EMDet: An entropy blending and multi-link parallel feature enhancement detection model for gas pipeline weak leakage detection

To improve the detection accuracy of gas pipeline leakage detection (PLD) especially when the leakage is weak, we propose a hybrid deep learning model, named EMDet in this paper, which incorporates two proposed algorithms called entropy blending (EB) and multi-link parallel feature enhancement (MPFE...

Full description

Saved in:
Bibliographic Details
Published in:Process safety and environmental protection Vol. 186; pp. 1580 - 1592
Main Authors: Ye, Lin, Wang, Chengyou, Zhou, Xiao, Qin, Zhiliang, Yu, Changsong
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.06.2024
Subjects:
ISSN:0957-5820, 1744-3598
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract To improve the detection accuracy of gas pipeline leakage detection (PLD) especially when the leakage is weak, we propose a hybrid deep learning model, named EMDet in this paper, which incorporates two proposed algorithms called entropy blending (EB) and multi-link parallel feature enhancement (MPFE). Firstly, the EB algorithm is used to determine the optimal number of decomposition layer Lo and the optimal intrinsic mode function Io for variational mode decomposition (VMD), elevating the leakage-related information in Io. Then, three coarse-grained scales have been applied to extract effective and robust features, where the coarse-grained scales are calculated based on the sizes required by the MPFE algorithm. Moreover, the MPFE algorithm is proposed to enhance the representation of features, thereby improving the detection accuracy of PLD. After that, the performance of the proposed EMDet has been evaluated on the negative pressure wave (NPW) data collected from realistic urban environments. Compared with the state-of-the-art PLD models, the performance of EMDet not only reaches the total accuracy of 98.67%, the F1-score of 98.65%, and the fault detection rate of 98.68%, but also reduces the false alarm rate to 0.66% and the missing alarm rate to 1.32%. Finally, the robustness results demonstrate the superior performance and broad application prospects of EMDet for PLD. [Display omitted]
AbstractList To improve the detection accuracy of gas pipeline leakage detection (PLD) especially when the leakage is weak, we propose a hybrid deep learning model, named EMDet in this paper, which incorporates two proposed algorithms called entropy blending (EB) and multi-link parallel feature enhancement (MPFE). Firstly, the EB algorithm is used to determine the optimal number of decomposition layer Lo and the optimal intrinsic mode function Io for variational mode decomposition (VMD), elevating the leakage-related information in Io. Then, three coarse-grained scales have been applied to extract effective and robust features, where the coarse-grained scales are calculated based on the sizes required by the MPFE algorithm. Moreover, the MPFE algorithm is proposed to enhance the representation of features, thereby improving the detection accuracy of PLD. After that, the performance of the proposed EMDet has been evaluated on the negative pressure wave (NPW) data collected from realistic urban environments. Compared with the state-of-the-art PLD models, the performance of EMDet not only reaches the total accuracy of 98.67%, the F1-score of 98.65%, and the fault detection rate of 98.68%, but also reduces the false alarm rate to 0.66% and the missing alarm rate to 1.32%. Finally, the robustness results demonstrate the superior performance and broad application prospects of EMDet for PLD. [Display omitted]
Author Qin, Zhiliang
Yu, Changsong
Zhou, Xiao
Ye, Lin
Wang, Chengyou
Author_xml – sequence: 1
  givenname: Lin
  surname: Ye
  fullname: Ye, Lin
  organization: School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai 264209, China
– sequence: 2
  givenname: Chengyou
  orcidid: 0000-0002-0901-2492
  surname: Wang
  fullname: Wang, Chengyou
  email: wangchengyou@sdu.edu.cn
  organization: School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai 264209, China
– sequence: 3
  givenname: Xiao
  orcidid: 0000-0002-1331-7379
  surname: Zhou
  fullname: Zhou, Xiao
  organization: School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai 264209, China
– sequence: 4
  givenname: Zhiliang
  surname: Qin
  fullname: Qin, Zhiliang
  organization: School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai 264209, China
– sequence: 5
  givenname: Changsong
  surname: Yu
  fullname: Yu, Changsong
  organization: Shandong Zhuocheng Intelligent Technology Co. Ltd., Weihai 264209, China
BookMark eNp9kM1KAzEUhYNUsK2-gKu8wNRkJvMnbkqtP1Bxo-uQSW5q2jQzZFKlG5_dDBUEF4XDvZvzXe45EzRyrQOErimZUUKLm82s66GbpSRlM5JFkTM0piVjSZbX1QiNSZ2XSV6l5AJN-n5DCKFpScfoe_lyD-EWzx0GF3zbHXBjwSnj1lg4hXd7G0xijdviTnhhLVisQYS9hwh8CCdhF0GsIIAMpnV416rB03q8Fj3uTAeRBvwFYottHGINf-5LdK6F7eHqd0_R-8PybfGUrF4fnxfzVSIzxkIic5nJQteKaKhKUKJmlS6UpITJVOm8YjRrGCsk1bIAmWvR0KbRtKkynTYFy6aoOt6Vvu17D5pLE8TwQfDCWE4JH3rkGz70yIceOcmiSETTf2jnzU74w2no7ghBDPVpwPNeGohlKeNjcq5acwr_AUK9knY
CitedBy_id crossref_primary_10_1016_j_measurement_2025_116857
crossref_primary_10_1016_j_nexres_2025_100787
crossref_primary_10_1016_j_anucene_2024_110964
crossref_primary_10_1016_j_compind_2024_104193
crossref_primary_10_3390_w17010106
crossref_primary_10_1016_j_actaastro_2025_07_017
Cites_doi 10.1016/j.petsci.2022.11.007
10.1109/TNSRE.2007.897025
10.1016/j.energy.2019.05.230
10.1109/JSEN.2023.3314166
10.1109/LSP.2016.2542881
10.1016/j.measurement.2023.113238
10.1016/j.scitotenv.2021.151110
10.1016/j.apacoust.2021.108255
10.1109/JSEN.2022.3233660
10.1016/j.engfailanal.2022.106897
10.1016/j.ymssp.2016.09.010
10.1016/j.energy.2023.126660
10.1016/j.psep.2023.04.020
10.1016/j.asoc.2021.108212
10.1016/j.measurement.2023.113304
10.1016/j.psep.2020.12.011
10.1016/j.measurement.2023.112691
10.1109/TSP.2013.2288675
10.1109/JAS.2023.123180
10.1016/j.psep.2022.06.036
10.1016/j.psep.2022.05.043
10.1016/j.epsr.2023.109255
10.1109/JSEN.2021.3128816
10.1016/j.ymssp.2022.109810
10.1016/j.psep.2022.12.070
10.1109/ACCESS.2023.3250380
10.1073/pnas.88.6.2297
10.1016/j.ijhydene.2022.10.185
10.1152/ajpheart.2000.278.6.H2039
10.1109/JSEN.2023.3263841
10.1016/j.measurement.2019.06.050
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.psep.2024.03.030
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1744-3598
EndPage 1592
ExternalDocumentID 10_1016_j_psep_2024_03_030
S0957582024002477
GroupedDBID --K
--M
-QF
.~1
0R~
123
1B1
1~.
1~5
3EH
4.4
457
4G.
4P2
53G
5VS
6I.
7-5
71M
8P~
8WZ
A6W
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABNUV
ABXDB
ACDAQ
ACGFO
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHIDL
AHPOS
AIAGR
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CAG
COF
CS3
DU5
EBS
EDH
EFJIC
EJD
ENUVR
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
I-F
IHE
J1W
JARJE
KCYFY
KOM
M41
ML.
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SJN
SPC
SPCBC
SSG
SSJ
SSR
SSZ
T5K
UNMZH
XFK
ZE2
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADMLS
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BANNL
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c344t-c5c3c6f9d0fe87eda948f6dc104c2df58413b446c1fc6ec5fab1bbf1b83f2b643
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001243043800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-5820
IngestDate Sat Nov 29 01:50:04 EST 2025
Tue Nov 18 21:24:00 EST 2025
Tue Jun 18 08:51:00 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Multi-link parallel feature enhancement (MPFE)
Entropy blending (EB)
Variational mode decomposition (VMD)
Pipeline leakage detection (PLD)
Negative pressure wave (NPW)
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-c5c3c6f9d0fe87eda948f6dc104c2df58413b446c1fc6ec5fab1bbf1b83f2b643
ORCID 0000-0002-1331-7379
0000-0002-0901-2492
OpenAccessLink https://dx.doi.org/10.1016/j.psep.2024.03.030
PageCount 13
ParticipantIDs crossref_citationtrail_10_1016_j_psep_2024_03_030
crossref_primary_10_1016_j_psep_2024_03_030
elsevier_sciencedirect_doi_10_1016_j_psep_2024_03_030
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle Process safety and environmental protection
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lu, Ye, Zhao, Wang, Zhao (bib13) 2023; 219
Liu, Xu, Xie, Fu, Chen, Liu, Zhang (bib11) 2023; 170
Zhang, Wu, Ma, Li, Ma, Wang (bib34) 2022; 30
Huang, Liu, Van Der Maaten, Weinberger (bib8) 2017
Zheng, Pan, Cheng (bib37) 2017; 85
Yang, Zhao (bib31) 2022; 22
Wang, Yuan, Li, Li, Meng (bib24) 2023; 23
Dragomiretskiy, Zosso (bib6) 2014; 62
Pincus (bib17) 1991; 88
He, Zhang, Ren, Sun (bib7) 2016
Wang, Gao (bib26) 2023; 212
Sun, Wang, Dong, Zhou, Guan (bib21) 2023; 10
Wang, Z., Oates, T., 2015. Imaging time-series to improve classification and imputation, arXiv preprint arXiv: 1506.00327.
Tang, Liao, Chen, Zuo, Yi (bib22) 2021; 70
Cao, Xu, Lin, Wei, Hu (bib3) 2019; Workshop
Xiao, Hu, Li (bib29) 2019; 146
Richman, Moorman (bib18) 2000; 278
Zhang, Guo, Zhang, He, Wang, Chen, Yin (bib33) 2023; 20
Chen, Wang, Xie, Yu (bib5) 2007; 15
Yang, Hou, Lu, Ji (bib30) 2022; 115
Rostaghi, Azami (bib19) 2016; 23
Xiao, Li (bib28) 2023; 143
Ning, Cheng, Meng, Duan, Wei (bib15) 2021; 146
Ning, Cheng, Meng, Wei (bib16) 2021; 182
Kim, Cho (bib10) 2019; 182
Ahmad, Nguyen, Kim (bib2) 2023; 17
Chen, Hao, Liu, Ni, Jiang, Diao, Gu (bib4) 2023; 23
Jiang, Guo, Liu, Zhang (bib9) 2023; 11
Zhang, Shi, Yang, Huang, Usmani, Chen, Fu, Huang, Li (bib35) 2023; 174
Zuo, Ma, Liang, Liang, Zhang, Liu (bib40) 2022; 164
Yu, Chen, Yan, Xu, Ye (bib32) 2023; 185
Afsharisefat, Jannati, Shams (bib1) 2023; 219
Zhu, Pan, Zhang, Li, Li, Feng, Chen, Kou, Yang (bib38) 2023; 48
Zhu, Lang, Zhang, Cai (bib39) 2023; 23
Tariq, Bakhtawar, Zayed (bib23) 2022; 809
Lu, Fu, Yue, Zhu, Wang, Hu (bib12) 2022; 164
Meng, Lang, Lin, Cai, Zheng, Song, Liu (bib14) 2022; 71
Wang, Wang, Liu, Shen, Dong (bib25) 2023; 72
Zhang, Xu, Xie, Zhang, Liu, Liu (bib36) 2023; 219
Sekhar, Dahiya (bib20) 2023; 268
Zhang (10.1016/j.psep.2024.03.030_bib35) 2023; 174
Meng (10.1016/j.psep.2024.03.030_bib14) 2022; 71
Lu (10.1016/j.psep.2024.03.030_bib13) 2023; 219
Zheng (10.1016/j.psep.2024.03.030_bib37) 2017; 85
Yang (10.1016/j.psep.2024.03.030_bib30) 2022; 115
Yang (10.1016/j.psep.2024.03.030_bib31) 2022; 22
Lu (10.1016/j.psep.2024.03.030_bib12) 2022; 164
Wang (10.1016/j.psep.2024.03.030_bib24) 2023; 23
Wang (10.1016/j.psep.2024.03.030_bib26) 2023; 212
Yu (10.1016/j.psep.2024.03.030_bib32) 2023; 185
Ning (10.1016/j.psep.2024.03.030_bib16) 2021; 182
Ahmad (10.1016/j.psep.2024.03.030_bib2) 2023; 17
Huang (10.1016/j.psep.2024.03.030_bib8) 2017
Cao (10.1016/j.psep.2024.03.030_bib3) 2019; Workshop
Pincus (10.1016/j.psep.2024.03.030_bib17) 1991; 88
Zhu (10.1016/j.psep.2024.03.030_bib38) 2023; 48
Tariq (10.1016/j.psep.2024.03.030_bib23) 2022; 809
Tang (10.1016/j.psep.2024.03.030_bib22) 2021; 70
Zhang (10.1016/j.psep.2024.03.030_bib33) 2023; 20
Kim (10.1016/j.psep.2024.03.030_bib10) 2019; 182
He (10.1016/j.psep.2024.03.030_bib7) 2016
Xiao (10.1016/j.psep.2024.03.030_bib29) 2019; 146
Chen (10.1016/j.psep.2024.03.030_bib5) 2007; 15
Zhang (10.1016/j.psep.2024.03.030_bib34) 2022; 30
Afsharisefat (10.1016/j.psep.2024.03.030_bib1) 2023; 219
Liu (10.1016/j.psep.2024.03.030_bib11) 2023; 170
10.1016/j.psep.2024.03.030_bib27
Sun (10.1016/j.psep.2024.03.030_bib21) 2023; 10
Richman (10.1016/j.psep.2024.03.030_bib18) 2000; 278
Jiang (10.1016/j.psep.2024.03.030_bib9) 2023; 11
Zhu (10.1016/j.psep.2024.03.030_bib39) 2023; 23
Dragomiretskiy (10.1016/j.psep.2024.03.030_bib6) 2014; 62
Wang (10.1016/j.psep.2024.03.030_bib25) 2023; 72
Zuo (10.1016/j.psep.2024.03.030_bib40) 2022; 164
Sekhar (10.1016/j.psep.2024.03.030_bib20) 2023; 268
Rostaghi (10.1016/j.psep.2024.03.030_bib19) 2016; 23
Ning (10.1016/j.psep.2024.03.030_bib15) 2021; 146
Chen (10.1016/j.psep.2024.03.030_bib4) 2023; 23
Xiao (10.1016/j.psep.2024.03.030_bib28) 2023; 143
Zhang (10.1016/j.psep.2024.03.030_bib36) 2023; 219
References_xml – volume: 72
  start-page: 1
  year: 2023
  end-page: 13
  ident: bib25
  article-title: A novel deep offline-to-online transfer learning framework for pipeline leakage detection with small samples
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 143
  year: 2023
  ident: bib28
  article-title: Evaluation of acoustic techniques for leak detection in a complex low-pressure gas pipeline network
  publication-title: Eng. Fail. Anal.
– volume: Workshop
  start-page: 1971
  year: 2019
  end-page: 1980
  ident: bib3
  article-title: GCNet: Non-local networks meet squeeze-excitation networks and beyond
  publication-title: Proc. Int. Conf. Comput. Vis.
– volume: 62
  start-page: 531
  year: 2014
  end-page: 544
  ident: bib6
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
– volume: 164
  start-page: 857
  year: 2022
  end-page: 867
  ident: bib12
  article-title: Natural gas pipeline leak diagnosis based on improved variational modal decomposition and locally linear embedding feature extraction method
  publication-title: Process Saf. Environ. Prot.
– volume: 70
  start-page: 1
  year: 2021
  end-page: 11
  ident: bib22
  article-title: A novel convolutional neural network for low-speed structural fault diagnosis under different operating condition and its understanding via visualization
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 17
  year: 2023
  ident: bib2
  article-title: Leak detection and size identification in fluid pipelines using a novel vulnerability index and 1-D convolutional neural network
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 30
  year: 2022
  ident: bib34
  article-title: Short-term load forecasting method with variational mode decomposition and stacking model fusion
  publication-title: Sustain. Energy, Grids Netw.
– volume: 146
  start-page: 726
  year: 2021
  end-page: 735
  ident: bib15
  article-title: Enhanced spectrum convolutional neural architecture: An intelligent leak detection method for gas pipeline
  publication-title: Process Saf. Environ. Prot.
– volume: 182
  year: 2021
  ident: bib16
  article-title: A framework combining acoustic features extraction method and random forest algorithm for gas pipeline leak detection and classification
  publication-title: Appl. Acoust.
– volume: 146
  start-page: 479
  year: 2019
  end-page: 489
  ident: bib29
  article-title: Leak detection of gas pipelines using acoustic signals based on wavelet transform and support vector machine
  publication-title: Measurement
– volume: 22
  start-page: 611
  year: 2022
  end-page: 620
  ident: bib31
  article-title: A BiLSTM based pipeline leak detection and disturbance assisted localization method
  publication-title: IEEE Sens. J.
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib7
  article-title: Deep residual learning for image recognition
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
– volume: 164
  start-page: 468
  year: 2022
  end-page: 478
  ident: bib40
  article-title: A semi-supervised leakage detection method driven by multivariate time series for natural gas gathering pipeline
  publication-title: Process Saf. Environ. Prot.
– reference: Wang, Z., Oates, T., 2015. Imaging time-series to improve classification and imputation, arXiv preprint arXiv: 1506.00327.
– volume: 20
  start-page: 1200
  year: 2023
  end-page: 1216
  ident: bib33
  article-title: Extraction of pipeline defect feature based on variational mode and optimal singular value decomposition
  publication-title: Pet. Sci.
– volume: 23
  start-page: 10460
  year: 2023
  end-page: 10469
  ident: bib24
  article-title: A synchronous and accurate detection method for gas pipeline leakage position and flow rate based on double fiber Bragg gratings
  publication-title: IEEE Sens. J.
– volume: 15
  start-page: 266
  year: 2007
  end-page: 272
  ident: bib5
  article-title: Characterization of surface EMG signal based on fuzzy entropy
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 212
  year: 2023
  ident: bib26
  article-title: Pipeline leak detection method based on acoustic-pressure information fusion
  publication-title: Measurement
– volume: 185
  year: 2023
  ident: bib32
  article-title: Leak detection in water distribution systems by classifying vibration signals
  publication-title: Mech. Syst. Signal Process.
– volume: 11
  start-page: 35059
  year: 2023
  end-page: 35068
  ident: bib9
  article-title: Research on a novel denoising method for negative pressure wave signal based on VMD
  publication-title: IEEE Access
– volume: 809
  year: 2022
  ident: bib23
  article-title: Data-driven application of MEMS-based accelerometers for leak detection in water distribution networks
  publication-title: Sci. Total Environ.
– volume: 174
  start-page: 460
  year: 2023
  end-page: 472
  ident: bib35
  article-title: Real-time pipeline leak detection and localization using an attention-based LSTM approach
  publication-title: Process Saf. Environ. Prot.
– volume: 48
  start-page: 11592
  year: 2023
  end-page: 11610
  ident: bib38
  article-title: Leakage and diffusion behavior of a buried pipeline of hydrogen-blended natural gas
  publication-title: Int. J. Hydrog. Energy
– volume: 23
  start-page: 26177
  year: 2023
  end-page: 26194
  ident: bib4
  article-title: Pipeline leak AE signal denoising based on improved SSA-
  publication-title: IEEE Sens. J.
– volume: 170
  start-page: 1161
  year: 2023
  end-page: 1172
  ident: bib11
  article-title: A CNN-based transfer learning method for leakage detection of pipeline under multiple working cnditions with AE signals
  publication-title: Process Saf. Environ. Prot.
– volume: 23
  start-page: 2823
  year: 2023
  end-page: 2832
  ident: bib39
  article-title: Leak localization method of jet fuel pipeline based on second-generation wavelet transform and short-time energy time delay estimation
  publication-title: IEEE Sens. J.
– volume: 85
  start-page: 746
  year: 2017
  end-page: 759
  ident: bib37
  article-title: Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines
  publication-title: Mech. Syst. Signal Process.
– start-page: 2261
  year: 2017
  end-page: 2269
  ident: bib8
  article-title: Densely connected convolutional networks
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
– volume: 219
  year: 2023
  ident: bib36
  article-title: MFCC-LSTM framework for leak detection and leak size identification in gas-liquid two-phase flow pipelines based on acoustic emission
  publication-title: Measurement
– volume: 278
  start-page: H2039
  year: 2000
  end-page: H2049
  ident: bib18
  article-title: Physiological time-series analysis using approximate entropy and sample entropy
  publication-title: Am. J. Physiol. -Heart Circ. Physiol.
– volume: 219
  year: 2023
  ident: bib1
  article-title: Discrimination of inrush current and internal faults incorporating the MRA and BIGRU techniques in power transformers
  publication-title: Electr. Power Syst. Res.
– volume: 23
  start-page: 610
  year: 2016
  end-page: 614
  ident: bib19
  article-title: Dispersion entropy: A measure for time-series analysis
  publication-title: IEEE Signal Process. Lett.
– volume: 268
  year: 2023
  ident: bib20
  article-title: Robust framework based on hybrid deep learning approach for short term load forecasting of building electricity demand
  publication-title: Energy
– volume: 182
  start-page: 72
  year: 2019
  end-page: 81
  ident: bib10
  article-title: Predicting residential energy consumption using CNN-LSTM neural networks
  publication-title: Energy
– volume: 88
  start-page: 2297
  year: 1991
  end-page: 2301
  ident: bib17
  article-title: Approximate entropy as a measure of system complexity
  publication-title: Proc. Natl. Acad. Sci.
– volume: 10
  start-page: 1064
  year: 2023
  end-page: 1076
  ident: bib21
  article-title: A novel parameter-optimized recurrent attention network for pipeline leakage detection
  publication-title: IEEE/CAA J. Autom. Sin.
– volume: 115
  year: 2022
  ident: bib30
  article-title: Novel leakage detection by ensemble 1DCNN-VAPSO-SVM in oil and gas pipeline systems
  publication-title: Appl. Soft Comput.
– volume: 219
  year: 2023
  ident: bib13
  article-title: Leakage identification for mineral air supply pipeline system based on joint noise reduction and ELM
  publication-title: Measurement
– volume: 71
  start-page: 1
  year: 2022
  end-page: 9
  ident: bib14
  article-title: Leak localization of gas pipeline based on the combination of EEMD and cross-spectrum analysis
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 20
  start-page: 1200
  year: 2023
  ident: 10.1016/j.psep.2024.03.030_bib33
  article-title: Extraction of pipeline defect feature based on variational mode and optimal singular value decomposition
  publication-title: Pet. Sci.
  doi: 10.1016/j.petsci.2022.11.007
– volume: 15
  start-page: 266
  year: 2007
  ident: 10.1016/j.psep.2024.03.030_bib5
  article-title: Characterization of surface EMG signal based on fuzzy entropy
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2007.897025
– volume: 182
  start-page: 72
  year: 2019
  ident: 10.1016/j.psep.2024.03.030_bib10
  article-title: Predicting residential energy consumption using CNN-LSTM neural networks
  publication-title: Energy
  doi: 10.1016/j.energy.2019.05.230
– volume: 23
  start-page: 26177
  year: 2023
  ident: 10.1016/j.psep.2024.03.030_bib4
  article-title: Pipeline leak AE signal denoising based on improved SSA- K -α index-VMD-MD
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3314166
– volume: 23
  start-page: 610
  year: 2016
  ident: 10.1016/j.psep.2024.03.030_bib19
  article-title: Dispersion entropy: A measure for time-series analysis
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2016.2542881
– volume: 219
  year: 2023
  ident: 10.1016/j.psep.2024.03.030_bib36
  article-title: MFCC-LSTM framework for leak detection and leak size identification in gas-liquid two-phase flow pipelines based on acoustic emission
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.113238
– volume: 809
  year: 2022
  ident: 10.1016/j.psep.2024.03.030_bib23
  article-title: Data-driven application of MEMS-based accelerometers for leak detection in water distribution networks
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.151110
– volume: 182
  year: 2021
  ident: 10.1016/j.psep.2024.03.030_bib16
  article-title: A framework combining acoustic features extraction method and random forest algorithm for gas pipeline leak detection and classification
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2021.108255
– volume: 23
  start-page: 2823
  year: 2023
  ident: 10.1016/j.psep.2024.03.030_bib39
  article-title: Leak localization method of jet fuel pipeline based on second-generation wavelet transform and short-time energy time delay estimation
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3233660
– volume: 143
  year: 2023
  ident: 10.1016/j.psep.2024.03.030_bib28
  article-title: Evaluation of acoustic techniques for leak detection in a complex low-pressure gas pipeline network
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2022.106897
– volume: 85
  start-page: 746
  year: 2017
  ident: 10.1016/j.psep.2024.03.030_bib37
  article-title: Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2016.09.010
– volume: 268
  year: 2023
  ident: 10.1016/j.psep.2024.03.030_bib20
  article-title: Robust framework based on hybrid deep learning approach for short term load forecasting of building electricity demand
  publication-title: Energy
  doi: 10.1016/j.energy.2023.126660
– volume: 17
  year: 2023
  ident: 10.1016/j.psep.2024.03.030_bib2
  article-title: Leak detection and size identification in fluid pipelines using a novel vulnerability index and 1-D convolutional neural network
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 72
  start-page: 1
  year: 2023
  ident: 10.1016/j.psep.2024.03.030_bib25
  article-title: A novel deep offline-to-online transfer learning framework for pipeline leakage detection with small samples
  publication-title: IEEE Trans. Instrum. Meas.
– ident: 10.1016/j.psep.2024.03.030_bib27
– volume: 174
  start-page: 460
  year: 2023
  ident: 10.1016/j.psep.2024.03.030_bib35
  article-title: Real-time pipeline leak detection and localization using an attention-based LSTM approach
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2023.04.020
– volume: Workshop
  start-page: 1971
  year: 2019
  ident: 10.1016/j.psep.2024.03.030_bib3
  article-title: GCNet: Non-local networks meet squeeze-excitation networks and beyond
  publication-title: Proc. Int. Conf. Comput. Vis.
– volume: 115
  year: 2022
  ident: 10.1016/j.psep.2024.03.030_bib30
  article-title: Novel leakage detection by ensemble 1DCNN-VAPSO-SVM in oil and gas pipeline systems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.108212
– volume: 219
  year: 2023
  ident: 10.1016/j.psep.2024.03.030_bib13
  article-title: Leakage identification for mineral air supply pipeline system based on joint noise reduction and ELM
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.113304
– volume: 146
  start-page: 726
  year: 2021
  ident: 10.1016/j.psep.2024.03.030_bib15
  article-title: Enhanced spectrum convolutional neural architecture: An intelligent leak detection method for gas pipeline
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2020.12.011
– volume: 212
  year: 2023
  ident: 10.1016/j.psep.2024.03.030_bib26
  article-title: Pipeline leak detection method based on acoustic-pressure information fusion
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.112691
– volume: 62
  start-page: 531
  year: 2014
  ident: 10.1016/j.psep.2024.03.030_bib6
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2288675
– start-page: 770
  year: 2016
  ident: 10.1016/j.psep.2024.03.030_bib7
  article-title: Deep residual learning for image recognition
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.psep.2024.03.030_bib22
  article-title: A novel convolutional neural network for low-speed structural fault diagnosis under different operating condition and its understanding via visualization
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 10
  start-page: 1064
  year: 2023
  ident: 10.1016/j.psep.2024.03.030_bib21
  article-title: A novel parameter-optimized recurrent attention network for pipeline leakage detection
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2023.123180
– volume: 164
  start-page: 468
  year: 2022
  ident: 10.1016/j.psep.2024.03.030_bib40
  article-title: A semi-supervised leakage detection method driven by multivariate time series for natural gas gathering pipeline
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2022.06.036
– volume: 164
  start-page: 857
  year: 2022
  ident: 10.1016/j.psep.2024.03.030_bib12
  article-title: Natural gas pipeline leak diagnosis based on improved variational modal decomposition and locally linear embedding feature extraction method
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2022.05.043
– volume: 71
  start-page: 1
  year: 2022
  ident: 10.1016/j.psep.2024.03.030_bib14
  article-title: Leak localization of gas pipeline based on the combination of EEMD and cross-spectrum analysis
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 30
  year: 2022
  ident: 10.1016/j.psep.2024.03.030_bib34
  article-title: Short-term load forecasting method with variational mode decomposition and stacking model fusion
  publication-title: Sustain. Energy, Grids Netw.
– volume: 219
  year: 2023
  ident: 10.1016/j.psep.2024.03.030_bib1
  article-title: Discrimination of inrush current and internal faults incorporating the MRA and BIGRU techniques in power transformers
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2023.109255
– start-page: 2261
  year: 2017
  ident: 10.1016/j.psep.2024.03.030_bib8
  article-title: Densely connected convolutional networks
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
– volume: 22
  start-page: 611
  year: 2022
  ident: 10.1016/j.psep.2024.03.030_bib31
  article-title: A BiLSTM based pipeline leak detection and disturbance assisted localization method
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3128816
– volume: 185
  year: 2023
  ident: 10.1016/j.psep.2024.03.030_bib32
  article-title: Leak detection in water distribution systems by classifying vibration signals
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.109810
– volume: 170
  start-page: 1161
  year: 2023
  ident: 10.1016/j.psep.2024.03.030_bib11
  article-title: A CNN-based transfer learning method for leakage detection of pipeline under multiple working cnditions with AE signals
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2022.12.070
– volume: 11
  start-page: 35059
  year: 2023
  ident: 10.1016/j.psep.2024.03.030_bib9
  article-title: Research on a novel denoising method for negative pressure wave signal based on VMD
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3250380
– volume: 88
  start-page: 2297
  year: 1991
  ident: 10.1016/j.psep.2024.03.030_bib17
  article-title: Approximate entropy as a measure of system complexity
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.88.6.2297
– volume: 48
  start-page: 11592
  year: 2023
  ident: 10.1016/j.psep.2024.03.030_bib38
  article-title: Leakage and diffusion behavior of a buried pipeline of hydrogen-blended natural gas
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2022.10.185
– volume: 278
  start-page: H2039
  year: 2000
  ident: 10.1016/j.psep.2024.03.030_bib18
  article-title: Physiological time-series analysis using approximate entropy and sample entropy
  publication-title: Am. J. Physiol. -Heart Circ. Physiol.
  doi: 10.1152/ajpheart.2000.278.6.H2039
– volume: 23
  start-page: 10460
  year: 2023
  ident: 10.1016/j.psep.2024.03.030_bib24
  article-title: A synchronous and accurate detection method for gas pipeline leakage position and flow rate based on double fiber Bragg gratings
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3263841
– volume: 146
  start-page: 479
  year: 2019
  ident: 10.1016/j.psep.2024.03.030_bib29
  article-title: Leak detection of gas pipelines using acoustic signals based on wavelet transform and support vector machine
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.06.050
SSID ssj0001271
Score 2.422776
Snippet To improve the detection accuracy of gas pipeline leakage detection (PLD) especially when the leakage is weak, we propose a hybrid deep learning model, named...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1580
SubjectTerms Entropy blending (EB)
Multi-link parallel feature enhancement (MPFE)
Negative pressure wave (NPW)
Pipeline leakage detection (PLD)
Variational mode decomposition (VMD)
Title EMDet: An entropy blending and multi-link parallel feature enhancement detection model for gas pipeline weak leakage detection
URI https://dx.doi.org/10.1016/j.psep.2024.03.030
Volume 186
WOSCitedRecordID wos001243043800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1744-3598
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001271
  issn: 0957-5820
  databaseCode: AIEXJ
  dateStart: 19961101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQc4IChULS_5wC0KShzn1duqLAIEFYeCFi6RPbHbbaMkanb7uPCr-IHYjvNoVSp6QFpFK8t2dne-zXyZzHyD0BvFAkA5SuZyDuBS8JibpOC7wAAEkVKmRqf7--d4fz9ZLNKvk8nvrhbmrIjLMrm4SOv_amo1poytS2fvYO5-UzWg3iujq6Myuzr-k-HnX96JLt6nQ7dVfelw5VvyrhzR5BC6-smto4W_i0IUjhRG4FMtONIwMBkCuViJtpG4aZdjEhIPWePUy1oYcnou2IluO3Gi83762WO6a8sQnIZJnRqqzz6qrNNFYK1MxCgZ4IewoYIh1N9ejvaORHl4Wa2HUHe11uOLJav68G2riPBTR4mY9ck2pEHokHrVxyZjN0yId_UyPb7Q-mHbAMo6bUXKyI0OoY1NHL-tG6HVSQk1krb2UdAV9e1rXrHPVezS4I4zvUem98i8QL28e2iDxGGaTNHG7ON88alnAD4xN_r917DFWm1e4fVPcjMhGpGcg8fokb07wbMWVU_QRJSb6OFIs3ITbc3HBsTWNzRP0S8DvF08K7GFHe5gh5Xh8QA73MEOW9jhEexwDyRsYIcV7LCCHe5ghzXssIXdMPsZ-vZ-frD3wbXdPVwIKF25EEIAkUxzT4okFjlLaSKjHHyPAsmlIsZ-wCmNwJcQCQgl4z7n0udJIAlXRHoLTcuqFNsIEyA0zDnRDopCSHkgBY2kCHLOOInCHeR3P3EGVvped2Apsr8bdwc5_Zq6FX65dXbYWS6z1LWlpJkC4i3rnt_pLC_Qg-Hv8hJNV6dr8Qrdh7PVsjl9bVH4B27qwnA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EMDet%3A+An+entropy+blending+and+multi-link+parallel+feature+enhancement+detection+model+for+gas+pipeline+weak+leakage+detection&rft.jtitle=Process+safety+and+environmental+protection&rft.au=Ye%2C+Lin&rft.au=Wang%2C+Chengyou&rft.au=Zhou%2C+Xiao&rft.au=Qin%2C+Zhiliang&rft.date=2024-06-01&rft.issn=0957-5820&rft.volume=186&rft.spage=1580&rft.epage=1592&rft_id=info:doi/10.1016%2Fj.psep.2024.03.030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_psep_2024_03_030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-5820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-5820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-5820&client=summon