Evolving simple and accurate symbolic regression models via asynchronous parallel computing

In machine learning, reducing the complexity of a model can help to improve its computational efficiency and avoid overfitting. In genetic programming (GP), the model complexity reduction is often achieved by reducing the size of evolved expressions. However, previous studies have demonstrated that...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied soft computing Ročník 104; s. 107198
Hlavní autoři: Sambo, Aliyu Sani, Azad, R. Muhammad Atif, Kovalchuk, Yevgeniya, Indramohan, Vivek Padmanaabhan, Shah, Hanifa
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.06.2021
Témata:
ISSN:1568-4946, 1872-9681
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In machine learning, reducing the complexity of a model can help to improve its computational efficiency and avoid overfitting. In genetic programming (GP), the model complexity reduction is often achieved by reducing the size of evolved expressions. However, previous studies have demonstrated that the expression size reduction does not necessarily prevent model overfitting. Therefore, this paper uses the evaluation time – the computational time required to evaluate a GP model on data – as the estimate of model complexity. The evaluation time depends not only on the size of evolved expressions but also their composition, thus acting as a more nuanced measure of model complexity than the expression size alone. To discourage complexity, this study employs a novel method called asynchronous parallel GP (APGP) that introduces a race condition in the evolutionary process of GP; the race offers an evolutionary advantage to the simple solutions when their accuracy is competitive. To evaluate the proposed method, it is compared to the standard GP (GP) and GP with bloat control (GP+BC) methods on six challenging symbolic regression problems. APGP produced models that are significantly more accurate (on 6/6 problems) than those produced by both GP and GP+BC. In terms of complexity control, APGP prevailed over GP but not over GP+BC; however, GP+BC produced simpler solutions at the cost of test-set accuracy. Moreover, APGP took a significantly lower number of evaluations than both GP and GP+BC to meet a target training fitness in all tests. Our analysis of the proposed APGP also involved: (1) an ablation study that separated the proposed measure of complexity from the race condition in APGP and (2) the study of an initialisation scheme that encourages functional diversity in the initial population that improved the results for all the GP methods. These results question the overall benefits of bloat control and endorse the employment of both the evaluation time as an estimate of model complexity and the proposed APGP method for controlling it. •Managing the complexity of genetic programming models is an ongoing challenge.•The time it takes to evaluate a model with data can indicate its complexity.•Evaluation time can reflect a model’s size, computational and functional complexity.•Putting models in a race to complete evaluations is an untried idea to contain complexity.•The proposed Genetic Programming method is useful for symbolic regression and beyond.
AbstractList In machine learning, reducing the complexity of a model can help to improve its computational efficiency and avoid overfitting. In genetic programming (GP), the model complexity reduction is often achieved by reducing the size of evolved expressions. However, previous studies have demonstrated that the expression size reduction does not necessarily prevent model overfitting. Therefore, this paper uses the evaluation time – the computational time required to evaluate a GP model on data – as the estimate of model complexity. The evaluation time depends not only on the size of evolved expressions but also their composition, thus acting as a more nuanced measure of model complexity than the expression size alone. To discourage complexity, this study employs a novel method called asynchronous parallel GP (APGP) that introduces a race condition in the evolutionary process of GP; the race offers an evolutionary advantage to the simple solutions when their accuracy is competitive. To evaluate the proposed method, it is compared to the standard GP (GP) and GP with bloat control (GP+BC) methods on six challenging symbolic regression problems. APGP produced models that are significantly more accurate (on 6/6 problems) than those produced by both GP and GP+BC. In terms of complexity control, APGP prevailed over GP but not over GP+BC; however, GP+BC produced simpler solutions at the cost of test-set accuracy. Moreover, APGP took a significantly lower number of evaluations than both GP and GP+BC to meet a target training fitness in all tests. Our analysis of the proposed APGP also involved: (1) an ablation study that separated the proposed measure of complexity from the race condition in APGP and (2) the study of an initialisation scheme that encourages functional diversity in the initial population that improved the results for all the GP methods. These results question the overall benefits of bloat control and endorse the employment of both the evaluation time as an estimate of model complexity and the proposed APGP method for controlling it. •Managing the complexity of genetic programming models is an ongoing challenge.•The time it takes to evaluate a model with data can indicate its complexity.•Evaluation time can reflect a model’s size, computational and functional complexity.•Putting models in a race to complete evaluations is an untried idea to contain complexity.•The proposed Genetic Programming method is useful for symbolic regression and beyond.
ArticleNumber 107198
Author Sambo, Aliyu Sani
Indramohan, Vivek Padmanaabhan
Shah, Hanifa
Azad, R. Muhammad Atif
Kovalchuk, Yevgeniya
Author_xml – sequence: 1
  givenname: Aliyu Sani
  surname: Sambo
  fullname: Sambo, Aliyu Sani
  email: aliyu.sambo@mail.bcu.ac.uk
  organization: School of Computing and Digital Technology, Birmingham City University, UK
– sequence: 2
  givenname: R. Muhammad Atif
  orcidid: 0000-0002-4013-5415
  surname: Azad
  fullname: Azad, R. Muhammad Atif
  organization: School of Computing and Digital Technology, Birmingham City University, UK
– sequence: 3
  givenname: Yevgeniya
  orcidid: 0000-0003-4306-4680
  surname: Kovalchuk
  fullname: Kovalchuk, Yevgeniya
  organization: School of Computing and Digital Technology, Birmingham City University, UK
– sequence: 4
  givenname: Vivek Padmanaabhan
  surname: Indramohan
  fullname: Indramohan, Vivek Padmanaabhan
  organization: School of Health, Education and Life Sciences, Birmingham City University, UK
– sequence: 5
  givenname: Hanifa
  orcidid: 0000-0001-6289-9160
  surname: Shah
  fullname: Shah, Hanifa
  organization: Faculty of Computing, Engineering and the Built Environment, Birmingham City University, UK
BookMark eNp9kM1KAzEUhYNUsK2-gKu8wNRJ5i8DbqTUHyi40ZWLcCe5U1MySUmmA317U-rKhat7OPAduN-CzJx3SMg9y1csZ_XDfgXRqxXPOUtFw1pxReZMNDxra8FmKVe1yMq2rG_IIsZ9nqCWizn52kzeTsbtaDTDwSIFpykodQwwIo2nofPWKBpwFzBG4x0dvEYb6WSAQjw59R2888dIDxDAWrRU-eFwHNPkLbnuwUa8-71L8vm8-Vi_Ztv3l7f10zZTRVmOmWKa90WtdN7rTiBC26a-KIu2QdSqR2x4BaxrWZ03ijcgRA9dAVVX6Krqq2JJ-GVXBR9jwF4eghkgnCTL5VmP3MuzHnnWIy96EiT-QMqMMKYPxwDG_o8-XtDkASeDQUZl0CnUJqAapfbmP_wH9B2GCw
CitedBy_id crossref_primary_10_1108_K_01_2022_0049
crossref_primary_10_1145_3735634
crossref_primary_10_1016_j_asoc_2021_108106
crossref_primary_10_1016_j_asoc_2024_112239
crossref_primary_10_1007_s11831_023_09922_z
crossref_primary_10_1016_j_asoc_2022_109854
Cites_doi 10.3390/e22040408
10.1162/evco.2006.14.3.309
10.1109/ACCESS.2020.2975753
10.1109/TEVC.2008.926486
10.1023/A:1014538503543
10.1162/EVCO_a_00111
10.1002/wics.179
10.1007/s10710-012-9159-4
10.1016/0005-1098(78)90005-5
10.1109/TEVC.2006.871252
10.1007/s10710-012-9177-2
10.1016/S0167-8191(97)00045-8
10.1017/S0890060408000127
10.1109/TPAMI.2002.1017616
10.1023/A:1010070616149
10.1007/s10710-011-9150-5
10.1145/3233231
10.1109/TEVC.2018.2881392
10.1070/RM1970v025n06ABEH001269
10.1109/TEVC.2014.2306994
10.1109/TEVC.2007.903549
10.1109/CEC48606.2020.9185771
ContentType Journal Article
Copyright 2021 The Authors
Copyright_xml – notice: 2021 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.asoc.2021.107198
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2021_107198
S1568494621001216
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6I.
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c344t-c1d2f36cd0fdb8eea9934434397eedcfee725a1b91607c27a88fab3a5b3d55f53
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000641373300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 07:01:53 EST 2025
Tue Nov 18 21:40:51 EST 2025
Fri Feb 23 02:40:57 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Parallel computing
Model complexity
Genetic programming
Evaluation time
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-c1d2f36cd0fdb8eea9934434397eedcfee725a1b91607c27a88fab3a5b3d55f53
ORCID 0000-0003-4306-4680
0000-0002-4013-5415
0000-0001-6289-9160
OpenAccessLink https://dx.doi.org/10.1016/j.asoc.2021.107198
ParticipantIDs crossref_primary_10_1016_j_asoc_2021_107198
crossref_citationtrail_10_1016_j_asoc_2021_107198
elsevier_sciencedirect_doi_10_1016_j_asoc_2021_107198
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Keijzer (b64) 2003
Vapnik (b39) 1998
Cantú-Paz (b54) 1998; 10
Schraudolph, Grefenstette (b32) 1992
W.B. Langdon, Genetic Improvement of Genetic Programming, in: 2020 IEEE Congress on Evolutionary Computation (CEC), 2020, pp. 1–8
Sambo, Azad, Kovalchuk, Indramohan, Shah (b66) 2020
Poli (b19) 2003; 2610
McPhee, Jarvis, Crane (b23) 2004
Soule, Foster, Dickinson (b8) 1996
Spector, Robinson (b16) 2002; 3
Ekart, Nemeth (b20) 2001; 2
Dua, Karra Taniskidou (b58) 2017
Rivlin (b34) 1974
Nannen (b30) 2010
Castelli, Manzoni, Silva, Vanneschi (b35) 2011; 6621
Zvonkin, Levin (b28) 1970; 25
Vladislavleva, Smits, den Hertog (b33) 2009; 13
Koza, Andre (b49) 1995
Syswerda (b56) 1991; 1
Hu, Payne, Banzhaf, Moore (b17) 2012; 13
Hoai, McKay, Essam (b12) 2006; 10
de Vega, Olague, Lanza, Banzhaf, Goodman, Menendez-Clavijo, Martinez (b46) 2020; 8
Kolmogorov (b25) 1965; 1
Chennupati, Azad, Ryan (b15) 2015
Raymond, Chen, Xue, Zhang (b42) 2019
Silva, Dignum, Vanneschi (b63) 2012; 13
Paris, Robilliard, Fonlupt (b1) 2003; 2936
Ni, Rockett (b44) 2014; 19
Dignum, Poli (b22) 2008
Vanneschi, Castelli, Silva (b9) 2010
Luke, Panait (b60) 2006; 14
(b13) 2018
Chen, Zhang, Xue (b40) 2019; 23
Hatwell, Gaber, Azad (b4) 2020
Koza (b2) 1992
.
Gustafson, Burke, Krasnogor (b59) 2005; 1
Couture (b6) 2007
Kim, Kim, Yoo (b51) 2017; 10452
Luke, Panait (b61) 2002
Azad (b14) 2003
Dignum, Poli (b62) 2008; 4971
Azad, Ryan (b10) 2014; 22
Azad, Ryan (b43) 2011
Oussaidène, Chopard, Pictet, Tomassini (b52) 1997; 23
Scott, De Jong (b53) 2016
Kumar, Goyal, Varma (b5) 2017; 70
Vapnik (b38) 2013
Scott, De Jong (b50) 2015
Chen, Zhang, Cue (b41) 2016
Silva, Dignum, Vanneschi (b24) 2012; 13
Power, Ryan, Azad (b55) 2005; 2
Luke, Panait (b21) 2006; 14
Walker, Miller (b18) 2008; 12
Kulkarni, Harman (b36) 2011; 3
Koza (b7) 1992
Vapnik (b37) 1998
Rissanen (b29) 1978; 14
C. Simpson, J. Jewett, S. Turnbull, V. Stinner, PEP 418: Add monotonic time, performance counter, and process time functions, Website
Lipton (b3) 2018; 61
White, McDermott, Castelli, Manzoni, Goldman, Kronberger, Jaskowski, O’Reilly, Luke (b57) 2013; 14
Vitányi (b27) 2020; 22
Iba, de Garis, Sato (b31) 1994
Koza (b11) 2008; 22
Kanungo, Mount, Netanyahu, Piatko, Silverman, Wu (b65) 2002; 24
Sambo, Azad, Kovalchuk, Indramohan, Shah (b45) 2020
Cover, Thomas (b26) 2006
Cantú-Paz (10.1016/j.asoc.2021.107198_b54) 1998; 10
Chen (10.1016/j.asoc.2021.107198_b41) 2016
Gustafson (10.1016/j.asoc.2021.107198_b59) 2005; 1
Silva (10.1016/j.asoc.2021.107198_b63) 2012; 13
Couture (10.1016/j.asoc.2021.107198_b6) 2007
Iba (10.1016/j.asoc.2021.107198_b31) 1994
Luke (10.1016/j.asoc.2021.107198_b21) 2006; 14
Vapnik (10.1016/j.asoc.2021.107198_b38) 2013
(10.1016/j.asoc.2021.107198_b13) 2018
Dua (10.1016/j.asoc.2021.107198_b58) 2017
Kanungo (10.1016/j.asoc.2021.107198_b65) 2002; 24
Azad (10.1016/j.asoc.2021.107198_b43) 2011
Sambo (10.1016/j.asoc.2021.107198_b45) 2020
Spector (10.1016/j.asoc.2021.107198_b16) 2002; 3
Walker (10.1016/j.asoc.2021.107198_b18) 2008; 12
McPhee (10.1016/j.asoc.2021.107198_b23) 2004
Vapnik (10.1016/j.asoc.2021.107198_b37) 1998
Kumar (10.1016/j.asoc.2021.107198_b5) 2017; 70
Koza (10.1016/j.asoc.2021.107198_b11) 2008; 22
Oussaidène (10.1016/j.asoc.2021.107198_b52) 1997; 23
Kolmogorov (10.1016/j.asoc.2021.107198_b25) 1965; 1
Koza (10.1016/j.asoc.2021.107198_b2) 1992
Dignum (10.1016/j.asoc.2021.107198_b62) 2008; 4971
Lipton (10.1016/j.asoc.2021.107198_b3) 2018; 61
Kim (10.1016/j.asoc.2021.107198_b51) 2017; 10452
Luke (10.1016/j.asoc.2021.107198_b61) 2002
Luke (10.1016/j.asoc.2021.107198_b60) 2006; 14
Hu (10.1016/j.asoc.2021.107198_b17) 2012; 13
Azad (10.1016/j.asoc.2021.107198_b14) 2003
Vitányi (10.1016/j.asoc.2021.107198_b27) 2020; 22
Power (10.1016/j.asoc.2021.107198_b55) 2005; 2
Cover (10.1016/j.asoc.2021.107198_b26) 2006
Vladislavleva (10.1016/j.asoc.2021.107198_b33) 2009; 13
Vapnik (10.1016/j.asoc.2021.107198_b39) 1998
de Vega (10.1016/j.asoc.2021.107198_b46) 2020; 8
Keijzer (10.1016/j.asoc.2021.107198_b64) 2003
Scott (10.1016/j.asoc.2021.107198_b53) 2016
Poli (10.1016/j.asoc.2021.107198_b19) 2003; 2610
Hoai (10.1016/j.asoc.2021.107198_b12) 2006; 10
Ni (10.1016/j.asoc.2021.107198_b44) 2014; 19
Vanneschi (10.1016/j.asoc.2021.107198_b9) 2010
Rivlin (10.1016/j.asoc.2021.107198_b34) 1974
Koza (10.1016/j.asoc.2021.107198_b49) 1995
Zvonkin (10.1016/j.asoc.2021.107198_b28) 1970; 25
Soule (10.1016/j.asoc.2021.107198_b8) 1996
Dignum (10.1016/j.asoc.2021.107198_b22) 2008
Nannen (10.1016/j.asoc.2021.107198_b30) 2010
Chen (10.1016/j.asoc.2021.107198_b40) 2019; 23
Syswerda (10.1016/j.asoc.2021.107198_b56) 1991; 1
10.1016/j.asoc.2021.107198_b47
Kulkarni (10.1016/j.asoc.2021.107198_b36) 2011; 3
Scott (10.1016/j.asoc.2021.107198_b50) 2015
10.1016/j.asoc.2021.107198_b48
Koza (10.1016/j.asoc.2021.107198_b7) 1992
Silva (10.1016/j.asoc.2021.107198_b24) 2012; 13
Castelli (10.1016/j.asoc.2021.107198_b35) 2011; 6621
Raymond (10.1016/j.asoc.2021.107198_b42) 2019
Hatwell (10.1016/j.asoc.2021.107198_b4) 2020
Rissanen (10.1016/j.asoc.2021.107198_b29) 1978; 14
Schraudolph (10.1016/j.asoc.2021.107198_b32) 1992
Chennupati (10.1016/j.asoc.2021.107198_b15) 2015
Ekart (10.1016/j.asoc.2021.107198_b20) 2001; 2
White (10.1016/j.asoc.2021.107198_b57) 2013; 14
Sambo (10.1016/j.asoc.2021.107198_b66) 2020
Paris (10.1016/j.asoc.2021.107198_b1) 2003; 2936
Azad (10.1016/j.asoc.2021.107198_b10) 2014; 22
References_xml – volume: 1
  start-page: 912
  year: 2005
  end-page: 919
  ident: b59
  article-title: On improving genetic programming for symbolic regression
  publication-title: Proceedings of the 2005 IEEE Congress on Evolutionary Computation
– volume: 6621
  start-page: 25
  year: 2011
  end-page: 36
  ident: b35
  article-title: A quantitative study of learning and generalization in genetic programming
  publication-title: Proceedings of the 14th European Conference on Genetic Programming, EuroGP 2011
– volume: 25
  start-page: 83
  year: 1970
  ident: b28
  article-title: The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms
  publication-title: Russian Math. Surveys
– volume: 14
  start-page: 465
  year: 1978
  end-page: 471
  ident: b29
  article-title: Modeling by shortest data description
  publication-title: Automatica
– volume: 2936
  start-page: 267
  year: 2003
  end-page: 277
  ident: b1
  article-title: Exploring overfitting in genetic programming
  publication-title: Evolution Artificielle, 6th International Conference
– volume: 23
  start-page: 1183
  year: 1997
  end-page: 1198
  ident: b52
  article-title: Parallel genetic programming and its application to trading model induction
  publication-title: Parallel Comput.
– start-page: 1
  year: 2020
  end-page: 42
  ident: b4
  article-title: CHIRPS: Explaining random forest classification
  publication-title: Artif. Intell. Rev.
– year: 1992
  ident: b2
  article-title: Genetic programming: On the programming of computers by means of natural selection
– start-page: 265
  year: 1994
  end-page: 284
  ident: b31
  article-title: Genetic programming using a minimum description length principle
  publication-title: Advances in Genetic Programming
– volume: 2610
  start-page: 204
  year: 2003
  end-page: 217
  ident: b19
  article-title: A simple but theoretically-motivated method to control bloat in genetic programming
  publication-title: Genetic Programming, Proceedings of EuroGP’2003
– reference: C. Simpson, J. Jewett, S. Turnbull, V. Stinner, PEP 418: Add monotonic time, performance counter, and process time functions, Website,
– year: 2007
  ident: b6
  article-title: Complexity and Chaos-State-Of-The-Art; Formulations and Measures of Complexity
– year: 2003
  ident: b14
  article-title: A Position Independent Representation for Evolutionary Automatic Programming Algorithms - The Chorus System
– start-page: 1315
  year: 2011
  end-page: 1322
  ident: b43
  article-title: Variance based selection to improve test set performance in genetic programming
  publication-title: GECCO ’11: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation
– start-page: 709
  year: 2016
  end-page: 716
  ident: b41
  article-title: Improving generalisation of genetic programming for symbolic regression with structural risk minimisation
  publication-title: GECCO ’16: Proceedings of the 2016 Annual Conference on Genetic and Evolutionary Computation
– start-page: 1209
  year: 2015
  end-page: 1212
  ident: b50
  article-title: Evaluation-time bias in asynchronous evolutionary algorithms
  publication-title: GECCO’15 Student Workshop
– volume: 14
  start-page: 309
  year: 2006
  end-page: 344
  ident: b21
  article-title: A comparison of bloat control methods for genetic programming
  publication-title: Evol. Comput.
– volume: 2
  start-page: 61
  year: 2001
  end-page: 73
  ident: b20
  article-title: Selection based on the Pareto nondomination criterion for controlling code growth in genetic programming
  publication-title: Genet. Programm. Evol. Mach.
– volume: 3
  start-page: 7
  year: 2002
  end-page: 40
  ident: b16
  article-title: Genetic programming and autoconstructive evolution with the push programming language
  publication-title: Genet. Program. Evol. Mach.
– year: 1974
  ident: b34
  publication-title: The Chebyshev Polynomials
– start-page: 1007
  year: 2015
  end-page: 1014
  ident: b15
  article-title: Performance optimization of multi-core grammatical evolution generated parallel recursive programs
  publication-title: GECCO ’15: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation
– volume: 19
  start-page: 157
  year: 2014
  end-page: 166
  ident: b44
  article-title: Tikhonov regularization as a complexity measure in multiobjective genetic programming
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1991
  year: 1992
  ident: b32
  article-title: A user’s guide to GAucsd 1.4
  publication-title: Computer Science & Engineering Department
– volume: 70
  start-page: 1935
  year: 2017
  end-page: 1944
  ident: b5
  article-title: Resource-efficient machine learning in 2 KB RAM for the internet of things
  publication-title: Proceedings of the 34th International Conference on Machine Learning
– volume: 1
  start-page: 94
  year: 1991
  end-page: 101
  ident: b56
  article-title: A study of reproduction in generational and steady-state genetic algorithms
  publication-title: Foundations of Genetic Algorithms
– start-page: 2657
  year: 2019
  end-page: 2664
  ident: b42
  article-title: Genetic programming with rademacher complexity for symbolic regression
  publication-title: 2019 IEEE Congress on Evolutionary Computation, CEC 2019
– start-page: 877
  year: 2010
  end-page: 884
  ident: b9
  article-title: Measuring bloat, overfitting and functional complexity in genetic programming
  publication-title: GECCO ’10: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation
– year: 2010
  ident: b30
  article-title: A short introduction to model selection, Kolmogorov complexity and minimum description length (MDL)
– year: 2013
  ident: b38
  publication-title: The Nature of Statistical Learning Theory
– volume: 3
  start-page: 543
  year: 2011
  end-page: 556
  ident: b36
  article-title: Statistical learning theory: a tutorial
  publication-title: Wiley Interdiscip. Rev. Comput. Stat.
– start-page: 521
  year: 2020
  end-page: 528
  ident: b45
  article-title: Leveraging asynchronous parallel computing to produce simple genetic programming computational models
  publication-title: Proceedings of the 35th Annual ACM Symposium on Applied Computing
– year: 1995
  ident: b49
  article-title: Parallel Genetic Programming on a Network of Transputers
– start-page: 411
  year: 2002
  end-page: 421
  ident: b61
  article-title: Fighting bloat with nonparametric parsimony pressure
  publication-title: Parallel Problem Solving from Nature - PPSN VII
– volume: 22
  start-page: 185
  year: 2008
  end-page: 193
  ident: b11
  article-title: Human-competitive machine invention by means of genetic programming
  publication-title: Artif. Intell. Eng. Des. Anal. Manuf.
– volume: 1
  start-page: 1
  year: 1965
  end-page: 7
  ident: b25
  article-title: Three approaches to the quantitative definition ofinformation’
  publication-title: Probl. Inf. Transm.
– volume: 2
  start-page: 1831
  year: 2005
  end-page: 1838
  ident: b55
  article-title: Promoting diversity using migration strategies in distributed genetic algorithms
  publication-title: 2005 IEEE Congress on Evolutionary Computation
– volume: 13
  start-page: 305
  year: 2012
  end-page: 337
  ident: b17
  article-title: Evolutionary dynamics on multiple scales: a quantitative analysis of the interplay between genotype, phenotype, and fitness in linear genetic programming
  publication-title: Genet. Program. Evol. Mach.
– start-page: 195
  year: 2020
  end-page: 210
  ident: b66
  article-title: Time control or size control? Reducing complexity and improving accuracy of genetic programming models
  publication-title: European Conference on Genetic Programming (Part of EvoStar)
– volume: 22
  start-page: 408
  year: 2020
  ident: b27
  article-title: How incomputable is Kolmogorov complexity?
  publication-title: Entropy
– year: 1998
  ident: b39
  article-title: Statistical learning theory. 1998, Vol. 3
– start-page: 593
  year: 2004
  end-page: 604
  ident: b23
  article-title: On the strength of size limits in linear genetic programming
  publication-title: Genetic and Evolutionary Computation – GECCO 2004
– year: 1992
  ident: b7
  article-title: Genetic Programming: On the Programming of Computers by Means of Natural Selection
– volume: 13
  start-page: 197
  year: 2012
  end-page: 238
  ident: b63
  article-title: Operator equalisation for bloat free genetic programming and a survey of bloat control methods
  publication-title: Genet. Program. Evol. Mach.
– volume: 13
  start-page: 197
  year: 2012
  end-page: 238
  ident: b24
  article-title: Operator equalisation for bloat free genetic programming and a survey of bloat control methods
  publication-title: Genetic Program. Evol. Mach.
– volume: 13
  start-page: 333
  year: 2009
  end-page: 349
  ident: b33
  article-title: Order of nonlinearity as a complexity measure for models generated by symbolic regression via Pareto genetic programming
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 845
  year: 2016
  end-page: 852
  ident: b53
  article-title: Evaluation-time bias in quasi-generational and steady-state asynchronous evolutionary algorithms
  publication-title: GECCO ’16: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference
– start-page: 70
  year: 2003
  end-page: 82
  ident: b64
  article-title: Improving symbolic regression with interval arithmetic and linear scaling
  publication-title: European Conference on Genetic Programming
– volume: 14
  start-page: 309
  year: 2006
  end-page: 344
  ident: b60
  article-title: A comparison of bloat control methods for genetic programming
  publication-title: Evol. Comput.
– volume: 22
  start-page: 287
  year: 2014
  end-page: 317
  ident: b10
  article-title: A simple approach to lifetime learning in genetic programming based symbolic regression
  publication-title: Evol. Comput.
– reference: W.B. Langdon, Genetic Improvement of Genetic Programming, in: 2020 IEEE Congress on Evolutionary Computation (CEC), 2020, pp. 1–8,
– volume: 12
  start-page: 397
  year: 2008
  end-page: 417
  ident: b18
  article-title: The automatic acquisition, evolution and reuse of modules in cartesian genetic programming
  publication-title: IEEE Trans. Evol. Comput.
– volume: 4971
  start-page: 110
  year: 2008
  end-page: 121
  ident: b62
  article-title: Operator equalisation and bloat free GP
  publication-title: Proceedings of the 11th European Conference on Genetic Programming, EuroGP 2008
– volume: 10
  start-page: 157
  year: 2006
  end-page: 166
  ident: b12
  article-title: Representation and structural difficulty in genetic programming
  publication-title: IEEE Trans. Evol. Comput.
– volume: 10452
  start-page: 137
  year: 2017
  end-page: 142
  ident: b51
  article-title: GPGPGPU: Evaluation of parallelisation of genetic programming using GPGPU
  publication-title: Proceedings of the 9th International Symposium on Search Based Software Engineering, SSBSE 2017
– volume: 24
  start-page: 881
  year: 2002
  end-page: 892
  ident: b65
  article-title: An efficient k-means clustering algorithm: analysis and implementation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 8
  start-page: 38692
  year: 2020
  end-page: 38713
  ident: b46
  article-title: Time and individual duration in genetic programming
  publication-title: IEEE Access
– volume: 14
  start-page: 3
  year: 2013
  end-page: 29
  ident: b57
  article-title: Better GP benchmarks: community survey results and proposals
  publication-title: Genet. Program. Evol. Mach.
– start-page: 158
  year: 2008
  end-page: 169
  ident: b22
  article-title: Crossover, sampling, bloat and the harmful effects of size limits
  publication-title: European Conference on Genetic Programming
– year: 1998
  ident: b37
  publication-title: Statistical learning theory
– volume: 10
  start-page: 141
  year: 1998
  end-page: 171
  ident: b54
  article-title: A survey of parallel genetic algorithms
  publication-title: Calc. Paralleles Res. Syst. Repar.
– reference: .
– year: 2018
  ident: b13
  article-title: Handbook of Grammatical Evolution
– volume: 23
  start-page: 703
  year: 2019
  end-page: 717
  ident: b40
  article-title: Structural risk minimisation-driven genetic programming for enhancing generalisation in symbolic regression
  publication-title: IEEE Trans. Evol. Comput.
– year: 2017
  ident: b58
  article-title: UCI Machine Learning Repository
– start-page: 215
  year: 1996
  end-page: 223
  ident: b8
  article-title: Code growth in genetic programming
  publication-title: Genetic Programming 1996: Proceedings of the First Annual Conference
– start-page: 16
  year: 2006
  ident: b26
  article-title: Joint entropy and conditional entropy
  publication-title: Elements of Information Theory
– volume: 61
  start-page: 36
  year: 2018
  end-page: 43
  ident: b3
  article-title: The mythos of model interpretability
  publication-title: Commun. ACM
– year: 2018
  ident: 10.1016/j.asoc.2021.107198_b13
– volume: 22
  start-page: 408
  issue: 4
  year: 2020
  ident: 10.1016/j.asoc.2021.107198_b27
  article-title: How incomputable is Kolmogorov complexity?
  publication-title: Entropy
  doi: 10.3390/e22040408
– volume: 1
  start-page: 1
  issue: 1
  year: 1965
  ident: 10.1016/j.asoc.2021.107198_b25
  article-title: Three approaches to the quantitative definition ofinformation’
  publication-title: Probl. Inf. Transm.
– start-page: 1
  year: 2020
  ident: 10.1016/j.asoc.2021.107198_b4
  article-title: CHIRPS: Explaining random forest classification
  publication-title: Artif. Intell. Rev.
– year: 2017
  ident: 10.1016/j.asoc.2021.107198_b58
– volume: 14
  start-page: 309
  issue: 3
  year: 2006
  ident: 10.1016/j.asoc.2021.107198_b60
  article-title: A comparison of bloat control methods for genetic programming
  publication-title: Evol. Comput.
  doi: 10.1162/evco.2006.14.3.309
– volume: 8
  start-page: 38692
  year: 2020
  ident: 10.1016/j.asoc.2021.107198_b46
  article-title: Time and individual duration in genetic programming
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2975753
– volume: 13
  start-page: 333
  issue: 2
  year: 2009
  ident: 10.1016/j.asoc.2021.107198_b33
  article-title: Order of nonlinearity as a complexity measure for models generated by symbolic regression via Pareto genetic programming
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.926486
– start-page: 16
  year: 2006
  ident: 10.1016/j.asoc.2021.107198_b26
  article-title: Joint entropy and conditional entropy
– year: 2007
  ident: 10.1016/j.asoc.2021.107198_b6
– volume: 2
  start-page: 1831
  year: 2005
  ident: 10.1016/j.asoc.2021.107198_b55
  article-title: Promoting diversity using migration strategies in distributed genetic algorithms
– start-page: 2657
  year: 2019
  ident: 10.1016/j.asoc.2021.107198_b42
  article-title: Genetic programming with rademacher complexity for symbolic regression
– start-page: 158
  year: 2008
  ident: 10.1016/j.asoc.2021.107198_b22
  article-title: Crossover, sampling, bloat and the harmful effects of size limits
– volume: 3
  start-page: 7
  issue: 1
  year: 2002
  ident: 10.1016/j.asoc.2021.107198_b16
  article-title: Genetic programming and autoconstructive evolution with the push programming language
  publication-title: Genet. Program. Evol. Mach.
  doi: 10.1023/A:1014538503543
– year: 1998
  ident: 10.1016/j.asoc.2021.107198_b37
– start-page: 1991
  year: 1992
  ident: 10.1016/j.asoc.2021.107198_b32
  article-title: A user’s guide to GAucsd 1.4
– start-page: 845
  year: 2016
  ident: 10.1016/j.asoc.2021.107198_b53
  article-title: Evaluation-time bias in quasi-generational and steady-state asynchronous evolutionary algorithms
– volume: 2936
  start-page: 267
  year: 2003
  ident: 10.1016/j.asoc.2021.107198_b1
  article-title: Exploring overfitting in genetic programming
– volume: 14
  start-page: 309
  issue: 3
  year: 2006
  ident: 10.1016/j.asoc.2021.107198_b21
  article-title: A comparison of bloat control methods for genetic programming
  publication-title: Evol. Comput.
  doi: 10.1162/evco.2006.14.3.309
– volume: 22
  start-page: 287
  issue: 2
  year: 2014
  ident: 10.1016/j.asoc.2021.107198_b10
  article-title: A simple approach to lifetime learning in genetic programming based symbolic regression
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00111
– volume: 3
  start-page: 543
  issue: 6
  year: 2011
  ident: 10.1016/j.asoc.2021.107198_b36
  article-title: Statistical learning theory: a tutorial
  publication-title: Wiley Interdiscip. Rev. Comput. Stat.
  doi: 10.1002/wics.179
– year: 1998
  ident: 10.1016/j.asoc.2021.107198_b39
– start-page: 877
  year: 2010
  ident: 10.1016/j.asoc.2021.107198_b9
  article-title: Measuring bloat, overfitting and functional complexity in genetic programming
– start-page: 265
  year: 1994
  ident: 10.1016/j.asoc.2021.107198_b31
  article-title: Genetic programming using a minimum description length principle
– start-page: 1315
  year: 2011
  ident: 10.1016/j.asoc.2021.107198_b43
  article-title: Variance based selection to improve test set performance in genetic programming
– start-page: 195
  year: 2020
  ident: 10.1016/j.asoc.2021.107198_b66
  article-title: Time control or size control? Reducing complexity and improving accuracy of genetic programming models
– volume: 70
  start-page: 1935
  year: 2017
  ident: 10.1016/j.asoc.2021.107198_b5
  article-title: Resource-efficient machine learning in 2 KB RAM for the internet of things
– year: 1992
  ident: 10.1016/j.asoc.2021.107198_b7
– start-page: 521
  year: 2020
  ident: 10.1016/j.asoc.2021.107198_b45
  article-title: Leveraging asynchronous parallel computing to produce simple genetic programming computational models
– start-page: 1007
  year: 2015
  ident: 10.1016/j.asoc.2021.107198_b15
  article-title: Performance optimization of multi-core grammatical evolution generated parallel recursive programs
– volume: 13
  start-page: 305
  issue: 3
  year: 2012
  ident: 10.1016/j.asoc.2021.107198_b17
  article-title: Evolutionary dynamics on multiple scales: a quantitative analysis of the interplay between genotype, phenotype, and fitness in linear genetic programming
  publication-title: Genet. Program. Evol. Mach.
  doi: 10.1007/s10710-012-9159-4
– volume: 14
  start-page: 465
  issue: 5
  year: 1978
  ident: 10.1016/j.asoc.2021.107198_b29
  article-title: Modeling by shortest data description
  publication-title: Automatica
  doi: 10.1016/0005-1098(78)90005-5
– volume: 10
  start-page: 157
  issue: 2
  year: 2006
  ident: 10.1016/j.asoc.2021.107198_b12
  article-title: Representation and structural difficulty in genetic programming
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2006.871252
– volume: 14
  start-page: 3
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2021.107198_b57
  article-title: Better GP benchmarks: community survey results and proposals
  publication-title: Genet. Program. Evol. Mach.
  doi: 10.1007/s10710-012-9177-2
– volume: 4971
  start-page: 110
  year: 2008
  ident: 10.1016/j.asoc.2021.107198_b62
  article-title: Operator equalisation and bloat free GP
– ident: 10.1016/j.asoc.2021.107198_b47
– volume: 1
  start-page: 94
  year: 1991
  ident: 10.1016/j.asoc.2021.107198_b56
  article-title: A study of reproduction in generational and steady-state genetic algorithms
– year: 2003
  ident: 10.1016/j.asoc.2021.107198_b14
– volume: 23
  start-page: 1183
  issue: 8
  year: 1997
  ident: 10.1016/j.asoc.2021.107198_b52
  article-title: Parallel genetic programming and its application to trading model induction
  publication-title: Parallel Comput.
  doi: 10.1016/S0167-8191(97)00045-8
– volume: 22
  start-page: 185
  issue: 3
  year: 2008
  ident: 10.1016/j.asoc.2021.107198_b11
  article-title: Human-competitive machine invention by means of genetic programming
  publication-title: Artif. Intell. Eng. Des. Anal. Manuf.
  doi: 10.1017/S0890060408000127
– volume: 10
  start-page: 141
  issue: 2
  year: 1998
  ident: 10.1016/j.asoc.2021.107198_b54
  article-title: A survey of parallel genetic algorithms
  publication-title: Calc. Paralleles Res. Syst. Repar.
– year: 1995
  ident: 10.1016/j.asoc.2021.107198_b49
– volume: 10452
  start-page: 137
  year: 2017
  ident: 10.1016/j.asoc.2021.107198_b51
  article-title: GPGPGPU: Evaluation of parallelisation of genetic programming using GPGPU
– volume: 24
  start-page: 881
  issue: 7
  year: 2002
  ident: 10.1016/j.asoc.2021.107198_b65
  article-title: An efficient k-means clustering algorithm: analysis and implementation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2002.1017616
– volume: 2610
  start-page: 204
  year: 2003
  ident: 10.1016/j.asoc.2021.107198_b19
  article-title: A simple but theoretically-motivated method to control bloat in genetic programming
– year: 2010
  ident: 10.1016/j.asoc.2021.107198_b30
– year: 1974
  ident: 10.1016/j.asoc.2021.107198_b34
– start-page: 70
  year: 2003
  ident: 10.1016/j.asoc.2021.107198_b64
  article-title: Improving symbolic regression with interval arithmetic and linear scaling
– start-page: 1209
  year: 2015
  ident: 10.1016/j.asoc.2021.107198_b50
  article-title: Evaluation-time bias in asynchronous evolutionary algorithms
– volume: 2
  start-page: 61
  issue: 1
  year: 2001
  ident: 10.1016/j.asoc.2021.107198_b20
  article-title: Selection based on the Pareto nondomination criterion for controlling code growth in genetic programming
  publication-title: Genet. Programm. Evol. Mach.
  doi: 10.1023/A:1010070616149
– start-page: 709
  year: 2016
  ident: 10.1016/j.asoc.2021.107198_b41
  article-title: Improving generalisation of genetic programming for symbolic regression with structural risk minimisation
– volume: 1
  start-page: 912
  year: 2005
  ident: 10.1016/j.asoc.2021.107198_b59
  article-title: On improving genetic programming for symbolic regression
– start-page: 215
  year: 1996
  ident: 10.1016/j.asoc.2021.107198_b8
  article-title: Code growth in genetic programming
– volume: 13
  start-page: 197
  issue: 2
  year: 2012
  ident: 10.1016/j.asoc.2021.107198_b63
  article-title: Operator equalisation for bloat free genetic programming and a survey of bloat control methods
  publication-title: Genet. Program. Evol. Mach.
  doi: 10.1007/s10710-011-9150-5
– start-page: 593
  year: 2004
  ident: 10.1016/j.asoc.2021.107198_b23
  article-title: On the strength of size limits in linear genetic programming
– year: 1992
  ident: 10.1016/j.asoc.2021.107198_b2
– volume: 61
  start-page: 36
  issue: 10
  year: 2018
  ident: 10.1016/j.asoc.2021.107198_b3
  article-title: The mythos of model interpretability
  publication-title: Commun. ACM
  doi: 10.1145/3233231
– start-page: 411
  year: 2002
  ident: 10.1016/j.asoc.2021.107198_b61
  article-title: Fighting bloat with nonparametric parsimony pressure
– volume: 23
  start-page: 703
  issue: 4
  year: 2019
  ident: 10.1016/j.asoc.2021.107198_b40
  article-title: Structural risk minimisation-driven genetic programming for enhancing generalisation in symbolic regression
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2881392
– volume: 25
  start-page: 83
  issue: 6
  year: 1970
  ident: 10.1016/j.asoc.2021.107198_b28
  article-title: The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms
  publication-title: Russian Math. Surveys
  doi: 10.1070/RM1970v025n06ABEH001269
– volume: 19
  start-page: 157
  issue: 2
  year: 2014
  ident: 10.1016/j.asoc.2021.107198_b44
  article-title: Tikhonov regularization as a complexity measure in multiobjective genetic programming
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2306994
– volume: 12
  start-page: 397
  issue: 4
  year: 2008
  ident: 10.1016/j.asoc.2021.107198_b18
  article-title: The automatic acquisition, evolution and reuse of modules in cartesian genetic programming
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.903549
– volume: 6621
  start-page: 25
  year: 2011
  ident: 10.1016/j.asoc.2021.107198_b35
  article-title: A quantitative study of learning and generalization in genetic programming
– volume: 13
  start-page: 197
  issue: 2
  year: 2012
  ident: 10.1016/j.asoc.2021.107198_b24
  article-title: Operator equalisation for bloat free genetic programming and a survey of bloat control methods
  publication-title: Genetic Program. Evol. Mach.
  doi: 10.1007/s10710-011-9150-5
– ident: 10.1016/j.asoc.2021.107198_b48
  doi: 10.1109/CEC48606.2020.9185771
– year: 2013
  ident: 10.1016/j.asoc.2021.107198_b38
SSID ssj0016928
Score 2.366641
Snippet In machine learning, reducing the complexity of a model can help to improve its computational efficiency and avoid overfitting. In genetic programming (GP),...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107198
SubjectTerms Evaluation time
Genetic programming
Model complexity
Parallel computing
Title Evolving simple and accurate symbolic regression models via asynchronous parallel computing
URI https://dx.doi.org/10.1016/j.asoc.2021.107198
Volume 104
WOSCitedRecordID wos000641373300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELVKlwMXlk-xLCAfuEWpmg839rFCRSwSKwQLKuIQObZDs5umqyaptvwUfi3j2k5LgRV74BJVkeOkmdfn8XTmDUIvqUoioYj0iciVH9Oc-TSSkT_ioQylYlJwuWk2kZye0umUve_1frhamFWZVBW9umKX_9XUcA6MrUtnb2DublI4AZ_B6HAEs8Pxnww_AcIxUYJCK_8aNVYhWq0J4dXreaaVgL2l-mYyYCvTDKf2Vro8q15XQsvl6sRYrQpelqrcpJ23jVvjnGStdV9r4PG9ETpgw-E-poCmWLfeR14VHbS-G1R9GHjv2hmfz7n0xk2Rd9S_gLchZu2Gpr-oFXzRYt0tHieVXPL5Ymbitp-Bqy_AC5Y6CZdnMwt1G8UId7KtHPGOqB8zG450zDyMd7gVNqqB6Vj9G-2bCMT5gAOiB3r6wXbwrxrbe2tfl5Hokt3OUz1HqudIzRy30EGYEEb76GB8Mpm-7f6jGrFN597uyW1Jlske3H-SP7s9O67M2T101-5B8Nhg5z7qqeoBOnT9PbCl-4foq4MSNlDCACXsoIQdlPAWSthACQOU8C6UsIMS7oDyCH16PTl79ca3zTh8EcVx44tAhnk0EnKYy4wqxcGxjXVZMkvAzYIfukpCwoOMacVCESac0pxnESdZJAnJSfQY9atFpZ4gDE6hUgy2ClTksRoGmQxonOs6JarIUNIjFLh3lQqrVK8bppTp3610hLzumkuj03LtaOJMkFpP03iQKSDqmuue3ugux-jOFurPUL9Ztuo5ui1WTVEvX1g4_QSeX6Xp
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolving+simple+and+accurate+symbolic+regression+models+via+asynchronous+parallel+computing&rft.jtitle=Applied+soft+computing&rft.au=Sambo%2C+Aliyu+Sani&rft.au=Azad%2C+R.+Muhammad+Atif&rft.au=Kovalchuk%2C+Yevgeniya&rft.au=Indramohan%2C+Vivek+Padmanaabhan&rft.date=2021-06-01&rft.issn=1568-4946&rft.volume=104&rft.spage=107198&rft_id=info:doi/10.1016%2Fj.asoc.2021.107198&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2021_107198
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon