Evolving simple and accurate symbolic regression models via asynchronous parallel computing
In machine learning, reducing the complexity of a model can help to improve its computational efficiency and avoid overfitting. In genetic programming (GP), the model complexity reduction is often achieved by reducing the size of evolved expressions. However, previous studies have demonstrated that...
Gespeichert in:
| Veröffentlicht in: | Applied soft computing Jg. 104; S. 107198 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.06.2021
|
| Schlagworte: | |
| ISSN: | 1568-4946, 1872-9681 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!