Knowledge-integrated autoencoder model

Data encoding is a common and central operation in most data analysis tasks. The performance of other models downstream in the computational process highly depends on the quality of data encoding. One of the most powerful ways to encode data is using the neural network AutoEncoder (AE) architecture....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Expert systems with applications Ročník 252; s. 124108
Hlavní autoři: Lazebnik, Teddy, Simon-keren, Liron
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 15.10.2024
Témata:
ISSN:0957-4174, 1873-6793
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Data encoding is a common and central operation in most data analysis tasks. The performance of other models downstream in the computational process highly depends on the quality of data encoding. One of the most powerful ways to encode data is using the neural network AutoEncoder (AE) architecture. However, the developers of AE cannot easily influence the produced embedding space, as it is usually treated as a black box technique. This means the embedding space is uncontrollable and does not necessarily possess the properties desired for downstream tasks. This paper introduces a novel approach for developing AE models that can integrate external knowledge sources into the learning process, possibly leading to more accurate results. The proposed Knowledge-integrated AutoEncoder (KiAE) model can leverage domain-specific information to make sure the desired distance and neighborhood properties between samples are preservative in the embedding space. The proposed model is evaluated on three large-scale datasets from three scientific fields and is compared to nine existing encoding models. The results demonstrate that the KiAE model effectively captures the underlying structures and relationships between the input data and external knowledge, meaning it generates a more useful representation. This leads to outperforming the rest of the models in terms of reconstruction accuracy. [Display omitted] •To control the latent space, knowledge of relative distances can be integrated using a distance matrix.•The KiAE method can capture desired properties even on a small dataset (<200 samples).•The knowledge matrix is not required to be full on the dataset using meta-regression.
AbstractList Data encoding is a common and central operation in most data analysis tasks. The performance of other models downstream in the computational process highly depends on the quality of data encoding. One of the most powerful ways to encode data is using the neural network AutoEncoder (AE) architecture. However, the developers of AE cannot easily influence the produced embedding space, as it is usually treated as a black box technique. This means the embedding space is uncontrollable and does not necessarily possess the properties desired for downstream tasks. This paper introduces a novel approach for developing AE models that can integrate external knowledge sources into the learning process, possibly leading to more accurate results. The proposed Knowledge-integrated AutoEncoder (KiAE) model can leverage domain-specific information to make sure the desired distance and neighborhood properties between samples are preservative in the embedding space. The proposed model is evaluated on three large-scale datasets from three scientific fields and is compared to nine existing encoding models. The results demonstrate that the KiAE model effectively captures the underlying structures and relationships between the input data and external knowledge, meaning it generates a more useful representation. This leads to outperforming the rest of the models in terms of reconstruction accuracy. [Display omitted] •To control the latent space, knowledge of relative distances can be integrated using a distance matrix.•The KiAE method can capture desired properties even on a small dataset (<200 samples).•The knowledge matrix is not required to be full on the dataset using meta-regression.
ArticleNumber 124108
Author Lazebnik, Teddy
Simon-keren, Liron
Author_xml – sequence: 1
  givenname: Teddy
  orcidid: 0000-0002-7851-8147
  surname: Lazebnik
  fullname: Lazebnik, Teddy
  email: t.lazebnik@ucl.ac.uk
  organization: Department of Mathematics, Ariel University, Ariel, Israel
– sequence: 2
  givenname: Liron
  orcidid: 0009-0004-2280-4197
  surname: Simon-keren
  fullname: Simon-keren, Liron
  email: lironsimon1@mail.tau.ac.il
  organization: School of Mechanical Engineering, Tel Aviv University, Israel
BookMark eNp9z0tLAzEUhuEgFWyrf8BVV-5mPLk1GXAjxRsW3Og6ZJKTkjKdkSRa_PdOqSsX3Zyzej94ZmTSDz0Sck2hpkCXt9sa897WDJioKRMU9BmZUq14tVQNn5ApNFJVgipxQWY5bwGoAlBTcvPaD_sO_Qar2BfcJFvQL-xXGbB3g8e02I23uyTnwXYZr_7-nHw8Pryvnqv129PL6n5dOS5EqZzknkutWxkYdwABWgHWB9RBByWdAoZoaeuE462UvOGs8U5TZNo6rQWfE33cdWnIOWEwLhZb4tCXZGNnKJiD12zNwWsOXnP0jin7l36muLPp53R0d4xwRH1HTCa7OMrRx4SuGD_EU_kvzvNw0w
CitedBy_id crossref_primary_10_1016_j_bbcan_2025_189456
crossref_primary_10_2478_amns_2024_2282
crossref_primary_10_1007_s10489_024_05821_3
crossref_primary_10_1063_5_0269365
Cites_doi 10.1007/s10462-021-10004-4
10.3390/ijms221910891
10.1007/BF00993377
10.1038/s41598-023-28328-2
10.1038/s41592-021-01283-4
10.1287/opre.20.6.1152
10.1080/01621459.1963.10500845
10.26599/BDMA.2018.9020018
10.1080/10627190801968224
10.1103/PhysRevD.101.075021
10.1016/j.compbiomed.2023.107221
10.1108/10610420710823762
10.1088/1748-0221/16/10/P10008
10.1109/MCE.2020.2969198
10.1287/moor.4.3.233
10.1198/016214502388618906
10.1108/14777260911001644
10.1609/aaai.v31i1.10769
10.1016/j.artmed.2018.10.001
10.1186/s12864-019-6285-x
10.2196/16374
10.1109/MGRS.2018.2853555
10.1109/TPWRS.2021.3114307
10.1109/TASLP.2014.2339736
10.1016/j.cma.2021.114034
10.1093/jamia/ocz072
10.1016/j.physa.2016.05.004
10.1007/JHEP06(2021)161
10.1109/INNOCIT.2017.8319153
10.1002/wsbm.1245
10.1016/j.jcp.2017.11.039
10.1080/14786440109462720
10.1016/j.neunet.2021.01.010
10.1016/j.infsof.2004.03.006
10.1016/S0378-4371(97)00503-7
10.1016/j.tust.2020.103558
10.1023/A:1019956318069
10.1162/neco_a_01458
10.1111/bmsp.12212
10.1109/TVCG.2019.2934799
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.eswa.2024.124108
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2024_124108
S0957417424009746
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY1
LY7
R2-
SBC
SET
WUQ
XPP
ZMT
~HD
ID FETCH-LOGICAL-c344t-c53d3588b5f23c00f0b40adfe8f8f75c702eea1bc4c3b5539329dc81e28ac8843
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001243789600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Tue Nov 18 21:34:47 EST 2025
Sat Nov 29 03:07:38 EST 2025
Tue Jun 18 08:50:57 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Expert-driven model
Biologically-inspired loss function
Data-driven encoding
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-c53d3588b5f23c00f0b40adfe8f8f75c702eea1bc4c3b5539329dc81e28ac8843
ORCID 0000-0002-7851-8147
0009-0004-2280-4197
OpenAccessLink https://dx.doi.org/10.1016/j.eswa.2024.124108
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2024_124108
crossref_primary_10_1016_j_eswa_2024_124108
elsevier_sciencedirect_doi_10_1016_j_eswa_2024_124108
PublicationCentury 2000
PublicationDate 2024-10-15
PublicationDateYYYYMMDD 2024-10-15
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Vilalta, Drissi (b49) 2002; 18
Hu, Sha, Van Kaick, Deussen, Huang (b26) 2020; 26
Ding, Lin, Li, Eun, Zhao (b16) 2022
Kingma, Ba (b33) 2014
Chylek, Harris, Tung, Faeder, Lopez, Hlavacek (b13) 2014; 6
Gelada, C., Kumar, S., Buckman, J., Nachum, O., & Bellemare, M. G. (2019). DeepMDP: Learning Continuous Latent Space Models for Representation Learning. In
Tiwana (b48) 2004; 46
Adkisson, Kimmell, Gupta, Abdelsalam (b2) 2021
Jiang, Liu, Paparrizos, Chien, Ma, Elmore (b29) 2021
Yu, Liu (b58) 2021; 137
Chollet (b11) 2016
Su, Liu, Choi (b47) 2020; 9
Chacon (b9) 2021; 74
(pp. 9786–9796).
He, He, Chen (b23) 2021; 385
Ward (b53) 1963; 58
Hoff, Raftery, Handcock (b25) 2002; 97
Chicco, Sadowski, Baldi (b10) 2014
Wu, Fujita, Soga (b55) 2020; 105
Jin, Chollet, Song, Hu (b30) 2023; 24
Lazebnik, Simon-Keren (b34) 2023; 164
Anselmsson, Johansson, Persson (b4) 2007; 16
.
Deng, Sander, Faulstich, Denecke (b15) 2019; 93
Huisman, van Rijn, Plaat (b27) 2021; 54
Best, Terpstra, Moor, Riley, Norman, Glasgow (b7) 2009; 23
Himanen, Geurts, Foster, Rinke (b24) 2019; 6
Liu, Liu, Yang, Li, Wang (b37) 2006; vol. 344
Marino (b39) 2022; 34
Rongali, Rose, McManus, Bajracharya, Kapoor, Granillo, Yu (b44) 2020; 22
Keren, Liberzon, Lazebnik (b32) 2023; 13
Shi, Dong, Tan, Li, Liu (b46) 2023
Dong, Liao, Liu, Kuang (b18) 2018; 6
Farina, Nakai, Shih (b19) 2020; 101
AlQuraishi, Sorger (b3) 2021; 18
Winarno, E., Hadikurniawati, W., & Rosso, R. N. (2017). Location based service for presence system using haversine method. In
Volpe (b50) 2011; 36
Pearson (b41) 1901; 2
Balas, Padberg (b5) 1972; 20
Buldyrev, Dokholyan, Goldberger, Havlin, Peng, Stanley, Viswanathan (b8) 1998; 249
(pp. 1–4).
Finke, Krämer, Morandini, Oleksiyuk (b21) 2021
Jin, Nie, Zhou, Yao, Chen, Yu, Wang (b31) 2016; 461
Yeh, C. K., Wu, W. C., Ko, W. J., & Wang, Y. C. F. (2017). Learning Deep Latent Space for Multi-Label Classification. In
Raissi, Karniadakis (b43) 2018; 357
Feurer, Klevin, Eggensperger, Springenberg, Blum, Hutter (b20) 2019
Liu, Lee, Hofstetter, Linn (b36) 2008; 13
Dligach, Afshar, Miller (b17) 2019; 26
Ibrahim (b28) 2020; 3
Voynov, A., & Babenko, A. (2020). Unsupervised Discovery of Interpretable Directions in the GAN Latent Space. In
Chvatal (b12) 1979; 4
Cui, Liu, Lin, Ma, Wen, Ding, Yang, Guo, Feng (b14) 2022; 37
von Rueden, Mayer, Beckh, Georgiev, Giesselbach, Heese, Kirsch, Pfrommer, Pick, Ramamurthy, Walczak, Garcke, Bauckhage, Schuecker (b51) 2023; 35
Li, Cao, Shi, Bai, Gao, Qiu, Wang, Gao, Zhang, Xue, Chen (b35) 2022; 34
Ma, Zhang (b38) 2019; 20
Pratella, Ait-El-Mkadem Saadi, Bannwarth, Paquis-Fluckinger, Bottini (b42) 2021; 22
Abdel-Hamid, Mohamed, Jiang, Deng, Penn, Yu (b1) 2014; 22
(pp. 2170–2179).
Parsons, Forrest, Burks (b40) 1995; 21
Yu, Li, Yu (b57) 2018; 1
Behnaz, Kevin, Haoxian (b6) 2021
Scheinker (b45) 2021; 16
Buldyrev (10.1016/j.eswa.2024.124108_b8) 1998; 249
He (10.1016/j.eswa.2024.124108_b23) 2021; 385
von Rueden (10.1016/j.eswa.2024.124108_b51) 2023; 35
Su (10.1016/j.eswa.2024.124108_b47) 2020; 9
Scheinker (10.1016/j.eswa.2024.124108_b45) 2021; 16
Jin (10.1016/j.eswa.2024.124108_b30) 2023; 24
Hoff (10.1016/j.eswa.2024.124108_b25) 2002; 97
Ma (10.1016/j.eswa.2024.124108_b38) 2019; 20
Abdel-Hamid (10.1016/j.eswa.2024.124108_b1) 2014; 22
Chicco (10.1016/j.eswa.2024.124108_b10) 2014
Feurer (10.1016/j.eswa.2024.124108_b20) 2019
Liu (10.1016/j.eswa.2024.124108_b37) 2006; vol. 344
Ward (10.1016/j.eswa.2024.124108_b53) 1963; 58
Cui (10.1016/j.eswa.2024.124108_b14) 2022; 37
Hu (10.1016/j.eswa.2024.124108_b26) 2020; 26
AlQuraishi (10.1016/j.eswa.2024.124108_b3) 2021; 18
Wu (10.1016/j.eswa.2024.124108_b55) 2020; 105
10.1016/j.eswa.2024.124108_b52
Tiwana (10.1016/j.eswa.2024.124108_b48) 2004; 46
Li (10.1016/j.eswa.2024.124108_b35) 2022; 34
Ibrahim (10.1016/j.eswa.2024.124108_b28) 2020; 3
Jiang (10.1016/j.eswa.2024.124108_b29) 2021
10.1016/j.eswa.2024.124108_b54
Rongali (10.1016/j.eswa.2024.124108_b44) 2020; 22
10.1016/j.eswa.2024.124108_b56
Lazebnik (10.1016/j.eswa.2024.124108_b34) 2023; 164
Keren (10.1016/j.eswa.2024.124108_b32) 2023; 13
Liu (10.1016/j.eswa.2024.124108_b36) 2008; 13
Dligach (10.1016/j.eswa.2024.124108_b17) 2019; 26
Pearson (10.1016/j.eswa.2024.124108_b41) 1901; 2
Chylek (10.1016/j.eswa.2024.124108_b13) 2014; 6
Farina (10.1016/j.eswa.2024.124108_b19) 2020; 101
Chacon (10.1016/j.eswa.2024.124108_b9) 2021; 74
Kingma (10.1016/j.eswa.2024.124108_b33) 2014
Chollet (10.1016/j.eswa.2024.124108_b11) 2016
Raissi (10.1016/j.eswa.2024.124108_b43) 2018; 357
Chvatal (10.1016/j.eswa.2024.124108_b12) 1979; 4
Yu (10.1016/j.eswa.2024.124108_b58) 2021; 137
Vilalta (10.1016/j.eswa.2024.124108_b49) 2002; 18
Parsons (10.1016/j.eswa.2024.124108_b40) 1995; 21
Shi (10.1016/j.eswa.2024.124108_b46) 2023
Huisman (10.1016/j.eswa.2024.124108_b27) 2021; 54
Balas (10.1016/j.eswa.2024.124108_b5) 1972; 20
Best (10.1016/j.eswa.2024.124108_b7) 2009; 23
10.1016/j.eswa.2024.124108_b22
Anselmsson (10.1016/j.eswa.2024.124108_b4) 2007; 16
Finke (10.1016/j.eswa.2024.124108_b21) 2021
Jin (10.1016/j.eswa.2024.124108_b31) 2016; 461
Pratella (10.1016/j.eswa.2024.124108_b42) 2021; 22
Adkisson (10.1016/j.eswa.2024.124108_b2) 2021
Yu (10.1016/j.eswa.2024.124108_b57) 2018; 1
Behnaz (10.1016/j.eswa.2024.124108_b6) 2021
Himanen (10.1016/j.eswa.2024.124108_b24) 2019; 6
Volpe (10.1016/j.eswa.2024.124108_b50) 2011; 36
Deng (10.1016/j.eswa.2024.124108_b15) 2019; 93
Dong (10.1016/j.eswa.2024.124108_b18) 2018; 6
Marino (10.1016/j.eswa.2024.124108_b39) 2022; 34
Ding (10.1016/j.eswa.2024.124108_b16) 2022
References_xml – reference: (pp. 2170–2179).
– volume: 164
  year: 2023
  ident: b34
  article-title: Cancer-inspired genomics mapper model for the generation of synthetic DNA sequences with desired genomics signatures
  publication-title: Computers in Biology and Medicine
– volume: 34
  start-page: 29
  year: 2022
  end-page: 49
  ident: b35
  article-title: A survey of data-driven and knowledge-aware explainable AI
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– year: 2016
  ident: b11
  article-title: Building autoencoders in keras
– volume: 18
  start-page: 1169
  year: 2021
  end-page: 1180
  ident: b3
  article-title: Differentiable biology: using deep learning for biophysics-based and data-driven modeling of molecular mechanisms
  publication-title: Nature Methods
– volume: 20
  start-page: 1152
  year: 1972
  end-page: 1161
  ident: b5
  article-title: On the set-covering problem
  publication-title: Operations Research
– volume: 6
  start-page: 44
  year: 2018
  end-page: 68
  ident: b18
  article-title: A review of the autoencoder and its variants: A comparative perspective from target recognition in synthetic-aperture radar images
  publication-title: IEEE Geoscience and Remote Sensing Magazine
– volume: 26
  start-page: 739
  year: 2020
  end-page: 748
  ident: b26
  article-title: Data sampling in multi-view and multi-class scatterplots via set cover optimization
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 58
  start-page: 236
  year: 1963
  end-page: 244
  ident: b53
  article-title: Hierarchical grouping to optimize an objective function
  publication-title: Journal of the American Statistical Association
– volume: 1
  start-page: 191
  year: 2018
  end-page: 210
  ident: b57
  article-title: Survey on encoding schemes for genomic data representation and feature learning—from signal processing to machine learning
  publication-title: Big Data Mining and Analytics
– year: 2014
  ident: b33
  article-title: Adam: A Method for Stochastic Optimization
– start-page: 2259
  year: 2023
  end-page: 2269
  ident: b46
  article-title: GiGaMAE: Generalizable graph masked autoencoder via collaborative latent space reconstruction
  publication-title: Proceedings of the 32nd ACM international conference on information and knowledge management
– reference: Gelada, C., Kumar, S., Buckman, J., Nachum, O., & Bellemare, M. G. (2019). DeepMDP: Learning Continuous Latent Space Models for Representation Learning. In
– volume: 35
  start-page: 614
  year: 2023
  end-page: 633
  ident: b51
  article-title: Informed machine learning – A taxonomy and survey of integrating prior knowledge into learning systems
  publication-title: IEEE Transactions on Knowledge & Data Engineering
– volume: 101
  year: 2020
  ident: b19
  article-title: Searching for new physics with deep autoencoders
  publication-title: Physical Review D
– reference: Voynov, A., & Babenko, A. (2020). Unsupervised Discovery of Interpretable Directions in the GAN Latent Space. In
– volume: 3
  year: 2020
  ident: b28
  article-title: Rider optimization algorithm implemented on the AVR control system using MATLAB with FOPID
  publication-title: IOP Conference Series Materials Science and Engineering
– volume: 18
  start-page: 75
  year: 2002
  end-page: 95
  ident: b49
  article-title: A perspective view and survey of meta-learning
  publication-title: Artificial Intelligence Review
– volume: 23
  start-page: 627
  year: 2009
  end-page: 641
  ident: b7
  article-title: Building knowledge integration systems for evidence-informed decisions
  publication-title: Journal of Health Organization and Management
– volume: 137
  start-page: 31
  year: 2021
  end-page: 42
  ident: b58
  article-title: Extracting and inserting knowledge into stacked denoising auto-encoders
  publication-title: Neural Networks
– volume: 6
  year: 2019
  ident: b24
  article-title: Data-driven materials science: Status, challenges, and perspectives
  publication-title: Advanced Science
– volume: 4
  start-page: 233
  year: 1979
  end-page: 235
  ident: b12
  article-title: Greedy heuristic for the set-covering proble
  publication-title: Mathematics of Operations Research
– volume: 461
  start-page: 325
  year: 2016
  end-page: 338
  ident: b31
  article-title: A novel DNA sequence similarity calculation based on simplified pulse-coupled neural network and huffman coding
  publication-title: Physica A. Statistical Mechanics and its Applications
– volume: vol. 344
  year: 2006
  ident: b37
  article-title: Optimizing the hyper-parameters for SVM by combining evolution strategies with a grid search
  publication-title: Intelligent control and automation. Lecture notes in control and information sciences
– year: 2022
  ident: b16
  article-title: Semantically adversarial driving scenario generation with explicit knowledge integration
– volume: 46
  start-page: 899
  year: 2004
  end-page: 906
  ident: b48
  article-title: An empirical study of the effect of knowledge integration on software development performance
  publication-title: Information and Software Technology
– year: 2019
  ident: b20
  article-title: Auto-sklearn: Efficient and robust automated machine learning
– volume: 357
  start-page: 125
  year: 2018
  end-page: 141
  ident: b43
  article-title: Hidden physics models: Machine learning of nonlinear partial differential equations
  publication-title: Journal of Computational Physics
– start-page: 53
  year: 2021
  end-page: 60
  ident: b6
  article-title: Interpretable feedback for automl and a proposal for domain-customized automl for networking
  publication-title: Proceedings of the twentieth ACM workshop on hot topics in networks
– volume: 26
  start-page: 1272
  year: 2019
  end-page: 1278
  ident: b17
  article-title: Toward a clinical text encoder: pretraining for clinical natural language processing with applications to substance misuse
  publication-title: Journal of the American Medical Informatics Association
– volume: 22
  year: 2021
  ident: b42
  article-title: A survey of autoencoder algorithms to pave the diagnosis of rare diseases
  publication-title: International Journal of Molecular Sciences
– volume: 13
  start-page: 1249
  year: 2023
  ident: b32
  article-title: A computational framework for physics-informed symbolic regression with straightforward integration of domain knowledge
  publication-title: Scientific Reports
– reference: Yeh, C. K., Wu, W. C., Ko, W. J., & Wang, Y. C. F. (2017). Learning Deep Latent Space for Multi-Label Classification. In
– volume: 249
  start-page: 430
  year: 1998
  end-page: 438
  ident: b8
  article-title: Analysis of DNA sequences using methods of statistical physics
  publication-title: Physica A. Statistical Mechanics and its Applications
– reference: (pp. 9786–9796).
– volume: 74
  start-page: 203
  year: 2021
  end-page: 231
  ident: b9
  article-title: A close-up comparison of the misclassification error distance and the adjusted rand index for external clustering evaluation
  publication-title: British Journal of Mathematical and Statistical Psychology
– volume: 34
  start-page: 1
  year: 2022
  end-page: 44
  ident: b39
  article-title: Predictive Coding, Variational Autoencoders, and Biological Connections
  publication-title: Neural Computation
– volume: 22
  start-page: 1533
  year: 2014
  end-page: 1545
  ident: b1
  article-title: Convolutional neural networks for speech recognition
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
– volume: 37
  start-page: 2346
  year: 2022
  end-page: 2359
  ident: b14
  article-title: Two-step electricity theft detection strategy considering economic return based on convolutional autoencoder and improved regression algorithm
  publication-title: IEEE Transactions on Power Systems
– start-page: 161
  year: 2021
  ident: b21
  article-title: Autoencoders for unsupervised anomaly detection in high energy physics
  publication-title: Journal of High Energy Physics
– reference: Winarno, E., Hadikurniawati, W., & Rosso, R. N. (2017). Location based service for presence system using haversine method. In
– volume: 93
  start-page: 29
  year: 2019
  end-page: 42
  ident: b15
  article-title: Towards automatic encoding of medical procedures using convolutional neural networks and autoencoders
  publication-title: Artificial Intelligence in Medicine
– volume: 2
  start-page: 559
  year: 1901
  end-page: 572
  ident: b41
  article-title: LIII. On lines and planes of closest fit to systems of points in space
  publication-title: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
– volume: 54
  start-page: 4483
  year: 2021
  end-page: 4541
  ident: b27
  article-title: A survey of deep meta-learning
  publication-title: Artificial Intelligence Review
– start-page: 843
  year: 2021
  end-page: 856
  ident: b29
  article-title: Good to the last bit: Data-driven encoding with codecdb
  publication-title: Proceedings of the 2021 international conference on management of data
– volume: 36
  start-page: 488
  year: 2011
  end-page: 503
  ident: b50
  article-title: Evaluating the performance of U.S. supermarkets: Pricing strategies, competition from hypermarkets, and private labels
  publication-title: Journal of Agricultural and Resource Economics
– volume: 21
  start-page: 11
  year: 1995
  end-page: 33
  ident: b40
  article-title: Genetic algorithms, operators, and DNA fragment assembly
  publication-title: Machine Learning
– start-page: 3390
  year: 2021
  end-page: 3399
  ident: b2
  article-title: Autoencoder-based anomaly detection in smart farming ecosystem
  publication-title: 2021 IEEE international conference on big data
– volume: 385
  year: 2021
  ident: b23
  article-title: Deep autoencoders for physics-constrained data-driven nonlinear materials modeling
  publication-title: Computer Methods in Applied Mechanics and Engineering
– reference: (pp. 1–4).
– volume: 16
  start-page: 401
  year: 2007
  end-page: 414
  ident: b4
  article-title: Understanding price premium for grocery products: a conceptual model of customer-based brand equity
  publication-title: Journal of Product & Brand Management
– start-page: 533
  year: 2014
  end-page: 540
  ident: b10
  article-title: Deep autoencoder neural networks for gene ontology annotation predictions
  publication-title: Proceedings of the 5th ACM conference on bioinformatics, computational biology, and health informatics
– volume: 13
  start-page: 33
  year: 2008
  end-page: 55
  ident: b36
  article-title: Assessing knowledge integration in science: Construct, measures, and evidence
  publication-title: Educational Assessment
– reference: .
– volume: 105
  year: 2020
  ident: b55
  article-title: Integrating domain knowledge with deep learning models: An interpretable AI system for automatic work progress identification of NATM tunnels
  publication-title: Tunnelling and Underground Space Technology
– volume: 22
  year: 2020
  ident: b44
  article-title: Learning latent space representations to predict patient outcomes: Model development and validation
  publication-title: Journal of Medical Internet Research
– volume: 97
  start-page: 1090
  year: 2002
  end-page: 1098
  ident: b25
  article-title: Latent space approaches to social network analysis
  publication-title: Journal of the American Statistical Association
– volume: 6
  start-page: 13
  year: 2014
  end-page: 36
  ident: b13
  article-title: Rule-based modeling: a computational approach for studying biomolecular site dynamics in cell signaling systems
  publication-title: WIREs Systems Biology and Medicine
– volume: 9
  start-page: 56
  year: 2020
  end-page: 66
  ident: b47
  article-title: A blockchain-based P2P transaction method and sensitive data encoding for E-commerce transactions
  publication-title: IEEE Consumer Electronics Magazine
– volume: 16
  start-page: P10008
  year: 2021
  ident: b45
  article-title: Adaptive machine learning for time-varying systems: low dimensional latent space tuning
  publication-title: Journal of Instrumentation
– volume: 20
  start-page: 944
  year: 2019
  ident: b38
  article-title: Integrate multi-omics data with biological interaction networks using multi-view factorization AutoEncoder (MAE)
  publication-title: BMC Genomics
– volume: 24
  start-page: 1
  year: 2023
  end-page: 6
  ident: b30
  article-title: AutoKeras: An AutoML library for deep learning
  publication-title: Journal of Machine Learning Research
– volume: 35
  start-page: 614
  issue: 01
  year: 2023
  ident: 10.1016/j.eswa.2024.124108_b51
  article-title: Informed machine learning – A taxonomy and survey of integrating prior knowledge into learning systems
  publication-title: IEEE Transactions on Knowledge & Data Engineering
– volume: 54
  start-page: 4483
  year: 2021
  ident: 10.1016/j.eswa.2024.124108_b27
  article-title: A survey of deep meta-learning
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-021-10004-4
– volume: 22
  issue: 19
  year: 2021
  ident: 10.1016/j.eswa.2024.124108_b42
  article-title: A survey of autoencoder algorithms to pave the diagnosis of rare diseases
  publication-title: International Journal of Molecular Sciences
  doi: 10.3390/ijms221910891
– volume: 21
  start-page: 11
  year: 1995
  ident: 10.1016/j.eswa.2024.124108_b40
  article-title: Genetic algorithms, operators, and DNA fragment assembly
  publication-title: Machine Learning
  doi: 10.1007/BF00993377
– volume: 13
  start-page: 1249
  issue: 1
  year: 2023
  ident: 10.1016/j.eswa.2024.124108_b32
  article-title: A computational framework for physics-informed symbolic regression with straightforward integration of domain knowledge
  publication-title: Scientific Reports
  doi: 10.1038/s41598-023-28328-2
– volume: 18
  start-page: 1169
  year: 2021
  ident: 10.1016/j.eswa.2024.124108_b3
  article-title: Differentiable biology: using deep learning for biophysics-based and data-driven modeling of molecular mechanisms
  publication-title: Nature Methods
  doi: 10.1038/s41592-021-01283-4
– volume: 20
  start-page: 1152
  issue: 6
  year: 1972
  ident: 10.1016/j.eswa.2024.124108_b5
  article-title: On the set-covering problem
  publication-title: Operations Research
  doi: 10.1287/opre.20.6.1152
– year: 2014
  ident: 10.1016/j.eswa.2024.124108_b33
– volume: 58
  start-page: 236
  issue: 301
  year: 1963
  ident: 10.1016/j.eswa.2024.124108_b53
  article-title: Hierarchical grouping to optimize an objective function
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1963.10500845
– volume: 1
  start-page: 191
  issue: 3
  year: 2018
  ident: 10.1016/j.eswa.2024.124108_b57
  article-title: Survey on encoding schemes for genomic data representation and feature learning—from signal processing to machine learning
  publication-title: Big Data Mining and Analytics
  doi: 10.26599/BDMA.2018.9020018
– volume: vol. 344
  year: 2006
  ident: 10.1016/j.eswa.2024.124108_b37
  article-title: Optimizing the hyper-parameters for SVM by combining evolution strategies with a grid search
– start-page: 2259
  year: 2023
  ident: 10.1016/j.eswa.2024.124108_b46
  article-title: GiGaMAE: Generalizable graph masked autoencoder via collaborative latent space reconstruction
– volume: 24
  start-page: 1
  issue: 6
  year: 2023
  ident: 10.1016/j.eswa.2024.124108_b30
  article-title: AutoKeras: An AutoML library for deep learning
  publication-title: Journal of Machine Learning Research
– volume: 13
  start-page: 33
  issue: 1
  year: 2008
  ident: 10.1016/j.eswa.2024.124108_b36
  article-title: Assessing knowledge integration in science: Construct, measures, and evidence
  publication-title: Educational Assessment
  doi: 10.1080/10627190801968224
– start-page: 533
  year: 2014
  ident: 10.1016/j.eswa.2024.124108_b10
  article-title: Deep autoencoder neural networks for gene ontology annotation predictions
– volume: 101
  year: 2020
  ident: 10.1016/j.eswa.2024.124108_b19
  article-title: Searching for new physics with deep autoencoders
  publication-title: Physical Review D
  doi: 10.1103/PhysRevD.101.075021
– volume: 164
  year: 2023
  ident: 10.1016/j.eswa.2024.124108_b34
  article-title: Cancer-inspired genomics mapper model for the generation of synthetic DNA sequences with desired genomics signatures
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2023.107221
– volume: 16
  start-page: 401
  issue: 6
  year: 2007
  ident: 10.1016/j.eswa.2024.124108_b4
  article-title: Understanding price premium for grocery products: a conceptual model of customer-based brand equity
  publication-title: Journal of Product & Brand Management
  doi: 10.1108/10610420710823762
– volume: 16
  start-page: P10008
  issue: 10
  year: 2021
  ident: 10.1016/j.eswa.2024.124108_b45
  article-title: Adaptive machine learning for time-varying systems: low dimensional latent space tuning
  publication-title: Journal of Instrumentation
  doi: 10.1088/1748-0221/16/10/P10008
– volume: 9
  start-page: 56
  issue: 4
  year: 2020
  ident: 10.1016/j.eswa.2024.124108_b47
  article-title: A blockchain-based P2P transaction method and sensitive data encoding for E-commerce transactions
  publication-title: IEEE Consumer Electronics Magazine
  doi: 10.1109/MCE.2020.2969198
– volume: 4
  start-page: 233
  issue: 3
  year: 1979
  ident: 10.1016/j.eswa.2024.124108_b12
  article-title: Greedy heuristic for the set-covering proble
  publication-title: Mathematics of Operations Research
  doi: 10.1287/moor.4.3.233
– year: 2016
  ident: 10.1016/j.eswa.2024.124108_b11
– volume: 97
  start-page: 1090
  issue: 460
  year: 2002
  ident: 10.1016/j.eswa.2024.124108_b25
  article-title: Latent space approaches to social network analysis
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214502388618906
– volume: 23
  start-page: 627
  issue: 6
  year: 2009
  ident: 10.1016/j.eswa.2024.124108_b7
  article-title: Building knowledge integration systems for evidence-informed decisions
  publication-title: Journal of Health Organization and Management
  doi: 10.1108/14777260911001644
– ident: 10.1016/j.eswa.2024.124108_b56
  doi: 10.1609/aaai.v31i1.10769
– volume: 93
  start-page: 29
  year: 2019
  ident: 10.1016/j.eswa.2024.124108_b15
  article-title: Towards automatic encoding of medical procedures using convolutional neural networks and autoencoders
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2018.10.001
– volume: 6
  issue: 21
  year: 2019
  ident: 10.1016/j.eswa.2024.124108_b24
  article-title: Data-driven materials science: Status, challenges, and perspectives
  publication-title: Advanced Science
– volume: 20
  start-page: 944
  year: 2019
  ident: 10.1016/j.eswa.2024.124108_b38
  article-title: Integrate multi-omics data with biological interaction networks using multi-view factorization AutoEncoder (MAE)
  publication-title: BMC Genomics
  doi: 10.1186/s12864-019-6285-x
– volume: 34
  start-page: 29
  issue: 1
  year: 2022
  ident: 10.1016/j.eswa.2024.124108_b35
  article-title: A survey of data-driven and knowledge-aware explainable AI
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 22
  issue: 3
  year: 2020
  ident: 10.1016/j.eswa.2024.124108_b44
  article-title: Learning latent space representations to predict patient outcomes: Model development and validation
  publication-title: Journal of Medical Internet Research
  doi: 10.2196/16374
– volume: 6
  start-page: 44
  issue: 3
  year: 2018
  ident: 10.1016/j.eswa.2024.124108_b18
  article-title: A review of the autoencoder and its variants: A comparative perspective from target recognition in synthetic-aperture radar images
  publication-title: IEEE Geoscience and Remote Sensing Magazine
  doi: 10.1109/MGRS.2018.2853555
– year: 2019
  ident: 10.1016/j.eswa.2024.124108_b20
– volume: 36
  start-page: 488
  issue: 3
  year: 2011
  ident: 10.1016/j.eswa.2024.124108_b50
  article-title: Evaluating the performance of U.S. supermarkets: Pricing strategies, competition from hypermarkets, and private labels
  publication-title: Journal of Agricultural and Resource Economics
– volume: 37
  start-page: 2346
  issue: 3
  year: 2022
  ident: 10.1016/j.eswa.2024.124108_b14
  article-title: Two-step electricity theft detection strategy considering economic return based on convolutional autoencoder and improved regression algorithm
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2021.3114307
– volume: 22
  start-page: 1533
  issue: 10
  year: 2014
  ident: 10.1016/j.eswa.2024.124108_b1
  article-title: Convolutional neural networks for speech recognition
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2014.2339736
– volume: 385
  year: 2021
  ident: 10.1016/j.eswa.2024.124108_b23
  article-title: Deep autoencoders for physics-constrained data-driven nonlinear materials modeling
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2021.114034
– volume: 26
  start-page: 1272
  issue: 11
  year: 2019
  ident: 10.1016/j.eswa.2024.124108_b17
  article-title: Toward a clinical text encoder: pretraining for clinical natural language processing with applications to substance misuse
  publication-title: Journal of the American Medical Informatics Association
  doi: 10.1093/jamia/ocz072
– start-page: 843
  year: 2021
  ident: 10.1016/j.eswa.2024.124108_b29
  article-title: Good to the last bit: Data-driven encoding with codecdb
– volume: 461
  start-page: 325
  year: 2016
  ident: 10.1016/j.eswa.2024.124108_b31
  article-title: A novel DNA sequence similarity calculation based on simplified pulse-coupled neural network and huffman coding
  publication-title: Physica A. Statistical Mechanics and its Applications
  doi: 10.1016/j.physa.2016.05.004
– start-page: 161
  year: 2021
  ident: 10.1016/j.eswa.2024.124108_b21
  article-title: Autoencoders for unsupervised anomaly detection in high energy physics
  publication-title: Journal of High Energy Physics
  doi: 10.1007/JHEP06(2021)161
– volume: 3
  year: 2020
  ident: 10.1016/j.eswa.2024.124108_b28
  article-title: Rider optimization algorithm implemented on the AVR control system using MATLAB with FOPID
  publication-title: IOP Conference Series Materials Science and Engineering
– ident: 10.1016/j.eswa.2024.124108_b52
– ident: 10.1016/j.eswa.2024.124108_b54
  doi: 10.1109/INNOCIT.2017.8319153
– volume: 6
  start-page: 13
  issue: 1
  year: 2014
  ident: 10.1016/j.eswa.2024.124108_b13
  article-title: Rule-based modeling: a computational approach for studying biomolecular site dynamics in cell signaling systems
  publication-title: WIREs Systems Biology and Medicine
  doi: 10.1002/wsbm.1245
– ident: 10.1016/j.eswa.2024.124108_b22
– start-page: 3390
  year: 2021
  ident: 10.1016/j.eswa.2024.124108_b2
  article-title: Autoencoder-based anomaly detection in smart farming ecosystem
– volume: 357
  start-page: 125
  year: 2018
  ident: 10.1016/j.eswa.2024.124108_b43
  article-title: Hidden physics models: Machine learning of nonlinear partial differential equations
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2017.11.039
– volume: 2
  start-page: 559
  issue: 11
  year: 1901
  ident: 10.1016/j.eswa.2024.124108_b41
  article-title: LIII. On lines and planes of closest fit to systems of points in space
  publication-title: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
  doi: 10.1080/14786440109462720
– volume: 137
  start-page: 31
  year: 2021
  ident: 10.1016/j.eswa.2024.124108_b58
  article-title: Extracting and inserting knowledge into stacked denoising auto-encoders
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2021.01.010
– year: 2022
  ident: 10.1016/j.eswa.2024.124108_b16
– volume: 46
  start-page: 899
  issue: 13
  year: 2004
  ident: 10.1016/j.eswa.2024.124108_b48
  article-title: An empirical study of the effect of knowledge integration on software development performance
  publication-title: Information and Software Technology
  doi: 10.1016/j.infsof.2004.03.006
– volume: 249
  start-page: 430
  issue: 1–4
  year: 1998
  ident: 10.1016/j.eswa.2024.124108_b8
  article-title: Analysis of DNA sequences using methods of statistical physics
  publication-title: Physica A. Statistical Mechanics and its Applications
  doi: 10.1016/S0378-4371(97)00503-7
– volume: 105
  year: 2020
  ident: 10.1016/j.eswa.2024.124108_b55
  article-title: Integrating domain knowledge with deep learning models: An interpretable AI system for automatic work progress identification of NATM tunnels
  publication-title: Tunnelling and Underground Space Technology
  doi: 10.1016/j.tust.2020.103558
– volume: 18
  start-page: 75
  year: 2002
  ident: 10.1016/j.eswa.2024.124108_b49
  article-title: A perspective view and survey of meta-learning
  publication-title: Artificial Intelligence Review
  doi: 10.1023/A:1019956318069
– start-page: 53
  year: 2021
  ident: 10.1016/j.eswa.2024.124108_b6
  article-title: Interpretable feedback for automl and a proposal for domain-customized automl for networking
– volume: 34
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.eswa.2024.124108_b39
  article-title: Predictive Coding, Variational Autoencoders, and Biological Connections
  publication-title: Neural Computation
  doi: 10.1162/neco_a_01458
– volume: 74
  start-page: 203
  year: 2021
  ident: 10.1016/j.eswa.2024.124108_b9
  article-title: A close-up comparison of the misclassification error distance and the adjusted rand index for external clustering evaluation
  publication-title: British Journal of Mathematical and Statistical Psychology
  doi: 10.1111/bmsp.12212
– volume: 26
  start-page: 739
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2024.124108_b26
  article-title: Data sampling in multi-view and multi-class scatterplots via set cover optimization
  publication-title: IEEE Transactions on Visualization and Computer Graphics
  doi: 10.1109/TVCG.2019.2934799
SSID ssj0017007
Score 2.4880195
Snippet Data encoding is a common and central operation in most data analysis tasks. The performance of other models downstream in the computational process highly...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 124108
SubjectTerms Biologically-inspired loss function
Data-driven encoding
Expert-driven model
Title Knowledge-integrated autoencoder model
URI https://dx.doi.org/10.1016/j.eswa.2024.124108
Volume 252
WOSCitedRecordID wos001243789600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYocOilL1qVR6scql6QV44fsXNEFagtCFUCpL1FtmNLUBTQbmgRv57x2s4uLUIUqZcoimI7mc-ZjMcz3yD0SVtvubICayoY5o4ybISxsEqpWu1qQymZJQofyMNDNR7XP1KBxemsnIDsOnV9XV_-V6jhGoAdUmf_Ae6hU7gA5wA6HAF2OD4K-P3sJcMDFUS7ra_6i0BZGZgjZsVv7njkA91xn0idc7rbwsb2ELSjb5zpTmNstWvbwRt_BIB3-KebRB12EFLnFt0JlAc9HBMqo48r57nMg4qis1BiXsZ6OiMXVaWSDFcy1jfMupRGOtq_9HJ0EZyN3PR3IHuifAR2RUnU_C80xAYehcHCWCG6FVY71TO0QqWoQeuu7HzbHX8fNokkidnw-eFSTlQM3_tzpPvtjgVb4vgVepEWAcVOBO81WnLdG_QyF9gokr5dQ5_vw7JYwLKYYfkWneztHn_5ilNhC2wZ5z22grVMKGWEp8wS4onhRLfeKa-8FFYS6pwujeWWGSEY2Nh1a1XpqNJWKc7eoeXuonPvUVFXtjKWcA8fI8iAKE9pG6w66J167ddRmV-7sYn1PRQfOW9yeN9ZE0TVBFE1UVTraHtocxk5Tx68W2RpNslqi9ZYA-A_0G7jie020fP5vN1Cy_3kyn1Aq_ZXfzqdfExz5BbQimZf
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Knowledge-integrated+autoencoder+model&rft.jtitle=Expert+systems+with+applications&rft.au=Lazebnik%2C+Teddy&rft.au=Simon-keren%2C+Liron&rft.date=2024-10-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=252&rft_id=info:doi/10.1016%2Fj.eswa.2024.124108&rft.externalDocID=S0957417424009746
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon