GLC: A dual-perspective approach for identifying influential nodes in complex networks
Identifying influential spreaders is crucial for understanding the dynamics of information diffusion within complex networks. Several centrality methods have been proposed to address this, but these studies often concentrate on only one aspect. To solve this problem, we introduce a dual-perspective...
Gespeichert in:
| Veröffentlicht in: | Expert systems with applications Jg. 268; S. 126292 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
05.04.2025
|
| Schlagworte: | |
| ISSN: | 0957-4174 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Identifying influential spreaders is crucial for understanding the dynamics of information diffusion within complex networks. Several centrality methods have been proposed to address this, but these studies often concentrate on only one aspect. To solve this problem, we introduce a dual-perspective approach which considers both global and local perspectives for identifying influential nodes in complex networks. From a global perspective, if a node has the capability to efficiently transmit information to various clusters within a network, then the information originating from that node will quickly spread across a large area. From a local perspective, when a node has a greater number of neighbors—especially those that are significant within the network—the information emanating from that node is less likely to be confined to a localized region. Based on this understanding, we first design a novel clustering method to detect groups in which the connections among nodes are denser than those with the rest of the network. The most influential nodes in each group are identified as global critical nodes. Subsequently, the local influence of a node is defined by the number and significance of its neighboring nodes. Ultimately, nodes are ranked according to their local influence, their proximity to the global critical nodes using the shortest paths, and the importance of these global critical nodes. To evaluate the performance of the proposed method, the susceptible-infected-removed (SIR) diffusion model is used. Results of the investigation on real networks and realistic synthetic benchmarks show that the proposed method can identify nodes with high influence better than other centrality methods. |
|---|---|
| AbstractList | Identifying influential spreaders is crucial for understanding the dynamics of information diffusion within complex networks. Several centrality methods have been proposed to address this, but these studies often concentrate on only one aspect. To solve this problem, we introduce a dual-perspective approach which considers both global and local perspectives for identifying influential nodes in complex networks. From a global perspective, if a node has the capability to efficiently transmit information to various clusters within a network, then the information originating from that node will quickly spread across a large area. From a local perspective, when a node has a greater number of neighbors—especially those that are significant within the network—the information emanating from that node is less likely to be confined to a localized region. Based on this understanding, we first design a novel clustering method to detect groups in which the connections among nodes are denser than those with the rest of the network. The most influential nodes in each group are identified as global critical nodes. Subsequently, the local influence of a node is defined by the number and significance of its neighboring nodes. Ultimately, nodes are ranked according to their local influence, their proximity to the global critical nodes using the shortest paths, and the importance of these global critical nodes. To evaluate the performance of the proposed method, the susceptible-infected-removed (SIR) diffusion model is used. Results of the investigation on real networks and realistic synthetic benchmarks show that the proposed method can identify nodes with high influence better than other centrality methods. |
| ArticleNumber | 126292 |
| Author | Yu, Tianyuan Ruan, Yirun Liu, Sizheng Tang, Jun Guo, Yanming |
| Author_xml | – sequence: 1 givenname: Yirun surname: Ruan fullname: Ruan, Yirun email: ruanyirun@nudt.edu.cn – sequence: 2 givenname: Sizheng surname: Liu fullname: Liu, Sizheng email: liusizheng20@nudt.edu.cn – sequence: 3 givenname: Jun surname: Tang fullname: Tang, Jun email: tangjun06@nudt.edu.cn – sequence: 4 givenname: Yanming surname: Guo fullname: Guo, Yanming email: guoyanming@nudt.edu.cn – sequence: 5 givenname: Tianyuan surname: Yu fullname: Yu, Tianyuan email: ty.yu@nudt.edu.cn |
| BookMark | eNp9kLFOwzAURT0UibbwA0z-gQTbTZMGsVQVFKRKLMBqPdvP4JLakZ228PckKhNDp6f7pHOleyZk5INHQm44yznj5e02x3SEXDBR5FyUohYjMmb1vMoKXhWXZJLSljFeMVaNyft6s7qjS2r20GQtxtSi7twBKbRtDKA_qQ2ROoO-c_bH-Q_qvG32Q4SG-mAw9R-qw65t8Jt67I4hfqUrcmGhSXj9d6fk7fHhdfWUbV7Wz6vlJtOzougyXdnZokArBDClOZjSqLrSqBlHUJWYm4JzAGOMUKpWpRWWGxSlsVqp0sBsSsSpV8eQUkQr2-h2EH8kZ3KwIbdysCEHG_Jko4cW_yDtOuhc8F0E15xH708o9qMODqNM2qHXaFzsxUkT3Dn8FwnngoU |
| CitedBy_id | crossref_primary_10_1007_s13278_025_01480_5 crossref_primary_10_1186_s40537_025_01220_8 crossref_primary_10_1016_j_engappai_2025_111088 crossref_primary_10_1038_s41540_025_00526_w crossref_primary_10_1016_j_ipm_2025_104201 crossref_primary_10_7498_aps_74_20250621 crossref_primary_10_7498_aps_74_20250329 crossref_primary_10_1016_j_omega_2025_103387 |
| Cites_doi | 10.1038/s41598-019-44930-9 10.1103/PhysRevLett.96.040601 10.1038/nature04209 10.1016/j.physleta.2013.02.039 10.1137/S003614450342480 10.1103/PhysRevE.74.036104 10.1016/j.physa.2022.126885 10.1016/j.knosys.2019.105464 10.1016/j.physa.2013.10.047 10.1016/j.chaos.2015.08.019 10.1016/j.eswa.2021.115778 10.1016/j.knosys.2021.107198 10.1371/journal.pone.0077455 10.1063/1.5086059 10.1103/PhysRevLett.105.218701 10.1093/biomet/33.3.239 10.1016/j.ins.2021.01.053 10.1016/j.physa.2015.12.162 10.1109/JSYST.2022.3227632 10.1103/PhysRevE.78.046110 10.1038/srep09602 10.1002/sim.5408 10.1007/s12652-020-01760-2 10.1016/j.eswa.2023.121154 10.1016/j.physa.2011.12.055 10.1088/1367-2630/13/12/123005 10.1080/01621459.1966.10480879 10.7498/aps.71.20220565 10.1016/j.knosys.2013.01.017 10.1016/j.knosys.2022.110163 10.1016/j.physleta.2014.09.054 10.1038/nphys1746 10.1016/j.chaos.2020.110456 10.1016/j.ins.2022.07.084 10.1109/ACCESS.2024.3424834 10.1146/annurev.psych.55.090902.142015 10.3233/JIFS-169667 10.1016/S0169-7552(98)00110-X 10.1016/j.chaos.2019.01.011 10.1016/j.jtbi.2010.11.033 10.1103/PhysRevE.66.016128 10.1016/j.ins.2022.10.070 10.1038/ncomms10168 10.1038/35075138 10.1109/ACCESS.2022.3232288 10.1007/s11390-018-1820-9 10.1016/j.chaos.2018.03.014 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors |
| Copyright_xml | – notice: 2025 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.eswa.2024.126292 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_eswa_2024_126292 S0957417424031592 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXKI AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABMVD ABUCO ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANKPU AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAYWO AAYXX ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ LG9 LY1 LY7 M41 R2- SBC SET WUQ XPP ZMT ~HD |
| ID | FETCH-LOGICAL-c344t-c7f384ef22a0bc1ad6db97cec01eab725d411aaddd2bb9b6f2f1de26dfcbb6da3 |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001421913100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Tue Nov 18 21:12:14 EST 2025 Sat Nov 29 08:17:44 EST 2025 Sat Feb 15 15:52:42 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cluster algorithm Local influence Global critical nodes Node influence Complex network |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c344t-c7f384ef22a0bc1ad6db97cec01eab725d411aaddd2bb9b6f2f1de26dfcbb6da3 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.eswa.2024.126292 |
| ParticipantIDs | crossref_primary_10_1016_j_eswa_2024_126292 crossref_citationtrail_10_1016_j_eswa_2024_126292 elsevier_sciencedirect_doi_10_1016_j_eswa_2024_126292 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-05 |
| PublicationDateYYYYMMDD | 2025-04-05 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Liu, Wang, Deng (b0120) 2020; 193 Tidke, Mehta, Dhanani, Tiwari, Trivedi, Kohle (b0190) 2018; 35 Zhang, Shuai, Lü (b0230) 2022; 618 Ma, Ma, Zhang, Wang (b0135) 2016; 451 Jeong, Mason, Barabási, Oltvai (b0075) 2001; 411 Zeng, Zhang (b0225) 2013; 377 Li, Shang, Deng (b0100) 2021; 143 (17), 176401. https://doi.org/10.7498/aps.71.20220565. Qu, Zhan, Wang, Wu, Zhang (b0165) 2019; 29 Rual, Venkatesan, Hao, Hirozane-Kishikawa, Dricot, Li, Berriz, Gibbons, Dreze, Ayivi-Guedehoussou, Klitgord, Simon, Boxem, Milstein, Rosenberg, Goldberg, Zhang, Wong, Franklin, Vidal (b0170) 2005; 437 Beni, Bouyer (b0010) 2020; 11 Shang, Deng, Cheong (b0185) 2021; 577 Blagus, Šubelj, Bajec (b0020) 2012; 391 Wang, Sun, Gan, Fan, Shi, Hu (b0200) 2022; 593 Christakis, Fowler (b0045) 2013; 32 Li, Ren, Ma, Liu, Zhang, Zhou (b0105) 2019; 9 Xu, Dong (b0215) 2024; 235 Mehdi Azaouzi;Lotfi Ben Romdhane (b0140) 2018; 33 Chen, Gao, Lü, Zhou (b0035) 2013; 8 , Pastor-Satorras, Vespignanj (b0160) 2011 Castellano, Pastor-Satorras (b0030) 2010; 105 Ullah, Wang, Sheng, Long, Khan, Sun (b0195) 2021; 186 Kitsak, Gallos, Havlin, Liljeros, Muchnik, Stanley, Makse (b0085) 2010; 6 Newman (b0150) 2003; 45 Cialdini, Goldstein (b0050) 2004; 55 Hajarathaiah, Enduri, Dhuli, Anamalamudi, Cenkeramaddi (b0065) 2023; 11 Fan, Shu, Li, Li (b0060) 2023; 17 Ruan, Lao, Xiao, Wang, Bai (b0180) 2016; 33 Lü, Chen, Zhou (b0115) 2011; 13 Berahmand, Bouyer, Samadi (b0015) 2018; 110 Zhao, Wen, Jahanshahi, Cheong (b0240) 2022; 609 Zhao, Li, Sun, Zhang, Liu (b0245) 2023; 260 Knight (b0090) 1966; 61 Liu, Tang, Zhou, Do (b0125) 2015; 5 Bae, Kim (b0005) 2014; 395 Lancichinetti, Fortunato, Radicchi (b0095) 2008; 78 Brin, Page (b0025) 1998; 30 Dorogovtsev, Goltsev, Mendes (b0055) 2006; 96 Newman (b0145) 2002; 66 Wen, Jiang (b0205) 2019; 119 Zhang, Zhu, Wang, Zhao (b0235) 2013; 42 Yang, Xiao (b0220) 2021; 227 Lü, Zhou, Zhang, Stanley (b0130) 2016; 7 Chiranjeevi, Dhuli, Enduri, Hajarathaiah, Cenkeramaddi (b0040) 2024; 12 Kendall (b0080) 1945; 33 Xu, Wang, Zhang (b0210) 2015; 81 Isella, Stehlé, Barrat, Cattuto, Pinton, Van Den Broeck (b0070) 2011; 271 Lin, Guo, Dong, Tang, Liu (b0110) 2014; 378 Newman (b0155) 2006; 74 Ruan, Y.-R., Lao, S.-Y., Tang, J., Bai, L., Guo, Y.-M., & College of Systems Engineering, National University of Defense Technology, Changsha 410073, China. (2022). Node importance ranking method in complex network based on gravity method. Zhao (10.1016/j.eswa.2024.126292_b0240) 2022; 609 Zhao (10.1016/j.eswa.2024.126292_b0245) 2023; 260 10.1016/j.eswa.2024.126292_b0175 Ullah (10.1016/j.eswa.2024.126292_b0195) 2021; 186 Christakis (10.1016/j.eswa.2024.126292_b0045) 2013; 32 Hajarathaiah (10.1016/j.eswa.2024.126292_b0065) 2023; 11 Ruan (10.1016/j.eswa.2024.126292_b0180) 2016; 33 Mehdi Azaouzi;Lotfi Ben Romdhane (10.1016/j.eswa.2024.126292_b0140) 2018; 33 Castellano (10.1016/j.eswa.2024.126292_b0030) 2010; 105 Lü (10.1016/j.eswa.2024.126292_b0130) 2016; 7 Newman (10.1016/j.eswa.2024.126292_b0150) 2003; 45 Lancichinetti (10.1016/j.eswa.2024.126292_b0095) 2008; 78 Qu (10.1016/j.eswa.2024.126292_b0165) 2019; 29 Pastor-Satorras (10.1016/j.eswa.2024.126292_b0160) 2011 Isella (10.1016/j.eswa.2024.126292_b0070) 2011; 271 Xu (10.1016/j.eswa.2024.126292_b0210) 2015; 81 Ma (10.1016/j.eswa.2024.126292_b0135) 2016; 451 Wen (10.1016/j.eswa.2024.126292_b0205) 2019; 119 Li (10.1016/j.eswa.2024.126292_b0105) 2019; 9 Beni (10.1016/j.eswa.2024.126292_b0010) 2020; 11 Knight (10.1016/j.eswa.2024.126292_b0090) 1966; 61 Rual (10.1016/j.eswa.2024.126292_b0170) 2005; 437 Kitsak (10.1016/j.eswa.2024.126292_b0085) 2010; 6 Wang (10.1016/j.eswa.2024.126292_b0200) 2022; 593 Lü (10.1016/j.eswa.2024.126292_b0115) 2011; 13 Xu (10.1016/j.eswa.2024.126292_b0215) 2024; 235 Brin (10.1016/j.eswa.2024.126292_b0025) 1998; 30 Chen (10.1016/j.eswa.2024.126292_b0035) 2013; 8 Cialdini (10.1016/j.eswa.2024.126292_b0050) 2004; 55 Lin (10.1016/j.eswa.2024.126292_b0110) 2014; 378 Newman (10.1016/j.eswa.2024.126292_b0145) 2002; 66 Zhang (10.1016/j.eswa.2024.126292_b0235) 2013; 42 Blagus (10.1016/j.eswa.2024.126292_b0020) 2012; 391 Shang (10.1016/j.eswa.2024.126292_b0185) 2021; 577 Chiranjeevi (10.1016/j.eswa.2024.126292_b0040) 2024; 12 Jeong (10.1016/j.eswa.2024.126292_b0075) 2001; 411 Liu (10.1016/j.eswa.2024.126292_b0120) 2020; 193 Kendall (10.1016/j.eswa.2024.126292_b0080) 1945; 33 Liu (10.1016/j.eswa.2024.126292_b0125) 2015; 5 Yang (10.1016/j.eswa.2024.126292_b0220) 2021; 227 Newman (10.1016/j.eswa.2024.126292_b0155) 2006; 74 Dorogovtsev (10.1016/j.eswa.2024.126292_b0055) 2006; 96 Fan (10.1016/j.eswa.2024.126292_b0060) 2023; 17 Bae (10.1016/j.eswa.2024.126292_b0005) 2014; 395 Li (10.1016/j.eswa.2024.126292_b0100) 2021; 143 Zhang (10.1016/j.eswa.2024.126292_b0230) 2022; 618 Berahmand (10.1016/j.eswa.2024.126292_b0015) 2018; 110 Tidke (10.1016/j.eswa.2024.126292_b0190) 2018; 35 Zeng (10.1016/j.eswa.2024.126292_b0225) 2013; 377 |
| References_xml | – volume: 395 start-page: 549 year: 2014 end-page: 559 ident: b0005 article-title: Identifying and ranking influential spreaders in complex networks by neighborhood coreness – volume: 33 start-page: 286 year: 2018 end-page: 304 ident: b0140 article-title: An efficient two-phase model for computing influential nodes in social networks using social actions – reference: (17), 176401. https://doi.org/10.7498/aps.71.20220565. – volume: 42 start-page: 74 year: 2013 end-page: 84 ident: b0235 article-title: Identifying influential nodes in complex networks with community structure – volume: 271 start-page: 166 year: 2011 end-page: 180 ident: b0070 article-title: What’s in a crowd? Analysis of face-to-face behavioral networks – volume: 6 start-page: 888 year: 2010 end-page: 893 ident: b0085 article-title: Identification of influential spreaders in complex networks – volume: 451 start-page: 205 year: 2016 end-page: 212 ident: b0135 article-title: Identifying influential spreaders in complex networks based on gravity formula – volume: 55 start-page: 591 year: 2004 end-page: 621 ident: b0050 article-title: Social influence: Compliance and conformity – volume: 11 start-page: 808 year: 2023 end-page: 824 ident: b0065 article-title: Generalization of relative change in a centrality measure to identify vital nodes in complex networks – start-page: 493 year: 2011 end-page: 496 ident: b0160 article-title: Epidemic spreading in scale-free networks – volume: 32 start-page: 556 year: 2013 end-page: 577 ident: b0045 article-title: Social contagion theory: Examining dynamic social networks and human behavior – volume: 17 start-page: 4874 year: 2023 end-page: 4884 ident: b0060 article-title: Critical nodes identification for power grid based on electrical topology and power flow distribution – volume: 378 start-page: 3279 year: 2014 end-page: 3284 ident: b0110 article-title: Identifying the node spreading influence with largest – volume: 227 year: 2021 ident: b0220 article-title: An improved gravity model to identify influential nodes in complex networks based on k-shell method – volume: 577 start-page: 162 year: 2021 end-page: 179 ident: b0185 article-title: Identifying influential nodes in complex networks: Effective distance gravity model – volume: 30 start-page: 107 year: 1998 end-page: 117 ident: b0025 article-title: The anatomy of a large-scale hypertextual Web search engine – volume: 66 year: 2002 ident: b0145 article-title: Spread of epidemic disease on networks – volume: 105 year: 2010 ident: b0030 article-title: Thresholds for epidemic spreading in networks – volume: 193 year: 2020 ident: b0120 article-title: GMM: A generalized mechanics model for identifying the importance of nodes in complex networks – volume: 12 start-page: 93711 year: 2024 end-page: 93722 ident: b0040 article-title: Quantifying node influence in networks: Isolating-betweenness centrality for improved ranking – volume: 110 start-page: 41 year: 2018 end-page: 54 ident: b0015 article-title: A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks – volume: 74 year: 2006 ident: b0155 article-title: Finding community structure in networks using the eigenvectors of matrices – volume: 377 start-page: 1031 year: 2013 end-page: 1035 ident: b0225 article-title: Ranking spreaders by decomposing complex networks – volume: 13 start-page: 1 year: 2011 end-page: 10 ident: b0115 article-title: The small world yields the most effective information spreading – volume: 391 start-page: 2794 year: 2012 end-page: 2802 ident: b0020 article-title: Self-similar scaling of density in complex real-world networks – volume: 411 start-page: 41 year: 2001 end-page: 42 ident: b0075 article-title: Lethality and centrality in protein networks – volume: 5 start-page: 9602 year: 2015 ident: b0125 article-title: Core-like groups result in invalidation of identifying super-spreader by k-shell decomposition – volume: 11 start-page: 4889 year: 2020 end-page: 4908 ident: b0010 article-title: TI-SC: Top-k influential nodes selection based on community detection and scoring criteria in social networks – reference: , – volume: 78 year: 2008 ident: b0095 article-title: Benchmark graphs for testing community detection algorithms – volume: 29 year: 2019 ident: b0165 article-title: Temporal information gathering process for node ranking in time-varying networks – volume: 96 year: 2006 ident: b0055 article-title: K-core organization of complex networks – volume: 186 year: 2021 ident: b0195 article-title: Identifying vital nodes from local and global perspectives in complex networks – volume: 609 start-page: 1706 year: 2022 end-page: 1720 ident: b0240 article-title: The random walk-based gravity model to identify influential nodes in complex networks – volume: 260 year: 2023 ident: b0245 article-title: Ranking influential spreaders based on both node k-shell and structural hole – reference: Ruan, Y.-R., Lao, S.-Y., Tang, J., Bai, L., Guo, Y.-M., & College of Systems Engineering, National University of Defense Technology, Changsha 410073, China. (2022). Node importance ranking method in complex network based on gravity method. – volume: 33 start-page: 1 year: 2016 ident: b0180 article-title: Identifying influence of nodes in complex networks with coreness centrality: Decreasing the impact of densely local connection – volume: 45 start-page: 167 year: 2003 end-page: 256 ident: b0150 article-title: The structure and function of complex networks – volume: 235 year: 2024 ident: b0215 article-title: CAGM: A communicability-based adaptive gravity model for influential nodes identification in complex networks – volume: 437 start-page: 1173 year: 2005 end-page: 1178 ident: b0170 article-title: Towards a proteome-scale map of the human protein–protein interaction network – volume: 143 year: 2021 ident: b0100 article-title: A generalized gravity model for influential spreaders identification in complex networks – volume: 7 start-page: 10168 year: 2016 ident: b0130 article-title: The H-index of a network node and its relation to degree and coreness – volume: 33 start-page: 239 year: 1945 end-page: 251 ident: b0080 article-title: The treatment of ties in ranking problems – volume: 8 year: 2013 ident: b0035 article-title: Identifying influential nodes in large-scale directed networks: The role of clustering – volume: 9 start-page: 8387 year: 2019 ident: b0105 article-title: Identifying influential spreaders by gravity model – volume: 593 year: 2022 ident: b0200 article-title: Influential node identification by aggregating local structure information – volume: 119 start-page: 332 year: 2019 end-page: 342 ident: b0205 article-title: Identifying influential nodes based on fuzzy local dimension in complex networks – volume: 618 start-page: 98 year: 2022 end-page: 117 ident: b0230 article-title: A novel method to identify influential nodes in complex networks based on gravity centrality – volume: 35 start-page: 1225 year: 2018 end-page: 1237 ident: b0190 article-title: SIRIF: Supervised influence ranking based on influential network – volume: 81 start-page: 78 year: 2015 end-page: 82 ident: b0210 article-title: Conformity-based cooperation in online social networks: The effect of heterogeneous social influence – volume: 61 start-page: 436 year: 1966 end-page: 439 ident: b0090 article-title: A computer method for calculating Kendall’s Tau with ungrouped data – volume: 9 start-page: 8387 issue: 1 year: 2019 ident: 10.1016/j.eswa.2024.126292_b0105 article-title: Identifying influential spreaders by gravity model publication-title: Scientific Reports doi: 10.1038/s41598-019-44930-9 – volume: 96 issue: 4 year: 2006 ident: 10.1016/j.eswa.2024.126292_b0055 article-title: K-core organization of complex networks publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.96.040601 – volume: 437 start-page: 1173 issue: 7062 year: 2005 ident: 10.1016/j.eswa.2024.126292_b0170 article-title: Towards a proteome-scale map of the human protein–protein interaction network publication-title: Nature doi: 10.1038/nature04209 – volume: 377 start-page: 1031 issue: 14 year: 2013 ident: 10.1016/j.eswa.2024.126292_b0225 article-title: Ranking spreaders by decomposing complex networks publication-title: Physics Letters A doi: 10.1016/j.physleta.2013.02.039 – start-page: 493 year: 2011 ident: 10.1016/j.eswa.2024.126292_b0160 article-title: Epidemic spreading in scale-free networks – volume: 45 start-page: 167 issue: 2 year: 2003 ident: 10.1016/j.eswa.2024.126292_b0150 article-title: The structure and function of complex networks publication-title: SIAM Review doi: 10.1137/S003614450342480 – volume: 74 issue: 3 year: 2006 ident: 10.1016/j.eswa.2024.126292_b0155 article-title: Finding community structure in networks using the eigenvectors of matrices publication-title: Physical Review E doi: 10.1103/PhysRevE.74.036104 – volume: 593 year: 2022 ident: 10.1016/j.eswa.2024.126292_b0200 article-title: Influential node identification by aggregating local structure information publication-title: Physica A: Statistical Mechanics and Its Applications doi: 10.1016/j.physa.2022.126885 – volume: 193 year: 2020 ident: 10.1016/j.eswa.2024.126292_b0120 article-title: GMM: A generalized mechanics model for identifying the importance of nodes in complex networks publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2019.105464 – volume: 395 start-page: 549 year: 2014 ident: 10.1016/j.eswa.2024.126292_b0005 article-title: Identifying and ranking influential spreaders in complex networks by neighborhood coreness publication-title: Physica A: Statistical Mechanics and Its Applications doi: 10.1016/j.physa.2013.10.047 – volume: 81 start-page: 78 year: 2015 ident: 10.1016/j.eswa.2024.126292_b0210 article-title: Conformity-based cooperation in online social networks: The effect of heterogeneous social influence publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2015.08.019 – volume: 186 year: 2021 ident: 10.1016/j.eswa.2024.126292_b0195 article-title: Identifying vital nodes from local and global perspectives in complex networks publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.115778 – volume: 227 year: 2021 ident: 10.1016/j.eswa.2024.126292_b0220 article-title: An improved gravity model to identify influential nodes in complex networks based on k-shell method publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.107198 – volume: 8 issue: 10 year: 2013 ident: 10.1016/j.eswa.2024.126292_b0035 article-title: Identifying influential nodes in large-scale directed networks: The role of clustering publication-title: PLoS ONE doi: 10.1371/journal.pone.0077455 – volume: 29 issue: 3 year: 2019 ident: 10.1016/j.eswa.2024.126292_b0165 article-title: Temporal information gathering process for node ranking in time-varying networks publication-title: Chaos doi: 10.1063/1.5086059 – volume: 105 issue: 21 year: 2010 ident: 10.1016/j.eswa.2024.126292_b0030 article-title: Thresholds for epidemic spreading in networks publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.105.218701 – volume: 33 start-page: 239 issue: 3 year: 1945 ident: 10.1016/j.eswa.2024.126292_b0080 article-title: The treatment of ties in ranking problems publication-title: Biometrika doi: 10.1093/biomet/33.3.239 – volume: 577 start-page: 162 year: 2021 ident: 10.1016/j.eswa.2024.126292_b0185 article-title: Identifying influential nodes in complex networks: Effective distance gravity model publication-title: Information Sciences doi: 10.1016/j.ins.2021.01.053 – volume: 451 start-page: 205 year: 2016 ident: 10.1016/j.eswa.2024.126292_b0135 article-title: Identifying influential spreaders in complex networks based on gravity formula publication-title: Physica A: Statistical Mechanics and Its Applications doi: 10.1016/j.physa.2015.12.162 – volume: 17 start-page: 4874 issue: 3 year: 2023 ident: 10.1016/j.eswa.2024.126292_b0060 article-title: Critical nodes identification for power grid based on electrical topology and power flow distribution publication-title: IEEE Systems Journal doi: 10.1109/JSYST.2022.3227632 – volume: 78 issue: 4 year: 2008 ident: 10.1016/j.eswa.2024.126292_b0095 article-title: Benchmark graphs for testing community detection algorithms publication-title: Physical Review E doi: 10.1103/PhysRevE.78.046110 – volume: 5 start-page: 9602 issue: 1 year: 2015 ident: 10.1016/j.eswa.2024.126292_b0125 article-title: Core-like groups result in invalidation of identifying super-spreader by k-shell decomposition publication-title: Scientific Reports doi: 10.1038/srep09602 – volume: 32 start-page: 556 issue: 4 year: 2013 ident: 10.1016/j.eswa.2024.126292_b0045 article-title: Social contagion theory: Examining dynamic social networks and human behavior publication-title: Statistics in Medicine doi: 10.1002/sim.5408 – volume: 11 start-page: 4889 issue: 11 year: 2020 ident: 10.1016/j.eswa.2024.126292_b0010 article-title: TI-SC: Top-k influential nodes selection based on community detection and scoring criteria in social networks publication-title: Journal of Ambient Intelligence and Humanized Computing doi: 10.1007/s12652-020-01760-2 – volume: 235 year: 2024 ident: 10.1016/j.eswa.2024.126292_b0215 article-title: CAGM: A communicability-based adaptive gravity model for influential nodes identification in complex networks publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.121154 – volume: 391 start-page: 2794 issue: 8 year: 2012 ident: 10.1016/j.eswa.2024.126292_b0020 article-title: Self-similar scaling of density in complex real-world networks publication-title: Physica A: Statistical Mechanics and Its Applications doi: 10.1016/j.physa.2011.12.055 – volume: 13 start-page: 1 issue: 12 year: 2011 ident: 10.1016/j.eswa.2024.126292_b0115 article-title: The small world yields the most effective information spreading publication-title: New Journal of Physics doi: 10.1088/1367-2630/13/12/123005 – volume: 61 start-page: 436 issue: 314 year: 1966 ident: 10.1016/j.eswa.2024.126292_b0090 article-title: A computer method for calculating Kendall’s Tau with ungrouped data publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1966.10480879 – ident: 10.1016/j.eswa.2024.126292_b0175 doi: 10.7498/aps.71.20220565 – volume: 42 start-page: 74 year: 2013 ident: 10.1016/j.eswa.2024.126292_b0235 article-title: Identifying influential nodes in complex networks with community structure publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2013.01.017 – volume: 260 year: 2023 ident: 10.1016/j.eswa.2024.126292_b0245 article-title: Ranking influential spreaders based on both node k-shell and structural hole publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2022.110163 – volume: 378 start-page: 3279 issue: 45 year: 2014 ident: 10.1016/j.eswa.2024.126292_b0110 article-title: Identifying the node spreading influence with largest k-core values publication-title: Physics Letters A doi: 10.1016/j.physleta.2014.09.054 – volume: 6 start-page: 888 issue: 11 year: 2010 ident: 10.1016/j.eswa.2024.126292_b0085 article-title: Identification of influential spreaders in complex networks publication-title: Nature Physics doi: 10.1038/nphys1746 – volume: 143 year: 2021 ident: 10.1016/j.eswa.2024.126292_b0100 article-title: A generalized gravity model for influential spreaders identification in complex networks publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2020.110456 – volume: 609 start-page: 1706 year: 2022 ident: 10.1016/j.eswa.2024.126292_b0240 article-title: The random walk-based gravity model to identify influential nodes in complex networks publication-title: Information Sciences doi: 10.1016/j.ins.2022.07.084 – volume: 12 start-page: 93711 year: 2024 ident: 10.1016/j.eswa.2024.126292_b0040 article-title: Quantifying node influence in networks: Isolating-betweenness centrality for improved ranking publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3424834 – volume: 55 start-page: 591 issue: 1 year: 2004 ident: 10.1016/j.eswa.2024.126292_b0050 article-title: Social influence: Compliance and conformity publication-title: Annual Review of Psychology doi: 10.1146/annurev.psych.55.090902.142015 – volume: 35 start-page: 1225 issue: 2 year: 2018 ident: 10.1016/j.eswa.2024.126292_b0190 article-title: SIRIF: Supervised influence ranking based on influential network publication-title: Journal of Intelligent & Fuzzy Systems doi: 10.3233/JIFS-169667 – volume: 30 start-page: 107 issue: 1–7 year: 1998 ident: 10.1016/j.eswa.2024.126292_b0025 article-title: The anatomy of a large-scale hypertextual Web search engine publication-title: Computer Networks and ISDN Systems doi: 10.1016/S0169-7552(98)00110-X – volume: 119 start-page: 332 year: 2019 ident: 10.1016/j.eswa.2024.126292_b0205 article-title: Identifying influential nodes based on fuzzy local dimension in complex networks publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2019.01.011 – volume: 271 start-page: 166 issue: 1 year: 2011 ident: 10.1016/j.eswa.2024.126292_b0070 article-title: What’s in a crowd? Analysis of face-to-face behavioral networks publication-title: Journal of Theoretical Biology doi: 10.1016/j.jtbi.2010.11.033 – volume: 66 issue: 1 year: 2002 ident: 10.1016/j.eswa.2024.126292_b0145 article-title: Spread of epidemic disease on networks publication-title: Physical Review E doi: 10.1103/PhysRevE.66.016128 – volume: 618 start-page: 98 year: 2022 ident: 10.1016/j.eswa.2024.126292_b0230 article-title: A novel method to identify influential nodes in complex networks based on gravity centrality publication-title: Information Sciences doi: 10.1016/j.ins.2022.10.070 – volume: 7 start-page: 10168 issue: 1 year: 2016 ident: 10.1016/j.eswa.2024.126292_b0130 article-title: The H-index of a network node and its relation to degree and coreness publication-title: Nature Communications doi: 10.1038/ncomms10168 – volume: 411 start-page: 41 issue: 6833 year: 2001 ident: 10.1016/j.eswa.2024.126292_b0075 article-title: Lethality and centrality in protein networks publication-title: Nature doi: 10.1038/35075138 – volume: 11 start-page: 808 year: 2023 ident: 10.1016/j.eswa.2024.126292_b0065 article-title: Generalization of relative change in a centrality measure to identify vital nodes in complex networks publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3232288 – volume: 33 start-page: 286 issue: 2 year: 2018 ident: 10.1016/j.eswa.2024.126292_b0140 article-title: An efficient two-phase model for computing influential nodes in social networks using social actions publication-title: Journal of Computer Science & Technology doi: 10.1007/s11390-018-1820-9 – volume: 33 start-page: 1 issue: 2 year: 2016 ident: 10.1016/j.eswa.2024.126292_b0180 article-title: Identifying influence of nodes in complex networks with coreness centrality: Decreasing the impact of densely local connection publication-title: Chinese Physics Letters – volume: 110 start-page: 41 year: 2018 ident: 10.1016/j.eswa.2024.126292_b0015 article-title: A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2018.03.014 |
| SSID | ssj0017007 |
| Score | 2.5225368 |
| SecondaryResourceType | review_article |
| Snippet | Identifying influential spreaders is crucial for understanding the dynamics of information diffusion within complex networks. Several centrality methods have... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 126292 |
| SubjectTerms | Cluster algorithm Complex network Global critical nodes Local influence Node influence |
| Title | GLC: A dual-perspective approach for identifying influential nodes in complex networks |
| URI | https://dx.doi.org/10.1016/j.eswa.2024.126292 |
| Volume | 268 |
| WOSCitedRecordID | wos001421913100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017007 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5ByoEL5SlaWrQHbpWr7PqxNreoaguoqjgUlJ4s70u4Km6U2DTi1zP7spMAFT1wsazVemN5Ps1OZr9vBqF3nOWmxXYcJVKICLwki7jgSZRrwk2AomRuhcJn7Pw8n06Lzz6nu7DtBFjT5MtlMfuvpoYxMLaRzt7D3P2iMAD3YHS4gtnh-k-GPz07cnJzo7KKZoOYsq8fbqmFtVXoOpVT7TqVtCZ73txIy9FyZHO1PGgcUXyxlsM3BZJbXwY6CORWjsL7Y5zO5Vcv63k3cH_qzuZc65_flN83berAc4OHiaedzeNeVs33sMH6_ARNLa0lXUs0MgCB68UTfC51vXS81yQ0o64j3m8O3eUWrg7V4tZUiaLJ4TB5vXr2xq7Wcw0Dje2qNGuUZo3SrfEQbVGWFvkIbU0-Hk8_9adPbOxk9uHNvdjK8QI33-TPAc1KkHLxFD3x_y7wxKHiGXqgmudoO3TuwN6Rv0BfASTv8QRvQgQHiGCACF6BCF6BCLYQgRHsIYIDRF6iLyfHF0cfIt9hIxJxkrSRYDrOE6UprcZckMp0FyuYUGJMVMUZTWVCSAVboKScFzzTVBOpaCa14DyTVfwKjZqbRr1GmMiUCi3iimY60SmtiKAihuhHwmqSyh1EwmcqhS8_b7qgXJd_N9AOOuifmbniK3fOTsPXL3346MLCEsB0x3O79_qVN-jxgPI9NGrnndpHj8SPtl7M33ok_QKlDpUW |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GLC%3A+A+dual-perspective+approach+for+identifying+influential+nodes+in+complex+networks&rft.jtitle=Expert+systems+with+applications&rft.au=Ruan%2C+Yirun&rft.au=Liu%2C+Sizheng&rft.au=Tang%2C+Jun&rft.au=Guo%2C+Yanming&rft.date=2025-04-05&rft.issn=0957-4174&rft.volume=268&rft.spage=126292&rft_id=info:doi/10.1016%2Fj.eswa.2024.126292&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2024_126292 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |