomy of a large-scale hypertextual Web search engine
– volume: 66
  year: 2002
  ident: b0145
  article-title: Spread of epidemic disease on networks
– volume: 105
  year: 2010
  ident: b0030
  article-title: Thresholds for epidemic spreading in networks
– volume: 193
  year: 2020
  ident: b0120
  article-title: GMM: A generalized mechanics model for identifying the importance of nodes in complex networks
– volume: 12
  start-page: 93711
  year: 2024
  end-page: 93722
  ident: b0040
  article-title: Quantifying node influence in networks: Isolating-betweenness centrality for improved ranking
– volume: 110
  start-page: 41
  year: 2018
  end-page: 54
  ident: b0015
  article-title: A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks
– volume: 74
  year: 2006
  ident: b0155
  article-title: Finding community structure in networks using the eigenvectors of matrices
– volume: 377
  start-page: 1031
  year: 2013
  end-page: 1035
  ident: b0225
  article-title: Ranking spreaders by decomposing complex networks
– volume: 13
  start-page: 1
  year: 2011
  end-page: 10
  ident: b0115
  article-title: The small world yields the most effective information spreading
– volume: 391
  start-page: 2794
  year: 2012
  end-page: 2802
  ident: b0020
  article-title: Self-similar scaling of density in complex real-world networks
– volume: 411
  start-page: 41
  year: 2001
  end-page: 42
  ident: b0075
  article-title: Lethality and centrality in protein networks
– volume: 5
  start-page: 9602
  year: 2015
  ident: b0125
  article-title: Core-like groups result in invalidation of identifying super-spreader by k-shell decomposition
– volume: 11
  start-page: 4889
  year: 2020
  end-page: 4908
  ident: b0010
  article-title: TI-SC: Top-k influential nodes selection based on community detection and scoring criteria in social networks
– reference: ,
– volume: 78
  year: 2008
  ident: b0095
  article-title: Benchmark graphs for testing community detection algorithms
– volume: 29
  year: 2019
  ident: b0165
  article-title: Temporal information gathering process for node ranking in time-varying networks
– volume: 96
  year: 2006
  ident: b0055
  article-title: K-core organization of complex networks
– volume: 186
  year: 2021
  ident: b0195
  article-title: Identifying vital nodes from local and global perspectives in complex networks
– volume: 609
  start-page: 1706
  year: 2022
  end-page: 1720
  ident: b0240
  article-title: The random walk-based gravity model to identify influential nodes in complex networks
– volume: 260
  year: 2023
  ident: b0245
  article-title: Ranking influential spreaders based on both node k-shell and structural hole
– reference: Ruan, Y.-R., Lao, S.-Y., Tang, J., Bai, L., Guo, Y.-M., & College of Systems Engineering, National University of Defense Technology, Changsha 410073, China. (2022). Node importance ranking method in complex network based on gravity method.
– volume: 33
  start-page: 1
  year: 2016
  ident: b0180
  article-title: Identifying influence of nodes in complex networks with coreness centrality: Decreasing the impact of densely local connection
– volume: 45
  start-page: 167
  year: 2003
  end-page: 256
  ident: b0150
  article-title: The structure and function of complex networks
– volume: 235
  year: 2024
  ident: b0215
  article-title: CAGM: A communicability-based adaptive gravity model for influential nodes identification in complex networks
– volume: 437
  start-page: 1173
  year: 2005
  end-page: 1178
  ident: b0170
  article-title: Towards a proteome-scale map of the human protein–protein interaction network
– volume: 143
  year: 2021
  ident: b0100
  article-title: A generalized gravity model for influential spreaders identification in complex networks
– volume: 7
  start-page: 10168
  year: 2016
  ident: b0130
  article-title: The H-index of a network node and its relation to degree and coreness
– volume: 33
  start-page: 239
  year: 1945
  end-page: 251
  ident: b0080
  article-title: The treatment of ties in ranking problems
– volume: 8
  year: 2013
  ident: b0035
  article-title: Identifying influential nodes in large-scale directed networks: The role of clustering
– volume: 9
  start-page: 8387
  year: 2019
  ident: b0105
  article-title: Identifying influential spreaders by gravity model
– volume: 593
  year: 2022
  ident: b0200
  article-title: Influential node identification by aggregating local structure information
– volume: 119
  start-page: 332
  year: 2019
  end-page: 342
  ident: b0205
  article-title: Identifying influential nodes based on fuzzy local dimension in complex networks
– volume: 618
  start-page: 98
  year: 2022
  end-page: 117
  ident: b0230
  article-title: A novel method to identify influential nodes in complex networks based on gravity centrality
– volume: 35
  start-page: 1225
  year: 2018
  end-page: 1237
  ident: b0190
  article-title: SIRIF: Supervised influence ranking based on influential network
– volume: 81
  start-page: 78
  year: 2015
  end-page: 82
  ident: b0210
  article-title: Conformity-based cooperation in online social networks: The effect of heterogeneous social influence
– volume: 61
  start-page: 436
  year: 1966
  end-page: 439
  ident: b0090
  article-title: A computer method for calculating Kendall’s Tau with ungrouped data
– volume: 9
  start-page: 8387
  issue: 1
  year: 2019
  ident: 10.1016/j.eswa.2024.126292_b0105
  article-title: Identifying influential spreaders by gravity model
  publication-title: Scientific Reports
  doi: 10.1038/s41598-019-44930-9
– volume: 96
  issue: 4
  year: 2006
  ident: 10.1016/j.eswa.2024.126292_b0055
  article-title: K-core organization of complex networks
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.96.040601
– volume: 437
  start-page: 1173
  issue: 7062
  year: 2005
  ident: 10.1016/j.eswa.2024.126292_b0170
  article-title: Towards a proteome-scale map of the human protein–protein interaction network
  publication-title: Nature
  doi: 10.1038/nature04209
– volume: 377
  start-page: 1031
  issue: 14
  year: 2013
  ident: 10.1016/j.eswa.2024.126292_b0225
  article-title: Ranking spreaders by decomposing complex networks
  publication-title: Physics Letters A
  doi: 10.1016/j.physleta.2013.02.039
– start-page: 493
  year: 2011
  ident: 10.1016/j.eswa.2024.126292_b0160
  article-title: Epidemic spreading in scale-free networks
– volume: 45
  start-page: 167
  issue: 2
  year: 2003
  ident: 10.1016/j.eswa.2024.126292_b0150
  article-title: The structure and function of complex networks
  publication-title: SIAM Review
  doi: 10.1137/S003614450342480
– volume: 74
  issue: 3
  year: 2006
  ident: 10.1016/j.eswa.2024.126292_b0155
  article-title: Finding community structure in networks using the eigenvectors of matrices
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.74.036104
– volume: 593
  year: 2022
  ident: 10.1016/j.eswa.2024.126292_b0200
  article-title: Influential node identification by aggregating local structure information
  publication-title: Physica A: Statistical Mechanics and Its Applications
  doi: 10.1016/j.physa.2022.126885
– volume: 193
  year: 2020
  ident: 10.1016/j.eswa.2024.126292_b0120
  article-title: GMM: A generalized mechanics model for identifying the importance of nodes in complex networks
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.105464
– volume: 395
  start-page: 549
  year: 2014
  ident: 10.1016/j.eswa.2024.126292_b0005
  article-title: Identifying and ranking influential spreaders in complex networks by neighborhood coreness
  publication-title: Physica A: Statistical Mechanics and Its Applications
  doi: 10.1016/j.physa.2013.10.047
– volume: 81
  start-page: 78
  year: 2015
  ident: 10.1016/j.eswa.2024.126292_b0210
  article-title: Conformity-based cooperation in online social networks: The effect of heterogeneous social influence
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2015.08.019
– volume: 186
  year: 2021
  ident: 10.1016/j.eswa.2024.126292_b0195
  article-title: Identifying vital nodes from local and global perspectives in complex networks
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.115778
– volume: 227
  year: 2021
  ident: 10.1016/j.eswa.2024.126292_b0220
  article-title: An improved gravity model to identify influential nodes in complex networks based on k-shell method
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.107198
– volume: 8
  issue: 10
  year: 2013
  ident: 10.1016/j.eswa.2024.126292_b0035
  article-title: Identifying influential nodes in large-scale directed networks: The role of clustering
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0077455
– volume: 29
  issue: 3
  year: 2019
  ident: 10.1016/j.eswa.2024.126292_b0165
  article-title: Temporal information gathering process for node ranking in time-varying networks
  publication-title: Chaos
  doi: 10.1063/1.5086059
– volume: 105
  issue: 21
  year: 2010
  ident: 10.1016/j.eswa.2024.126292_b0030
  article-title: Thresholds for epidemic spreading in networks
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.105.218701
– volume: 33
  start-page: 239
  issue: 3
  year: 1945
  ident: 10.1016/j.eswa.2024.126292_b0080
  article-title: The treatment of ties in ranking problems
  publication-title: Biometrika
  doi: 10.1093/biomet/33.3.239
– volume: 577
  start-page: 162
  year: 2021
  ident: 10.1016/j.eswa.2024.126292_b0185
  article-title: Identifying influential nodes in complex networks: Effective distance gravity model
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2021.01.053
– volume: 451
  start-page: 205
  year: 2016
  ident: 10.1016/j.eswa.2024.126292_b0135
  article-title: Identifying influential spreaders in complex networks based on gravity formula
  publication-title: Physica A: Statistical Mechanics and Its Applications
  doi: 10.1016/j.physa.2015.12.162
– volume: 17
  start-page: 4874
  issue: 3
  year: 2023
  ident: 10.1016/j.eswa.2024.126292_b0060
  article-title: Critical nodes identification for power grid based on electrical topology and power flow distribution
  publication-title: IEEE Systems Journal
  doi: 10.1109/JSYST.2022.3227632
– volume: 78
  issue: 4
  year: 2008
  ident: 10.1016/j.eswa.2024.126292_b0095
  article-title: Benchmark graphs for testing community detection algorithms
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.78.046110
– volume: 5
  start-page: 9602
  issue: 1
  year: 2015
  ident: 10.1016/j.eswa.2024.126292_b0125
  article-title: Core-like groups result in invalidation of identifying super-spreader by k-shell decomposition
  publication-title: Scientific Reports
  doi: 10.1038/srep09602
– volume: 32
  start-page: 556
  issue: 4
  year: 2013
  ident: 10.1016/j.eswa.2024.126292_b0045
  article-title: Social contagion theory: Examining dynamic social networks and human behavior
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.5408
– volume: 11
  start-page: 4889
  issue: 11
  year: 2020
  ident: 10.1016/j.eswa.2024.126292_b0010
  article-title: TI-SC: Top-k influential nodes selection based on community detection and scoring criteria in social networks
  publication-title: Journal of Ambient Intelligence and Humanized Computing
  doi: 10.1007/s12652-020-01760-2
– volume: 235
  year: 2024
  ident: 10.1016/j.eswa.2024.126292_b0215
  article-title: CAGM: A communicability-based adaptive gravity model for influential nodes identification in complex networks
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.121154
– volume: 391
  start-page: 2794
  issue: 8
  year: 2012
  ident: 10.1016/j.eswa.2024.126292_b0020
  article-title: Self-similar scaling of density in complex real-world networks
  publication-title: Physica A: Statistical Mechanics and Its Applications
  doi: 10.1016/j.physa.2011.12.055
– volume: 13
  start-page: 1
  issue: 12
  year: 2011
  ident: 10.1016/j.eswa.2024.126292_b0115
  article-title: The small world yields the most effective information spreading
  publication-title: New Journal of Physics
  doi: 10.1088/1367-2630/13/12/123005
– volume: 61
  start-page: 436
  issue: 314
  year: 1966
  ident: 10.1016/j.eswa.2024.126292_b0090
  article-title: A computer method for calculating Kendall’s Tau with ungrouped data
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1966.10480879
– ident: 10.1016/j.eswa.2024.126292_b0175
  doi: 10.7498/aps.71.20220565
– volume: 42
  start-page: 74
  year: 2013
  ident: 10.1016/j.eswa.2024.126292_b0235
  article-title: Identifying influential nodes in complex networks with community structure
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2013.01.017
– volume: 260
  year: 2023
  ident: 10.1016/j.eswa.2024.126292_b0245
  article-title: Ranking influential spreaders based on both node k-shell and structural hole
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2022.110163
– volume: 378
  start-page: 3279
  issue: 45
  year: 2014
  ident: 10.1016/j.eswa.2024.126292_b0110
  article-title: Identifying the node spreading influence with largest k-core values
  publication-title: Physics Letters A
  doi: 10.1016/j.physleta.2014.09.054
– volume: 6
  start-page: 888
  issue: 11
  year: 2010
  ident: 10.1016/j.eswa.2024.126292_b0085
  article-title: Identification of influential spreaders in complex networks
  publication-title: Nature Physics
  doi: 10.1038/nphys1746
– volume: 143
  year: 2021
  ident: 10.1016/j.eswa.2024.126292_b0100
  article-title: A generalized gravity model for influential spreaders identification in complex networks
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2020.110456
– volume: 609
  start-page: 1706
  year: 2022
  ident: 10.1016/j.eswa.2024.126292_b0240
  article-title: The random walk-based gravity model to identify influential nodes in complex networks
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2022.07.084
– volume: 12
  start-page: 93711
  year: 2024
  ident: 10.1016/j.eswa.2024.126292_b0040
  article-title: Quantifying node influence in networks: Isolating-betweenness centrality for improved ranking
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3424834
– volume: 55
  start-page: 591
  issue: 1
  year: 2004
  ident: 10.1016/j.eswa.2024.126292_b0050
  article-title: Social influence: Compliance and conformity
  publication-title: Annual Review of Psychology
  doi: 10.1146/annurev.psych.55.090902.142015
– volume: 35
  start-page: 1225
  issue: 2
  year: 2018
  ident: 10.1016/j.eswa.2024.126292_b0190
  article-title: SIRIF: Supervised influence ranking based on influential network
  publication-title: Journal of Intelligent & Fuzzy Systems
  doi: 10.3233/JIFS-169667
– volume: 30
  start-page: 107
  issue: 1–7
  year: 1998
  ident: 10.1016/j.eswa.2024.126292_b0025
  article-title: The anatomy of a large-scale hypertextual Web search engine
  publication-title: Computer Networks and ISDN Systems
  doi: 10.1016/S0169-7552(98)00110-X
– volume: 119
  start-page: 332
  year: 2019
  ident: 10.1016/j.eswa.2024.126292_b0205
  article-title: Identifying influential nodes based on fuzzy local dimension in complex networks
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2019.01.011
– volume: 271
  start-page: 166
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2024.126292_b0070
  article-title: What’s in a crowd? Analysis of face-to-face behavioral networks
  publication-title: Journal of Theoretical Biology
  doi: 10.1016/j.jtbi.2010.11.033
– volume: 66
  issue: 1
  year: 2002
  ident: 10.1016/j.eswa.2024.126292_b0145
  article-title: Spread of epidemic disease on networks
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.66.016128
– volume: 618
  start-page: 98
  year: 2022
  ident: 10.1016/j.eswa.2024.126292_b0230
  article-title: A novel method to identify influential nodes in complex networks based on gravity centrality
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2022.10.070
– volume: 7
  start-page: 10168
  issue: 1
  year: 2016
  ident: 10.1016/j.eswa.2024.126292_b0130
  article-title: The H-index of a network node and its relation to degree and coreness
  publication-title: Nature Communications
  doi: 10.1038/ncomms10168
– volume: 411
  start-page: 41
  issue: 6833
  year: 2001
  ident: 10.1016/j.eswa.2024.126292_b0075
  article-title: Lethality and centrality in protein networks
  publication-title: Nature
  doi: 10.1038/35075138
– volume: 11
  start-page: 808
  year: 2023
  ident: 10.1016/j.eswa.2024.126292_b0065
  article-title: Generalization of relative change in a centrality measure to identify vital nodes in complex networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3232288
– volume: 33
  start-page: 286
  issue: 2
  year: 2018
  ident: 10.1016/j.eswa.2024.126292_b0140
  article-title: An efficient two-phase model for computing influential nodes in social networks using social actions
  publication-title: Journal of Computer Science & Technology
  doi: 10.1007/s11390-018-1820-9
– volume: 33
  start-page: 1
  issue: 2
  year: 2016
  ident: 10.1016/j.eswa.2024.126292_b0180
  article-title: Identifying influence of nodes in complex networks with coreness centrality: Decreasing the impact of densely local connection
  publication-title: Chinese Physics Letters
– volume: 110
  start-page: 41
  year: 2018
  ident: 10.1016/j.eswa.2024.126292_b0015
  article-title: A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2018.03.014
SSID ssj0017007
Score 2.5225368
SecondaryResourceType review_article
Snippet Identifying influential spreaders is crucial for understanding the dynamics of information diffusion within complex networks. Several centrality methods have...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 126292
SubjectTerms Cluster algorithm
Complex network
Global critical nodes
Local influence
Node influence
Title GLC: A dual-perspective approach for identifying influential nodes in complex networks
URI https://dx.doi.org/10.1016/j.eswa.2024.126292
Volume 268
WOSCitedRecordID wos001421913100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017007
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5ByoEL5SlaWrQHbpWr7PqxNreoaguoqjgUlJ4s70u4Km6U2DTi1zP7spMAFT1wsazVemN5Ps1OZr9vBqF3nOWmxXYcJVKICLwki7jgSZRrwk2AomRuhcJn7Pw8n06Lzz6nu7DtBFjT5MtlMfuvpoYxMLaRzt7D3P2iMAD3YHS4gtnh-k-GPz07cnJzo7KKZoOYsq8fbqmFtVXoOpVT7TqVtCZ73txIy9FyZHO1PGgcUXyxlsM3BZJbXwY6CORWjsL7Y5zO5Vcv63k3cH_qzuZc65_flN83berAc4OHiaedzeNeVs33sMH6_ARNLa0lXUs0MgCB68UTfC51vXS81yQ0o64j3m8O3eUWrg7V4tZUiaLJ4TB5vXr2xq7Wcw0Dje2qNGuUZo3SrfEQbVGWFvkIbU0-Hk8_9adPbOxk9uHNvdjK8QI33-TPAc1KkHLxFD3x_y7wxKHiGXqgmudoO3TuwN6Rv0BfASTv8QRvQgQHiGCACF6BCF6BCLYQgRHsIYIDRF6iLyfHF0cfIt9hIxJxkrSRYDrOE6UprcZckMp0FyuYUGJMVMUZTWVCSAVboKScFzzTVBOpaCa14DyTVfwKjZqbRr1GmMiUCi3iimY60SmtiKAihuhHwmqSyh1EwmcqhS8_b7qgXJd_N9AOOuifmbniK3fOTsPXL3346MLCEsB0x3O79_qVN-jxgPI9NGrnndpHj8SPtl7M33ok_QKlDpUW
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GLC%3A+A+dual-perspective+approach+for+identifying+influential+nodes+in+complex+networks&rft.jtitle=Expert+systems+with+applications&rft.au=Ruan%2C+Yirun&rft.au=Liu%2C+Sizheng&rft.au=Tang%2C+Jun&rft.au=Guo%2C+Yanming&rft.date=2025-04-05&rft.issn=0957-4174&rft.volume=268&rft.spage=126292&rft_id=info:doi/10.1016%2Fj.eswa.2024.126292&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2024_126292
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon