Knowledge-integrated autoencoder model
Data encoding is a common and central operation in most data analysis tasks. The performance of other models downstream in the computational process highly depends on the quality of data encoding. One of the most powerful ways to encode data is using the neural network AutoEncoder (AE) architecture....
Uloženo v:
| Vydáno v: | Expert systems with applications Ročník 252; s. 124108 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
15.10.2024
|
| Témata: | |
| ISSN: | 0957-4174, 1873-6793 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Data encoding is a common and central operation in most data analysis tasks. The performance of other models downstream in the computational process highly depends on the quality of data encoding. One of the most powerful ways to encode data is using the neural network AutoEncoder (AE) architecture. However, the developers of AE cannot easily influence the produced embedding space, as it is usually treated as a black box technique. This means the embedding space is uncontrollable and does not necessarily possess the properties desired for downstream tasks. This paper introduces a novel approach for developing AE models that can integrate external knowledge sources into the learning process, possibly leading to more accurate results. The proposed Knowledge-integrated AutoEncoder (KiAE) model can leverage domain-specific information to make sure the desired distance and neighborhood properties between samples are preservative in the embedding space. The proposed model is evaluated on three large-scale datasets from three scientific fields and is compared to nine existing encoding models. The results demonstrate that the KiAE model effectively captures the underlying structures and relationships between the input data and external knowledge, meaning it generates a more useful representation. This leads to outperforming the rest of the models in terms of reconstruction accuracy.
[Display omitted]
•To control the latent space, knowledge of relative distances can be integrated using a distance matrix.•The KiAE method can capture desired properties even on a small dataset (<200 samples).•The knowledge matrix is not required to be full on the dataset using meta-regression. |
|---|---|
| AbstractList | Data encoding is a common and central operation in most data analysis tasks. The performance of other models downstream in the computational process highly depends on the quality of data encoding. One of the most powerful ways to encode data is using the neural network AutoEncoder (AE) architecture. However, the developers of AE cannot easily influence the produced embedding space, as it is usually treated as a black box technique. This means the embedding space is uncontrollable and does not necessarily possess the properties desired for downstream tasks. This paper introduces a novel approach for developing AE models that can integrate external knowledge sources into the learning process, possibly leading to more accurate results. The proposed Knowledge-integrated AutoEncoder (KiAE) model can leverage domain-specific information to make sure the desired distance and neighborhood properties between samples are preservative in the embedding space. The proposed model is evaluated on three large-scale datasets from three scientific fields and is compared to nine existing encoding models. The results demonstrate that the KiAE model effectively captures the underlying structures and relationships between the input data and external knowledge, meaning it generates a more useful representation. This leads to outperforming the rest of the models in terms of reconstruction accuracy.
[Display omitted]
•To control the latent space, knowledge of relative distances can be integrated using a distance matrix.•The KiAE method can capture desired properties even on a small dataset (<200 samples).•The knowledge matrix is not required to be full on the dataset using meta-regression. |
| ArticleNumber | 124108 |
| Author | Lazebnik, Teddy Simon-keren, Liron |
| Author_xml | – sequence: 1 givenname: Teddy orcidid: 0000-0002-7851-8147 surname: Lazebnik fullname: Lazebnik, Teddy email: t.lazebnik@ucl.ac.uk organization: Department of Mathematics, Ariel University, Ariel, Israel – sequence: 2 givenname: Liron orcidid: 0009-0004-2280-4197 surname: Simon-keren fullname: Simon-keren, Liron email: lironsimon1@mail.tau.ac.il organization: School of Mechanical Engineering, Tel Aviv University, Israel |
| BookMark | eNp9z0tLAzEUhuEgFWyrf8BVV-5mPLk1GXAjxRsW3Og6ZJKTkjKdkSRa_PdOqSsX3Zyzej94ZmTSDz0Sck2hpkCXt9sa897WDJioKRMU9BmZUq14tVQNn5ApNFJVgipxQWY5bwGoAlBTcvPaD_sO_Qar2BfcJFvQL-xXGbB3g8e02I23uyTnwXYZr_7-nHw8Pryvnqv129PL6n5dOS5EqZzknkutWxkYdwABWgHWB9RBByWdAoZoaeuE462UvOGs8U5TZNo6rQWfE33cdWnIOWEwLhZb4tCXZGNnKJiD12zNwWsOXnP0jin7l36muLPp53R0d4xwRH1HTCa7OMrRx4SuGD_EU_kvzvNw0w |
| CitedBy_id | crossref_primary_10_1016_j_bbcan_2025_189456 crossref_primary_10_2478_amns_2024_2282 crossref_primary_10_1007_s10489_024_05821_3 crossref_primary_10_1063_5_0269365 |
| Cites_doi | 10.1007/s10462-021-10004-4 10.3390/ijms221910891 10.1007/BF00993377 10.1038/s41598-023-28328-2 10.1038/s41592-021-01283-4 10.1287/opre.20.6.1152 10.1080/01621459.1963.10500845 10.26599/BDMA.2018.9020018 10.1080/10627190801968224 10.1103/PhysRevD.101.075021 10.1016/j.compbiomed.2023.107221 10.1108/10610420710823762 10.1088/1748-0221/16/10/P10008 10.1109/MCE.2020.2969198 10.1287/moor.4.3.233 10.1198/016214502388618906 10.1108/14777260911001644 10.1609/aaai.v31i1.10769 10.1016/j.artmed.2018.10.001 10.1186/s12864-019-6285-x 10.2196/16374 10.1109/MGRS.2018.2853555 10.1109/TPWRS.2021.3114307 10.1109/TASLP.2014.2339736 10.1016/j.cma.2021.114034 10.1093/jamia/ocz072 10.1016/j.physa.2016.05.004 10.1007/JHEP06(2021)161 10.1109/INNOCIT.2017.8319153 10.1002/wsbm.1245 10.1016/j.jcp.2017.11.039 10.1080/14786440109462720 10.1016/j.neunet.2021.01.010 10.1016/j.infsof.2004.03.006 10.1016/S0378-4371(97)00503-7 10.1016/j.tust.2020.103558 10.1023/A:1019956318069 10.1162/neco_a_01458 10.1111/bmsp.12212 10.1109/TVCG.2019.2934799 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s) |
| Copyright_xml | – notice: 2024 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.eswa.2024.124108 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2024_124108 S0957417424009746 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ LG9 LY1 LY7 R2- SBC SET WUQ XPP ZMT ~HD |
| ID | FETCH-LOGICAL-c344t-c53d3588b5f23c00f0b40adfe8f8f75c702eea1bc4c3b5539329dc81e28ac8843 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001243789600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Tue Nov 18 21:34:47 EST 2025 Sat Nov 29 03:07:38 EST 2025 Tue Jun 18 08:50:57 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Expert-driven model Biologically-inspired loss function Data-driven encoding |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c344t-c53d3588b5f23c00f0b40adfe8f8f75c702eea1bc4c3b5539329dc81e28ac8843 |
| ORCID | 0000-0002-7851-8147 0009-0004-2280-4197 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.eswa.2024.124108 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_eswa_2024_124108 crossref_primary_10_1016_j_eswa_2024_124108 elsevier_sciencedirect_doi_10_1016_j_eswa_2024_124108 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-15 |
| PublicationDateYYYYMMDD | 2024-10-15 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Vilalta, Drissi (b49) 2002; 18 Hu, Sha, Van Kaick, Deussen, Huang (b26) 2020; 26 Ding, Lin, Li, Eun, Zhao (b16) 2022 Kingma, Ba (b33) 2014 Chylek, Harris, Tung, Faeder, Lopez, Hlavacek (b13) 2014; 6 Gelada, C., Kumar, S., Buckman, J., Nachum, O., & Bellemare, M. G. (2019). DeepMDP: Learning Continuous Latent Space Models for Representation Learning. In Tiwana (b48) 2004; 46 Adkisson, Kimmell, Gupta, Abdelsalam (b2) 2021 Jiang, Liu, Paparrizos, Chien, Ma, Elmore (b29) 2021 Yu, Liu (b58) 2021; 137 Chollet (b11) 2016 Su, Liu, Choi (b47) 2020; 9 Chacon (b9) 2021; 74 (pp. 9786–9796). He, He, Chen (b23) 2021; 385 Ward (b53) 1963; 58 Hoff, Raftery, Handcock (b25) 2002; 97 Chicco, Sadowski, Baldi (b10) 2014 Wu, Fujita, Soga (b55) 2020; 105 Jin, Chollet, Song, Hu (b30) 2023; 24 Lazebnik, Simon-Keren (b34) 2023; 164 Anselmsson, Johansson, Persson (b4) 2007; 16 . Deng, Sander, Faulstich, Denecke (b15) 2019; 93 Huisman, van Rijn, Plaat (b27) 2021; 54 Best, Terpstra, Moor, Riley, Norman, Glasgow (b7) 2009; 23 Himanen, Geurts, Foster, Rinke (b24) 2019; 6 Liu, Liu, Yang, Li, Wang (b37) 2006; vol. 344 Marino (b39) 2022; 34 Rongali, Rose, McManus, Bajracharya, Kapoor, Granillo, Yu (b44) 2020; 22 Keren, Liberzon, Lazebnik (b32) 2023; 13 Shi, Dong, Tan, Li, Liu (b46) 2023 Dong, Liao, Liu, Kuang (b18) 2018; 6 Farina, Nakai, Shih (b19) 2020; 101 AlQuraishi, Sorger (b3) 2021; 18 Winarno, E., Hadikurniawati, W., & Rosso, R. N. (2017). Location based service for presence system using haversine method. In Volpe (b50) 2011; 36 Pearson (b41) 1901; 2 Balas, Padberg (b5) 1972; 20 Buldyrev, Dokholyan, Goldberger, Havlin, Peng, Stanley, Viswanathan (b8) 1998; 249 (pp. 1–4). Finke, Krämer, Morandini, Oleksiyuk (b21) 2021 Jin, Nie, Zhou, Yao, Chen, Yu, Wang (b31) 2016; 461 Yeh, C. K., Wu, W. C., Ko, W. J., & Wang, Y. C. F. (2017). Learning Deep Latent Space for Multi-Label Classification. In Raissi, Karniadakis (b43) 2018; 357 Feurer, Klevin, Eggensperger, Springenberg, Blum, Hutter (b20) 2019 Liu, Lee, Hofstetter, Linn (b36) 2008; 13 Dligach, Afshar, Miller (b17) 2019; 26 Ibrahim (b28) 2020; 3 Voynov, A., & Babenko, A. (2020). Unsupervised Discovery of Interpretable Directions in the GAN Latent Space. In Chvatal (b12) 1979; 4 Cui, Liu, Lin, Ma, Wen, Ding, Yang, Guo, Feng (b14) 2022; 37 von Rueden, Mayer, Beckh, Georgiev, Giesselbach, Heese, Kirsch, Pfrommer, Pick, Ramamurthy, Walczak, Garcke, Bauckhage, Schuecker (b51) 2023; 35 Li, Cao, Shi, Bai, Gao, Qiu, Wang, Gao, Zhang, Xue, Chen (b35) 2022; 34 Ma, Zhang (b38) 2019; 20 Pratella, Ait-El-Mkadem Saadi, Bannwarth, Paquis-Fluckinger, Bottini (b42) 2021; 22 Abdel-Hamid, Mohamed, Jiang, Deng, Penn, Yu (b1) 2014; 22 (pp. 2170–2179). Parsons, Forrest, Burks (b40) 1995; 21 Yu, Li, Yu (b57) 2018; 1 Behnaz, Kevin, Haoxian (b6) 2021 Scheinker (b45) 2021; 16 Buldyrev (10.1016/j.eswa.2024.124108_b8) 1998; 249 He (10.1016/j.eswa.2024.124108_b23) 2021; 385 von Rueden (10.1016/j.eswa.2024.124108_b51) 2023; 35 Su (10.1016/j.eswa.2024.124108_b47) 2020; 9 Scheinker (10.1016/j.eswa.2024.124108_b45) 2021; 16 Jin (10.1016/j.eswa.2024.124108_b30) 2023; 24 Hoff (10.1016/j.eswa.2024.124108_b25) 2002; 97 Ma (10.1016/j.eswa.2024.124108_b38) 2019; 20 Abdel-Hamid (10.1016/j.eswa.2024.124108_b1) 2014; 22 Chicco (10.1016/j.eswa.2024.124108_b10) 2014 Feurer (10.1016/j.eswa.2024.124108_b20) 2019 Liu (10.1016/j.eswa.2024.124108_b37) 2006; vol. 344 Ward (10.1016/j.eswa.2024.124108_b53) 1963; 58 Cui (10.1016/j.eswa.2024.124108_b14) 2022; 37 Hu (10.1016/j.eswa.2024.124108_b26) 2020; 26 AlQuraishi (10.1016/j.eswa.2024.124108_b3) 2021; 18 Wu (10.1016/j.eswa.2024.124108_b55) 2020; 105 10.1016/j.eswa.2024.124108_b52 Tiwana (10.1016/j.eswa.2024.124108_b48) 2004; 46 Li (10.1016/j.eswa.2024.124108_b35) 2022; 34 Ibrahim (10.1016/j.eswa.2024.124108_b28) 2020; 3 Jiang (10.1016/j.eswa.2024.124108_b29) 2021 10.1016/j.eswa.2024.124108_b54 Rongali (10.1016/j.eswa.2024.124108_b44) 2020; 22 10.1016/j.eswa.2024.124108_b56 Lazebnik (10.1016/j.eswa.2024.124108_b34) 2023; 164 Keren (10.1016/j.eswa.2024.124108_b32) 2023; 13 Liu (10.1016/j.eswa.2024.124108_b36) 2008; 13 Dligach (10.1016/j.eswa.2024.124108_b17) 2019; 26 Pearson (10.1016/j.eswa.2024.124108_b41) 1901; 2 Chylek (10.1016/j.eswa.2024.124108_b13) 2014; 6 Farina (10.1016/j.eswa.2024.124108_b19) 2020; 101 Chacon (10.1016/j.eswa.2024.124108_b9) 2021; 74 Kingma (10.1016/j.eswa.2024.124108_b33) 2014 Chollet (10.1016/j.eswa.2024.124108_b11) 2016 Raissi (10.1016/j.eswa.2024.124108_b43) 2018; 357 Chvatal (10.1016/j.eswa.2024.124108_b12) 1979; 4 Yu (10.1016/j.eswa.2024.124108_b58) 2021; 137 Vilalta (10.1016/j.eswa.2024.124108_b49) 2002; 18 Parsons (10.1016/j.eswa.2024.124108_b40) 1995; 21 Shi (10.1016/j.eswa.2024.124108_b46) 2023 Huisman (10.1016/j.eswa.2024.124108_b27) 2021; 54 Balas (10.1016/j.eswa.2024.124108_b5) 1972; 20 Best (10.1016/j.eswa.2024.124108_b7) 2009; 23 10.1016/j.eswa.2024.124108_b22 Anselmsson (10.1016/j.eswa.2024.124108_b4) 2007; 16 Finke (10.1016/j.eswa.2024.124108_b21) 2021 Jin (10.1016/j.eswa.2024.124108_b31) 2016; 461 Pratella (10.1016/j.eswa.2024.124108_b42) 2021; 22 Adkisson (10.1016/j.eswa.2024.124108_b2) 2021 Yu (10.1016/j.eswa.2024.124108_b57) 2018; 1 Behnaz (10.1016/j.eswa.2024.124108_b6) 2021 Himanen (10.1016/j.eswa.2024.124108_b24) 2019; 6 Volpe (10.1016/j.eswa.2024.124108_b50) 2011; 36 Deng (10.1016/j.eswa.2024.124108_b15) 2019; 93 Dong (10.1016/j.eswa.2024.124108_b18) 2018; 6 Marino (10.1016/j.eswa.2024.124108_b39) 2022; 34 Ding (10.1016/j.eswa.2024.124108_b16) 2022 |
| References_xml | – reference: (pp. 2170–2179). – volume: 164 year: 2023 ident: b34 article-title: Cancer-inspired genomics mapper model for the generation of synthetic DNA sequences with desired genomics signatures publication-title: Computers in Biology and Medicine – volume: 34 start-page: 29 year: 2022 end-page: 49 ident: b35 article-title: A survey of data-driven and knowledge-aware explainable AI publication-title: IEEE Transactions on Knowledge and Data Engineering – year: 2016 ident: b11 article-title: Building autoencoders in keras – volume: 18 start-page: 1169 year: 2021 end-page: 1180 ident: b3 article-title: Differentiable biology: using deep learning for biophysics-based and data-driven modeling of molecular mechanisms publication-title: Nature Methods – volume: 20 start-page: 1152 year: 1972 end-page: 1161 ident: b5 article-title: On the set-covering problem publication-title: Operations Research – volume: 6 start-page: 44 year: 2018 end-page: 68 ident: b18 article-title: A review of the autoencoder and its variants: A comparative perspective from target recognition in synthetic-aperture radar images publication-title: IEEE Geoscience and Remote Sensing Magazine – volume: 26 start-page: 739 year: 2020 end-page: 748 ident: b26 article-title: Data sampling in multi-view and multi-class scatterplots via set cover optimization publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 58 start-page: 236 year: 1963 end-page: 244 ident: b53 article-title: Hierarchical grouping to optimize an objective function publication-title: Journal of the American Statistical Association – volume: 1 start-page: 191 year: 2018 end-page: 210 ident: b57 article-title: Survey on encoding schemes for genomic data representation and feature learning—from signal processing to machine learning publication-title: Big Data Mining and Analytics – year: 2014 ident: b33 article-title: Adam: A Method for Stochastic Optimization – start-page: 2259 year: 2023 end-page: 2269 ident: b46 article-title: GiGaMAE: Generalizable graph masked autoencoder via collaborative latent space reconstruction publication-title: Proceedings of the 32nd ACM international conference on information and knowledge management – reference: Gelada, C., Kumar, S., Buckman, J., Nachum, O., & Bellemare, M. G. (2019). DeepMDP: Learning Continuous Latent Space Models for Representation Learning. In – volume: 35 start-page: 614 year: 2023 end-page: 633 ident: b51 article-title: Informed machine learning – A taxonomy and survey of integrating prior knowledge into learning systems publication-title: IEEE Transactions on Knowledge & Data Engineering – volume: 101 year: 2020 ident: b19 article-title: Searching for new physics with deep autoencoders publication-title: Physical Review D – reference: Voynov, A., & Babenko, A. (2020). Unsupervised Discovery of Interpretable Directions in the GAN Latent Space. In – volume: 3 year: 2020 ident: b28 article-title: Rider optimization algorithm implemented on the AVR control system using MATLAB with FOPID publication-title: IOP Conference Series Materials Science and Engineering – volume: 18 start-page: 75 year: 2002 end-page: 95 ident: b49 article-title: A perspective view and survey of meta-learning publication-title: Artificial Intelligence Review – volume: 23 start-page: 627 year: 2009 end-page: 641 ident: b7 article-title: Building knowledge integration systems for evidence-informed decisions publication-title: Journal of Health Organization and Management – volume: 137 start-page: 31 year: 2021 end-page: 42 ident: b58 article-title: Extracting and inserting knowledge into stacked denoising auto-encoders publication-title: Neural Networks – volume: 6 year: 2019 ident: b24 article-title: Data-driven materials science: Status, challenges, and perspectives publication-title: Advanced Science – volume: 4 start-page: 233 year: 1979 end-page: 235 ident: b12 article-title: Greedy heuristic for the set-covering proble publication-title: Mathematics of Operations Research – volume: 461 start-page: 325 year: 2016 end-page: 338 ident: b31 article-title: A novel DNA sequence similarity calculation based on simplified pulse-coupled neural network and huffman coding publication-title: Physica A. Statistical Mechanics and its Applications – volume: vol. 344 year: 2006 ident: b37 article-title: Optimizing the hyper-parameters for SVM by combining evolution strategies with a grid search publication-title: Intelligent control and automation. Lecture notes in control and information sciences – year: 2022 ident: b16 article-title: Semantically adversarial driving scenario generation with explicit knowledge integration – volume: 46 start-page: 899 year: 2004 end-page: 906 ident: b48 article-title: An empirical study of the effect of knowledge integration on software development performance publication-title: Information and Software Technology – year: 2019 ident: b20 article-title: Auto-sklearn: Efficient and robust automated machine learning – volume: 357 start-page: 125 year: 2018 end-page: 141 ident: b43 article-title: Hidden physics models: Machine learning of nonlinear partial differential equations publication-title: Journal of Computational Physics – start-page: 53 year: 2021 end-page: 60 ident: b6 article-title: Interpretable feedback for automl and a proposal for domain-customized automl for networking publication-title: Proceedings of the twentieth ACM workshop on hot topics in networks – volume: 26 start-page: 1272 year: 2019 end-page: 1278 ident: b17 article-title: Toward a clinical text encoder: pretraining for clinical natural language processing with applications to substance misuse publication-title: Journal of the American Medical Informatics Association – volume: 22 year: 2021 ident: b42 article-title: A survey of autoencoder algorithms to pave the diagnosis of rare diseases publication-title: International Journal of Molecular Sciences – volume: 13 start-page: 1249 year: 2023 ident: b32 article-title: A computational framework for physics-informed symbolic regression with straightforward integration of domain knowledge publication-title: Scientific Reports – reference: Yeh, C. K., Wu, W. C., Ko, W. J., & Wang, Y. C. F. (2017). Learning Deep Latent Space for Multi-Label Classification. In – volume: 249 start-page: 430 year: 1998 end-page: 438 ident: b8 article-title: Analysis of DNA sequences using methods of statistical physics publication-title: Physica A. Statistical Mechanics and its Applications – reference: (pp. 9786–9796). – volume: 74 start-page: 203 year: 2021 end-page: 231 ident: b9 article-title: A close-up comparison of the misclassification error distance and the adjusted rand index for external clustering evaluation publication-title: British Journal of Mathematical and Statistical Psychology – volume: 34 start-page: 1 year: 2022 end-page: 44 ident: b39 article-title: Predictive Coding, Variational Autoencoders, and Biological Connections publication-title: Neural Computation – volume: 22 start-page: 1533 year: 2014 end-page: 1545 ident: b1 article-title: Convolutional neural networks for speech recognition publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing – volume: 37 start-page: 2346 year: 2022 end-page: 2359 ident: b14 article-title: Two-step electricity theft detection strategy considering economic return based on convolutional autoencoder and improved regression algorithm publication-title: IEEE Transactions on Power Systems – start-page: 161 year: 2021 ident: b21 article-title: Autoencoders for unsupervised anomaly detection in high energy physics publication-title: Journal of High Energy Physics – reference: Winarno, E., Hadikurniawati, W., & Rosso, R. N. (2017). Location based service for presence system using haversine method. In – volume: 93 start-page: 29 year: 2019 end-page: 42 ident: b15 article-title: Towards automatic encoding of medical procedures using convolutional neural networks and autoencoders publication-title: Artificial Intelligence in Medicine – volume: 2 start-page: 559 year: 1901 end-page: 572 ident: b41 article-title: LIII. On lines and planes of closest fit to systems of points in space publication-title: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science – volume: 54 start-page: 4483 year: 2021 end-page: 4541 ident: b27 article-title: A survey of deep meta-learning publication-title: Artificial Intelligence Review – start-page: 843 year: 2021 end-page: 856 ident: b29 article-title: Good to the last bit: Data-driven encoding with codecdb publication-title: Proceedings of the 2021 international conference on management of data – volume: 36 start-page: 488 year: 2011 end-page: 503 ident: b50 article-title: Evaluating the performance of U.S. supermarkets: Pricing strategies, competition from hypermarkets, and private labels publication-title: Journal of Agricultural and Resource Economics – volume: 21 start-page: 11 year: 1995 end-page: 33 ident: b40 article-title: Genetic algorithms, operators, and DNA fragment assembly publication-title: Machine Learning – start-page: 3390 year: 2021 end-page: 3399 ident: b2 article-title: Autoencoder-based anomaly detection in smart farming ecosystem publication-title: 2021 IEEE international conference on big data – volume: 385 year: 2021 ident: b23 article-title: Deep autoencoders for physics-constrained data-driven nonlinear materials modeling publication-title: Computer Methods in Applied Mechanics and Engineering – reference: (pp. 1–4). – volume: 16 start-page: 401 year: 2007 end-page: 414 ident: b4 article-title: Understanding price premium for grocery products: a conceptual model of customer-based brand equity publication-title: Journal of Product & Brand Management – start-page: 533 year: 2014 end-page: 540 ident: b10 article-title: Deep autoencoder neural networks for gene ontology annotation predictions publication-title: Proceedings of the 5th ACM conference on bioinformatics, computational biology, and health informatics – volume: 13 start-page: 33 year: 2008 end-page: 55 ident: b36 article-title: Assessing knowledge integration in science: Construct, measures, and evidence publication-title: Educational Assessment – reference: . – volume: 105 year: 2020 ident: b55 article-title: Integrating domain knowledge with deep learning models: An interpretable AI system for automatic work progress identification of NATM tunnels publication-title: Tunnelling and Underground Space Technology – volume: 22 year: 2020 ident: b44 article-title: Learning latent space representations to predict patient outcomes: Model development and validation publication-title: Journal of Medical Internet Research – volume: 97 start-page: 1090 year: 2002 end-page: 1098 ident: b25 article-title: Latent space approaches to social network analysis publication-title: Journal of the American Statistical Association – volume: 6 start-page: 13 year: 2014 end-page: 36 ident: b13 article-title: Rule-based modeling: a computational approach for studying biomolecular site dynamics in cell signaling systems publication-title: WIREs Systems Biology and Medicine – volume: 9 start-page: 56 year: 2020 end-page: 66 ident: b47 article-title: A blockchain-based P2P transaction method and sensitive data encoding for E-commerce transactions publication-title: IEEE Consumer Electronics Magazine – volume: 16 start-page: P10008 year: 2021 ident: b45 article-title: Adaptive machine learning for time-varying systems: low dimensional latent space tuning publication-title: Journal of Instrumentation – volume: 20 start-page: 944 year: 2019 ident: b38 article-title: Integrate multi-omics data with biological interaction networks using multi-view factorization AutoEncoder (MAE) publication-title: BMC Genomics – volume: 24 start-page: 1 year: 2023 end-page: 6 ident: b30 article-title: AutoKeras: An AutoML library for deep learning publication-title: Journal of Machine Learning Research – volume: 35 start-page: 614 issue: 01 year: 2023 ident: 10.1016/j.eswa.2024.124108_b51 article-title: Informed machine learning – A taxonomy and survey of integrating prior knowledge into learning systems publication-title: IEEE Transactions on Knowledge & Data Engineering – volume: 54 start-page: 4483 year: 2021 ident: 10.1016/j.eswa.2024.124108_b27 article-title: A survey of deep meta-learning publication-title: Artificial Intelligence Review doi: 10.1007/s10462-021-10004-4 – volume: 22 issue: 19 year: 2021 ident: 10.1016/j.eswa.2024.124108_b42 article-title: A survey of autoencoder algorithms to pave the diagnosis of rare diseases publication-title: International Journal of Molecular Sciences doi: 10.3390/ijms221910891 – volume: 21 start-page: 11 year: 1995 ident: 10.1016/j.eswa.2024.124108_b40 article-title: Genetic algorithms, operators, and DNA fragment assembly publication-title: Machine Learning doi: 10.1007/BF00993377 – volume: 13 start-page: 1249 issue: 1 year: 2023 ident: 10.1016/j.eswa.2024.124108_b32 article-title: A computational framework for physics-informed symbolic regression with straightforward integration of domain knowledge publication-title: Scientific Reports doi: 10.1038/s41598-023-28328-2 – volume: 18 start-page: 1169 year: 2021 ident: 10.1016/j.eswa.2024.124108_b3 article-title: Differentiable biology: using deep learning for biophysics-based and data-driven modeling of molecular mechanisms publication-title: Nature Methods doi: 10.1038/s41592-021-01283-4 – volume: 20 start-page: 1152 issue: 6 year: 1972 ident: 10.1016/j.eswa.2024.124108_b5 article-title: On the set-covering problem publication-title: Operations Research doi: 10.1287/opre.20.6.1152 – year: 2014 ident: 10.1016/j.eswa.2024.124108_b33 – volume: 58 start-page: 236 issue: 301 year: 1963 ident: 10.1016/j.eswa.2024.124108_b53 article-title: Hierarchical grouping to optimize an objective function publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1963.10500845 – volume: 1 start-page: 191 issue: 3 year: 2018 ident: 10.1016/j.eswa.2024.124108_b57 article-title: Survey on encoding schemes for genomic data representation and feature learning—from signal processing to machine learning publication-title: Big Data Mining and Analytics doi: 10.26599/BDMA.2018.9020018 – volume: vol. 344 year: 2006 ident: 10.1016/j.eswa.2024.124108_b37 article-title: Optimizing the hyper-parameters for SVM by combining evolution strategies with a grid search – start-page: 2259 year: 2023 ident: 10.1016/j.eswa.2024.124108_b46 article-title: GiGaMAE: Generalizable graph masked autoencoder via collaborative latent space reconstruction – volume: 24 start-page: 1 issue: 6 year: 2023 ident: 10.1016/j.eswa.2024.124108_b30 article-title: AutoKeras: An AutoML library for deep learning publication-title: Journal of Machine Learning Research – volume: 13 start-page: 33 issue: 1 year: 2008 ident: 10.1016/j.eswa.2024.124108_b36 article-title: Assessing knowledge integration in science: Construct, measures, and evidence publication-title: Educational Assessment doi: 10.1080/10627190801968224 – start-page: 533 year: 2014 ident: 10.1016/j.eswa.2024.124108_b10 article-title: Deep autoencoder neural networks for gene ontology annotation predictions – volume: 101 year: 2020 ident: 10.1016/j.eswa.2024.124108_b19 article-title: Searching for new physics with deep autoencoders publication-title: Physical Review D doi: 10.1103/PhysRevD.101.075021 – volume: 164 year: 2023 ident: 10.1016/j.eswa.2024.124108_b34 article-title: Cancer-inspired genomics mapper model for the generation of synthetic DNA sequences with desired genomics signatures publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2023.107221 – volume: 16 start-page: 401 issue: 6 year: 2007 ident: 10.1016/j.eswa.2024.124108_b4 article-title: Understanding price premium for grocery products: a conceptual model of customer-based brand equity publication-title: Journal of Product & Brand Management doi: 10.1108/10610420710823762 – volume: 16 start-page: P10008 issue: 10 year: 2021 ident: 10.1016/j.eswa.2024.124108_b45 article-title: Adaptive machine learning for time-varying systems: low dimensional latent space tuning publication-title: Journal of Instrumentation doi: 10.1088/1748-0221/16/10/P10008 – volume: 9 start-page: 56 issue: 4 year: 2020 ident: 10.1016/j.eswa.2024.124108_b47 article-title: A blockchain-based P2P transaction method and sensitive data encoding for E-commerce transactions publication-title: IEEE Consumer Electronics Magazine doi: 10.1109/MCE.2020.2969198 – volume: 4 start-page: 233 issue: 3 year: 1979 ident: 10.1016/j.eswa.2024.124108_b12 article-title: Greedy heuristic for the set-covering proble publication-title: Mathematics of Operations Research doi: 10.1287/moor.4.3.233 – year: 2016 ident: 10.1016/j.eswa.2024.124108_b11 – volume: 97 start-page: 1090 issue: 460 year: 2002 ident: 10.1016/j.eswa.2024.124108_b25 article-title: Latent space approaches to social network analysis publication-title: Journal of the American Statistical Association doi: 10.1198/016214502388618906 – volume: 23 start-page: 627 issue: 6 year: 2009 ident: 10.1016/j.eswa.2024.124108_b7 article-title: Building knowledge integration systems for evidence-informed decisions publication-title: Journal of Health Organization and Management doi: 10.1108/14777260911001644 – ident: 10.1016/j.eswa.2024.124108_b56 doi: 10.1609/aaai.v31i1.10769 – volume: 93 start-page: 29 year: 2019 ident: 10.1016/j.eswa.2024.124108_b15 article-title: Towards automatic encoding of medical procedures using convolutional neural networks and autoencoders publication-title: Artificial Intelligence in Medicine doi: 10.1016/j.artmed.2018.10.001 – volume: 6 issue: 21 year: 2019 ident: 10.1016/j.eswa.2024.124108_b24 article-title: Data-driven materials science: Status, challenges, and perspectives publication-title: Advanced Science – volume: 20 start-page: 944 year: 2019 ident: 10.1016/j.eswa.2024.124108_b38 article-title: Integrate multi-omics data with biological interaction networks using multi-view factorization AutoEncoder (MAE) publication-title: BMC Genomics doi: 10.1186/s12864-019-6285-x – volume: 34 start-page: 29 issue: 1 year: 2022 ident: 10.1016/j.eswa.2024.124108_b35 article-title: A survey of data-driven and knowledge-aware explainable AI publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 22 issue: 3 year: 2020 ident: 10.1016/j.eswa.2024.124108_b44 article-title: Learning latent space representations to predict patient outcomes: Model development and validation publication-title: Journal of Medical Internet Research doi: 10.2196/16374 – volume: 6 start-page: 44 issue: 3 year: 2018 ident: 10.1016/j.eswa.2024.124108_b18 article-title: A review of the autoencoder and its variants: A comparative perspective from target recognition in synthetic-aperture radar images publication-title: IEEE Geoscience and Remote Sensing Magazine doi: 10.1109/MGRS.2018.2853555 – year: 2019 ident: 10.1016/j.eswa.2024.124108_b20 – volume: 36 start-page: 488 issue: 3 year: 2011 ident: 10.1016/j.eswa.2024.124108_b50 article-title: Evaluating the performance of U.S. supermarkets: Pricing strategies, competition from hypermarkets, and private labels publication-title: Journal of Agricultural and Resource Economics – volume: 37 start-page: 2346 issue: 3 year: 2022 ident: 10.1016/j.eswa.2024.124108_b14 article-title: Two-step electricity theft detection strategy considering economic return based on convolutional autoencoder and improved regression algorithm publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2021.3114307 – volume: 22 start-page: 1533 issue: 10 year: 2014 ident: 10.1016/j.eswa.2024.124108_b1 article-title: Convolutional neural networks for speech recognition publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing doi: 10.1109/TASLP.2014.2339736 – volume: 385 year: 2021 ident: 10.1016/j.eswa.2024.124108_b23 article-title: Deep autoencoders for physics-constrained data-driven nonlinear materials modeling publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2021.114034 – volume: 26 start-page: 1272 issue: 11 year: 2019 ident: 10.1016/j.eswa.2024.124108_b17 article-title: Toward a clinical text encoder: pretraining for clinical natural language processing with applications to substance misuse publication-title: Journal of the American Medical Informatics Association doi: 10.1093/jamia/ocz072 – start-page: 843 year: 2021 ident: 10.1016/j.eswa.2024.124108_b29 article-title: Good to the last bit: Data-driven encoding with codecdb – volume: 461 start-page: 325 year: 2016 ident: 10.1016/j.eswa.2024.124108_b31 article-title: A novel DNA sequence similarity calculation based on simplified pulse-coupled neural network and huffman coding publication-title: Physica A. Statistical Mechanics and its Applications doi: 10.1016/j.physa.2016.05.004 – start-page: 161 year: 2021 ident: 10.1016/j.eswa.2024.124108_b21 article-title: Autoencoders for unsupervised anomaly detection in high energy physics publication-title: Journal of High Energy Physics doi: 10.1007/JHEP06(2021)161 – volume: 3 year: 2020 ident: 10.1016/j.eswa.2024.124108_b28 article-title: Rider optimization algorithm implemented on the AVR control system using MATLAB with FOPID publication-title: IOP Conference Series Materials Science and Engineering – ident: 10.1016/j.eswa.2024.124108_b52 – ident: 10.1016/j.eswa.2024.124108_b54 doi: 10.1109/INNOCIT.2017.8319153 – volume: 6 start-page: 13 issue: 1 year: 2014 ident: 10.1016/j.eswa.2024.124108_b13 article-title: Rule-based modeling: a computational approach for studying biomolecular site dynamics in cell signaling systems publication-title: WIREs Systems Biology and Medicine doi: 10.1002/wsbm.1245 – ident: 10.1016/j.eswa.2024.124108_b22 – start-page: 3390 year: 2021 ident: 10.1016/j.eswa.2024.124108_b2 article-title: Autoencoder-based anomaly detection in smart farming ecosystem – volume: 357 start-page: 125 year: 2018 ident: 10.1016/j.eswa.2024.124108_b43 article-title: Hidden physics models: Machine learning of nonlinear partial differential equations publication-title: Journal of Computational Physics doi: 10.1016/j.jcp.2017.11.039 – volume: 2 start-page: 559 issue: 11 year: 1901 ident: 10.1016/j.eswa.2024.124108_b41 article-title: LIII. On lines and planes of closest fit to systems of points in space publication-title: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science doi: 10.1080/14786440109462720 – volume: 137 start-page: 31 year: 2021 ident: 10.1016/j.eswa.2024.124108_b58 article-title: Extracting and inserting knowledge into stacked denoising auto-encoders publication-title: Neural Networks doi: 10.1016/j.neunet.2021.01.010 – year: 2022 ident: 10.1016/j.eswa.2024.124108_b16 – volume: 46 start-page: 899 issue: 13 year: 2004 ident: 10.1016/j.eswa.2024.124108_b48 article-title: An empirical study of the effect of knowledge integration on software development performance publication-title: Information and Software Technology doi: 10.1016/j.infsof.2004.03.006 – volume: 249 start-page: 430 issue: 1–4 year: 1998 ident: 10.1016/j.eswa.2024.124108_b8 article-title: Analysis of DNA sequences using methods of statistical physics publication-title: Physica A. Statistical Mechanics and its Applications doi: 10.1016/S0378-4371(97)00503-7 – volume: 105 year: 2020 ident: 10.1016/j.eswa.2024.124108_b55 article-title: Integrating domain knowledge with deep learning models: An interpretable AI system for automatic work progress identification of NATM tunnels publication-title: Tunnelling and Underground Space Technology doi: 10.1016/j.tust.2020.103558 – volume: 18 start-page: 75 year: 2002 ident: 10.1016/j.eswa.2024.124108_b49 article-title: A perspective view and survey of meta-learning publication-title: Artificial Intelligence Review doi: 10.1023/A:1019956318069 – start-page: 53 year: 2021 ident: 10.1016/j.eswa.2024.124108_b6 article-title: Interpretable feedback for automl and a proposal for domain-customized automl for networking – volume: 34 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.eswa.2024.124108_b39 article-title: Predictive Coding, Variational Autoencoders, and Biological Connections publication-title: Neural Computation doi: 10.1162/neco_a_01458 – volume: 74 start-page: 203 year: 2021 ident: 10.1016/j.eswa.2024.124108_b9 article-title: A close-up comparison of the misclassification error distance and the adjusted rand index for external clustering evaluation publication-title: British Journal of Mathematical and Statistical Psychology doi: 10.1111/bmsp.12212 – volume: 26 start-page: 739 issue: 1 year: 2020 ident: 10.1016/j.eswa.2024.124108_b26 article-title: Data sampling in multi-view and multi-class scatterplots via set cover optimization publication-title: IEEE Transactions on Visualization and Computer Graphics doi: 10.1109/TVCG.2019.2934799 |
| SSID | ssj0017007 |
| Score | 2.4880195 |
| Snippet | Data encoding is a common and central operation in most data analysis tasks. The performance of other models downstream in the computational process highly... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 124108 |
| SubjectTerms | Biologically-inspired loss function Data-driven encoding Expert-driven model |
| Title | Knowledge-integrated autoencoder model |
| URI | https://dx.doi.org/10.1016/j.eswa.2024.124108 |
| Volume | 252 |
| WOSCitedRecordID | wos001243789600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYocOilL1qVR6scql6QV44fsXNEFagtCFUCpL1FtmNLUBTQbmgRv57x2s4uLUIUqZcoimI7mc-ZjMcz3yD0SVtvubICayoY5o4ybISxsEqpWu1qQymZJQofyMNDNR7XP1KBxemsnIDsOnV9XV_-V6jhGoAdUmf_Ae6hU7gA5wA6HAF2OD4K-P3sJcMDFUS7ra_6i0BZGZgjZsVv7njkA91xn0idc7rbwsb2ELSjb5zpTmNstWvbwRt_BIB3-KebRB12EFLnFt0JlAc9HBMqo48r57nMg4qis1BiXsZ6OiMXVaWSDFcy1jfMupRGOtq_9HJ0EZyN3PR3IHuifAR2RUnU_C80xAYehcHCWCG6FVY71TO0QqWoQeuu7HzbHX8fNokkidnw-eFSTlQM3_tzpPvtjgVb4vgVepEWAcVOBO81WnLdG_QyF9gokr5dQ5_vw7JYwLKYYfkWneztHn_5ilNhC2wZ5z22grVMKGWEp8wS4onhRLfeKa-8FFYS6pwujeWWGSEY2Nh1a1XpqNJWKc7eoeXuonPvUVFXtjKWcA8fI8iAKE9pG6w66J167ddRmV-7sYn1PRQfOW9yeN9ZE0TVBFE1UVTraHtocxk5Tx68W2RpNslqi9ZYA-A_0G7jie020fP5vN1Cy_3kyn1Aq_ZXfzqdfExz5BbQimZf |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Knowledge-integrated+autoencoder+model&rft.jtitle=Expert+systems+with+applications&rft.au=Lazebnik%2C+Teddy&rft.au=Simon-keren%2C+Liron&rft.date=2024-10-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=252&rft_id=info:doi/10.1016%2Fj.eswa.2024.124108&rft.externalDocID=S0957417424009746 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |