Adaptive dynamic programming-based stabilization of nonlinear systems with unknown actuator saturation

This paper addresses the stabilizing control problem for nonlinear systems subject to unknown actuator saturation by using adaptive dynamic programming algorithm. The control strategy is composed of an online nominal optimal control and a neural network (NN)-based feed-forward saturation compensator...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear dynamics Vol. 93; no. 4; pp. 2089 - 2103
Main Authors: Zhao, Bo, Jia, Lihao, Xia, Hongbing, Li, Yuanchun
Format: Journal Article
Language:English
Published: Dordrecht Springer Netherlands 01.09.2018
Springer Nature B.V
Subjects:
ISSN:0924-090X, 1573-269X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper addresses the stabilizing control problem for nonlinear systems subject to unknown actuator saturation by using adaptive dynamic programming algorithm. The control strategy is composed of an online nominal optimal control and a neural network (NN)-based feed-forward saturation compensator. For nominal systems without actuator saturation, a critic NN is established to deal with the Hamilton–Jacobi–Bellman equation. Thus, the online approximate nominal optimal control policy can be obtained without action NN. Then, the unknown actuator saturation, which is considered as saturation nonlinearity by simple transformation, is compensated by employing a NN-based feed-forward control loop. The stability of the closed-loop nonlinear system is analyzed to be ultimately uniformly bounded via Lyapunov’s direct method. Finally, the effectiveness of the presented control method is demonstrated by two simulation examples.
AbstractList This paper addresses the stabilizing control problem for nonlinear systems subject to unknown actuator saturation by using adaptive dynamic programming algorithm. The control strategy is composed of an online nominal optimal control and a neural network (NN)-based feed-forward saturation compensator. For nominal systems without actuator saturation, a critic NN is established to deal with the Hamilton–Jacobi–Bellman equation. Thus, the online approximate nominal optimal control policy can be obtained without action NN. Then, the unknown actuator saturation, which is considered as saturation nonlinearity by simple transformation, is compensated by employing a NN-based feed-forward control loop. The stability of the closed-loop nonlinear system is analyzed to be ultimately uniformly bounded via Lyapunov’s direct method. Finally, the effectiveness of the presented control method is demonstrated by two simulation examples.
Author Jia, Lihao
Li, Yuanchun
Zhao, Bo
Xia, Hongbing
Author_xml – sequence: 1
  givenname: Bo
  orcidid: 0000-0002-7684-7342
  surname: Zhao
  fullname: Zhao, Bo
  email: zhaobo@ia.ac.cn
  organization: The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences
– sequence: 2
  givenname: Lihao
  surname: Jia
  fullname: Jia, Lihao
  organization: Research Center for Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences
– sequence: 3
  givenname: Hongbing
  surname: Xia
  fullname: Xia, Hongbing
  organization: Department of Control Science and Engineering, Changchun University of Technology
– sequence: 4
  givenname: Yuanchun
  surname: Li
  fullname: Li, Yuanchun
  organization: Department of Control Science and Engineering, Changchun University of Technology
BookMark eNp9kMtKAzEUhoMoWC8P4C7gOppbZ5JlEW9QcKPQXchkkpraydQko9SnN20FQbCrQzj_d07OdwIOQx8sABcEXxGM6-tECK4JwkQgzrBE4gCMyLhmiFZydghGWFKOsMSzY3CS0gJjzCgWI-AmrV5l_2Fhuw668wauYj-Puut8mKNGJ9vClHXjl_5LZ98H2DtYdi99sDrCtE7Zdgl--vwKh_AW-s8AtcmDzn3p6jzELXUGjpxeJnv-U0_By93t880Dmj7dP95MpsgwzjNqTMOtqzVrTGUck4y4Rlg-ttwRS2WDx63jsjxp1XIrdO2k0aQVrSOScFmxU3C5m1uueB9symrRDzGUlYrSseSsyBF7U1hUNRUVJyVV71Im9ilF65TxeXtNjtovFcFqo17t1KuiXm3Uq8188odcRd_puN7L0B2TSjbMbfz90__QN9rKmqk
CitedBy_id crossref_primary_10_1007_s11071_022_07594_1
crossref_primary_10_1007_s11071_023_08496_6
crossref_primary_10_1080_00207721_2023_2209846
crossref_primary_10_1007_s11071_021_07049_z
crossref_primary_10_1109_TCSII_2022_3211832
crossref_primary_10_1016_j_knosys_2021_107100
crossref_primary_10_1007_s11071_023_08349_2
crossref_primary_10_1016_j_neucom_2023_127037
crossref_primary_10_1177_09596518231162759
crossref_primary_10_1007_s11071_019_05301_1
crossref_primary_10_1109_TSMC_2020_3042876
crossref_primary_10_1002_rnc_6374
crossref_primary_10_1007_s11071_021_06908_z
crossref_primary_10_1002_rnc_5802
crossref_primary_10_1016_j_neunet_2022_08_010
crossref_primary_10_1155_2021_9937008
crossref_primary_10_1109_TCYB_2019_2962011
crossref_primary_10_1109_TIE_2025_3528477
crossref_primary_10_1007_s11071_019_04994_8
crossref_primary_10_1109_ACCESS_2021_3109009
crossref_primary_10_1007_s00500_020_05293_w
crossref_primary_10_1007_s11071_024_10574_2
crossref_primary_10_1016_j_neucom_2019_11_032
crossref_primary_10_1007_s40747_021_00364_3
crossref_primary_10_1007_s11071_022_07624_y
crossref_primary_10_1016_j_ins_2024_121542
crossref_primary_10_1016_j_ifacol_2021_04_158
crossref_primary_10_1007_s11071_023_08420_y
crossref_primary_10_1007_s40747_021_00538_z
crossref_primary_10_1109_ACCESS_2019_2927511
crossref_primary_10_1109_TII_2019_2925632
crossref_primary_10_1007_s41315_020_00159_8
Cites_doi 10.1016/j.ins.2015.09.001
10.1109/TNNLS.2014.2346233
10.1109/TNN.2011.2172628
10.1016/j.ins.2016.07.051
10.1016/j.automatica.2016.05.008
10.1080/00207721.2017.1296982
10.1007/s11071-013-0926-4
10.1109/TCST.2013.2296900
10.1109/72.623201
10.1007/s11071-015-2324-6
10.1109/TNN.2011.2160968
10.1109/TNNLS.2013.2281663
10.1109/TCYB.2015.2417170
10.1016/j.ins.2012.07.006
10.1109/MCI.2009.932261
10.1007/s11071-014-1347-8
10.1080/00207179.2013.848292
10.1109/TNNLS.2015.2409301
10.1109/TCST.2009.2028877
10.1007/s12555-016-0711-5
10.1109/3477.809035
10.1109/TFUZZ.2015.2505088
10.1109/TNN.2008.2000204
10.1049/iet-cta.2014.0680
10.1002/acs.2541
10.1109/TSMCB.2004.840124
10.1080/00207721.2018.1481240
10.1016/j.ins.2016.12.016
10.1109/TCYB.2015.2421338
10.1109/TNNLS.2015.2472974
10.1109/TIE.2016.2583199
10.1016/j.neucom.2016.12.063
10.1049/iet-cta.2015.1105
10.1109/72.914523
10.1109/TNNLS.2013.2280013
10.1109/TNNLS.2013.2276571
10.1613/jair.301
10.1007/978-3-319-50815-3
10.1016/j.conengprac.2016.07.014
10.1109/TSMCB.2008.926614
10.1109/TIE.2016.2609399
10.1002/acs.2786
10.1109/TSMC.2016.2592682
10.1049/iet-cta.2015.1317
10.1007/s11071-016-2954-3
10.1002/oca.2313
10.1049/iet-cta.2016.1383
10.1016/j.neucom.2010.07.005
10.1109/TNN.2009.2027233
10.1109/CDC.1995.478953
10.1109/TASE.2014.2303139
10.1109/TNNLS.2015.2461452
10.1109/TNNLS.2012.2227339
10.1109/TNNLS.2016.2586303
10.1109/TAC.2014.2309282
10.1016/j.automatica.2011.01.025
ContentType Journal Article
Copyright Springer Science+Business Media B.V., part of Springer Nature 2018
Copyright Springer Science & Business Media 2018
Nonlinear Dynamics is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media B.V., part of Springer Nature 2018
– notice: Copyright Springer Science & Business Media 2018
– notice: Nonlinear Dynamics is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11071-018-4309-8
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central UK/Ireland
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList

Engineering Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-269X
EndPage 2103
ExternalDocumentID 10_1007_s11071_018_4309_8
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61603387; 61773075
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Scientific and Technological Development Plan Project in Jilin Province of China
  grantid: 20150520112JH; 20160414033GH
– fundername: National Natural Science Foundation of China
  grantid: 61374051; 61502494
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c344t-bcb4ef7a3bc6cf3931fb8e45e4f1e29b05df495e426d4e8a7f9ca1d8df1914963
IEDL.DBID M7S
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000441305900020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-090X
IngestDate Tue Nov 04 22:16:13 EST 2025
Tue Nov 04 22:25:55 EST 2025
Sat Nov 29 07:48:03 EST 2025
Tue Nov 18 21:53:50 EST 2025
Fri Feb 21 02:32:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Unknown actuator saturation
Continuous-time nonlinear systems
Stabilizing control
Adaptive dynamic programming
Neural networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-bcb4ef7a3bc6cf3931fb8e45e4f1e29b05df495e426d4e8a7f9ca1d8df1914963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7684-7342
PQID 2259434308
PQPubID 2043746
PageCount 15
ParticipantIDs proquest_journals_2259434308
proquest_journals_2086728641
crossref_citationtrail_10_1007_s11071_018_4309_8
crossref_primary_10_1007_s11071_018_4309_8
springer_journals_10_1007_s11071_018_4309_8
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems
PublicationTitle Nonlinear dynamics
PublicationTitleAbbrev Nonlinear Dyn
PublicationYear 2018
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References ZhaoBLiYLocal joint information based active fault tolerant control for reconfigurable manipulatorNonlinear Dyn.2014773859876322920510.1007/s11071-014-1347-81314.93041
SunLHuoWJiaoZAdaptive backstepping control of spacecraft rendezvous and proximity operations with input saturation and full-state constraintIEEE Trans. Industr. Electron.201764148049210.1109/TIE.2016.2609399
LiuDWeiQWangDYangXLiHAdaptive dynamic programming with applications in optimal control2017ChamSpringer10.1007/978-3-319-50815-31390.93003
KaelblingLPLittmanMLMooreAWReinforcement learning: a surveyJ. Artif. Intell. Res.1996423728510.1613/jair.301
XuHZhaoQJagannathanSFinite-horizon near-optimal output feedback neural network control of quantized nonlinear discrete-time systems with input constraintIEEE Trans. Neural Netw. Learn. Syst.201526817761788345497210.1109/TNNLS.2015.2409301
HePJagannathanSReinforcement learning-based output feedback control of nonlinear systems with input constraintsIEEE Trans. Syst. Man Cybern. Part B (Cybernetics)200535115015410.1109/TSMCB.2004.840124
YangXLiuDMaHXuYOnline approximate solution of HJI equation for unknown constrained-input nonlinear continuous-time systemsInform Sci.201632843545410.1016/j.ins.2015.09.00106870817
SongGLiTHuKZhengBObserver-based quantized control of nonlinear systems with input saturationNonlinear Dyn.201686211571169354656710.1007/s11071-016-2954-31349.93185
WerbosPJWhiteDASofgeDAApproximate dynamic programming for real time control and neural modelingHandbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches1992New YorkVan Nostrand Reinhold
ZhangHSongRWeiQZhangTOptimal tracking control for a class of nonlinear discrete-time systems with time delays based on heuristic dynamic programmingIEEE Trans. Neural Netw.201122121851186210.1109/TNN.2011.2172628
WuHNLiMMGuoLFinite-horizon approximate optimal guaranteed cost control of uncertain nonlinear systems with application to mars entry guidanceIEEE Trans. Neural Netw. Learn. Syst.201526714561467347991310.1109/TNNLS.2014.2346233
SiJWangYTOn-line learning control by association and reinforcementIEEE Trans. Neural Netw.20011226427610.1109/72.914523
DongLZhongXSunCHeHEvent-triggered adaptive dynamic programming for continuous-time systems with control constraintsIEEE Trans. Neural Netw. Learn.201728819411952368424410.1109/TNNLS.2016.2586303
WangFHuaCZongQAttitude control of reusable launch vehicle in reentry phase with input constraint via robust adaptive backstepping controlInt. J. Aadpt. Control.2015291013081327340784310.1002/acs.25411330.93079
ZhaiDXiaYAdaptive control for teleoperation system with varying time delays and input saturation constraintsIEEE Trans. Industr. Electron.201663116921692910.1109/TIE.2016.2583199
LiuDWangDYangXAn iterative adaptive dynamic programming algorithm for optimal control of unknown discrete-time nonlinear systems with constrained inputsInform Sci.2013220331342299368810.1016/j.ins.2012.07.0061291.49018
ZhaoBLiYLiuDSelf-tuned local feedback gain based decentralized fault tolerant control for a class of large-scale nonlinear systemsNeurocomputing201723514715610.1016/j.neucom.2016.12.063
ChenMGeSRenBAdaptive tracking control of uncertain MIMO nonlinear systems with input constraintsAutomatica2011473452465287829810.1016/j.automatica.2011.01.0251219.93053
CuiXZhangHLuoYJiangHAdaptive dynamic programming for H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\infty $$\end{document} tracking design of uncertain nonlinear systems with disturbances and input constraintsInt. J. Adapt. Control.2017311115671583373760310.1002/acs.27861386.93156
GeSHangCZhangTAdaptive neural network control of nonlinear systems by state and output feedbackIEEE Trans. Syst. Man Cybern. Part B (Cybernetics)199929681882810.1109/3477.809035
LinQWeiQZhaoBOptimal control for discrete-time systems with actuator saturationOptim. Contr. Appl. Met.20173810711080373485110.1002/oca.23131386.90164
MendozaMZavala-RłoASantibnezVReyesFOutput-feedback proportional–integral-derivative-type control with simple tuning for the global regulation of robot manipulators with input constraintsIET Control Theory Appl.201591420972106341078810.1049/iet-cta.2014.0680
ModaresHLewisFLNaghibi-SistaniMBAdaptive optimal control of unknown constrained-input systems using policy iteration and neural networksIEEE Trans. Neural Netw. Learn. Syst.201324101513152510.1109/TNNLS.2013.2276571
Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-dynamic programming: an overview. In: Proceedings of the 34th IEEE Conference on Decision and Control, pp. 560–564 (1995)
Al-TamimiALewisFLAbu-KhalafMDiscrete-time nonlinear HJB solution using approximate dynamic programming: Convergence proofIEEE Trans. Syst. Man Cybern. Part B (Cybernetics)200838494394910.1109/TSMCB.2008.926614
WangDMuCHeHLiuDEvent-driven adaptive robust control of nonlinear systems with uncertainties through NDP strategyIEEE Trans. Syst. Man Cybern. Syst.20174771358137010.1109/TSMC.2016.2592682
YangXLiuDWangDReinforcement learning for adaptive optimal control of unknown continuous-time nonlinear systems with input constraintsInt. J. Contr.2014873553566317252710.1080/00207179.2013.8482921317.93158
SongRLewisFLWeiQZhangHOff-policy actor-critic structure for optimal control of unknown systems with disturbancesIEEE Trans. Cybern.20164651041105010.1109/TCYB.2015.2421338
LiuDWangDLiHDecentralized stabilization for a class of continuous-time nonlinear interconnected systems using online learning optimal control approachIEEE Trans. Neural Netw. Learn. Syst.201425241842810.1109/TNNLS.2013.2280013
ProkhorovDVWunschDCAdaptive critic designsIEEE Trans. Neural Netw.199785997100710.1109/72.623201
XieCYangGApproximate guaranteed cost fault-tolerant control of unknown nonlinear systems with time-varying actuator faultsNonlinear Dyn.2016831–2269282343586710.1007/s11071-015-2324-61349.93189
ZhaoBLiuDLiYObserver based adaptive dynamic programming for fault tolerant control of a class of nonlinear systemsInform Sci.2017384213310.1016/j.ins.2016.12.016
LiDJTangLLiuYJAdaptive intelligence learning for nonlinear chaotic systemsNonlinear Dyn.201373421032109309477910.1007/s11071-013-0926-41281.34071
LiuDWeiQPolicy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systemsIEEE Trans. Neural Netw. Learn. Syst.201425362163410.1109/TNNLS.2013.2281663
ZhaoBLiYModel-free adaptive dynamic programming based near-optimal decentralized tracking Control of reconfigurable manipulatorsInt. J. Control Autom. Syst.201816247849010.1007/s12555-016-0711-5
SunJLiuCFinite-horizon differential games for missile–target interception system using adaptive dynamic programming with input constraintsInt. J. Syst. Sci.2018492120376531210.1080/00207721.2018.14812401390.49049
YangXLiuDLuoBLiCData-based robust adaptive control for a class of unknown nonlinear constrained-input systems via integral reinforcement learningInform Sci.201636973174710.1016/j.ins.2016.07.051
ZhangHQinCLuoYNeural-network-based constrained optimal control scheme for discrete-time switched nonlinear system using dual heuristic programmingIEEE Trans. Autom. Sci. Eng.201411383984910.1109/TASE.2014.2303139
MehraeenSJagannathanSDecentralized optimal control of a class of interconnected nonlinear discrete-time systems by using online Hamilton–Jacobi–Bellman formulationIEEE Trans. Neural Netw.201122111757176910.1109/TNN.2011.2160968
ZhaoFGeSTuFQinYDongMAdaptive neural network control for active suspension system with actuator saturationIET Control Theory Appl.2016101416961705358527810.1049/iet-cta.2015.1317
WangDHeHZhaoBLiuDAdaptive near-optimal controllers for nonlinear decentralised feedback stabilisation problemsIET Control Theory Appl.2017116799806369976010.1049/iet-cta.2016.1383
KieferTGraichenKKugiATrajectory tracking of a 3-DOF laboratory helicopter under input and state constraintsIEEE Trans. Control Syst. Technol.201018494495210.1109/TCST.2009.2028877
GaoWJiangYJiangZPChaiTOutput-feedback adaptive optimal control of interconnected systems based on robust adaptive dynamic programmingAutomatica2016723745354291210.1016/j.automatica.2016.05.0081344.93060
ZhangHLuoYLiuDNeural-network-based near-optimal control for a class of discrete-time affine nonlinear systems with control constraintsIEEE Trans. Neural Netw.20092091490150310.1109/TNN.2009.2027233
FanQYangGAdaptive actor-critic design-based integral sliding-mode control for partially unknown nonlinear systems with input disturbancesIEEE Trans. Neural Netw. Learn. Syst.2016271165177346563110.1109/TNNLS.2015.2472974
TerraMHCerriJPIshiharaJYOptimal robust linear quadratic regulator for systems subject to uncertaintiesIEEE Trans. Automat. Control201459925862591325456010.1109/TAC.2014.23092821360.49025
FuYFuJChaiTRobust adaptive dynamic programming of two-player zero-sum games for continuous-time linear systemsIEEE Trans. Neural Netw. Learn. Syst.2015261233143319345327910.1109/TNNLS.2015.2461452
HeydariABalakrishnanSNFinite-horizon control-constrained nonlinear optimal control using single network adaptive criticsIEEE Trans. Neural Netw. Learn. Syst.201324114515710.1109/TNNLS.2012.2227339
LiuDYangXWangDWeiQReinforcement-learning-based robust controller design for continuous-time uncertain nonlinear systems subject to input constraintsIEEE Trans. Cybern.20154571372138510.1109/TCYB.2015.2417170
ChenXJiaYMatsunoFTracking control for differential-drive mobile robots with diamond-shaped input constraintsIEEE Trans. Control Syst. Technol.20142251999200610.1109/TCST.2013.2296900
BellmanREDynamic Programming1957New JerseyPrinceton University Press0077.13605
LiuYTongSLiDGaoYFuzzy adaptive control with state observer for a class of nonlinear discrete-time systems with input constraintIEEE Trans. Fuzzy Syst.20162451147115810.1109/TFUZZ.2015.2505088
ZhaoBLiuDLiYOnline fault compensation control based on policy itera
X Yang (4309_CR50) 2016; 369
S Ge (4309_CR4) 1999; 29
B Zhao (4309_CR21) 2018; 16
D Zhai (4309_CR32) 2016; 63
A Heydari (4309_CR40) 2013; 24
Y Fu (4309_CR25) 2015; 26
F Wang (4309_CR28) 2015; 29
DV Prokhorov (4309_CR9) 1997; 8
S Mehraeen (4309_CR16) 2011; 22
Y Liu (4309_CR35) 2016; 24
DJ Li (4309_CR12) 2013; 73
R Song (4309_CR53) 2016; 46
LP Kaelbling (4309_CR13) 1996; 4
H Zhang (4309_CR46) 2009; 20
L Dong (4309_CR42) 2017; 28
X Yang (4309_CR49) 2016; 328
X Chen (4309_CR30) 2014; 22
Q Lin (4309_CR17) 2017; 38
D Liu (4309_CR58) 2014; 25
H Modares (4309_CR43) 2013; 24
PJ Werbos (4309_CR2) 1992
M Chen (4309_CR36) 2011; 47
J Si (4309_CR11) 2001; 12
W Gao (4309_CR18) 2016; 72
RE Bellman (4309_CR1) 1957
B Zhao (4309_CR20) 2017; 48
X Cui (4309_CR56) 2017; 31
D Wang (4309_CR26) 2017; 47
HN Wu (4309_CR54) 2015; 26
A Al-Tamimi (4309_CR8) 2008; 38
T Kiefer (4309_CR31) 2010; 18
J Sun (4309_CR34) 2018; 49
L Sun (4309_CR27) 2017; 64
D Liu (4309_CR47) 2015; 45
B Zhao (4309_CR5) 2014; 77
R Song (4309_CR45) 2010; 73
M Mendoza (4309_CR29) 2015; 9
D Liu (4309_CR3) 2017
H Xu (4309_CR44) 2015; 26
A Pomprapa (4309_CR51) 2017; 59
F Zhao (4309_CR33) 2016; 10
H Zhang (4309_CR41) 2014; 11
D Liu (4309_CR14) 2014; 25
G Song (4309_CR37) 2016; 86
X Yang (4309_CR52) 2014; 87
C Xie (4309_CR23) 2016; 83
B Zhao (4309_CR24) 2016; 10
D Wang (4309_CR15) 2017; 11
M Abu-Khalaf (4309_CR39) 2008; 19
D Liu (4309_CR48) 2013; 220
FY Wang (4309_CR7) 2009; 4
B Zhao (4309_CR6) 2017; 235
4309_CR10
B Zhao (4309_CR57) 2017; 384
Q Fan (4309_CR19) 2016; 27
H Zhang (4309_CR22) 2011; 22
MH Terra (4309_CR55) 2014; 59
P He (4309_CR38) 2005; 35
References_xml – reference: YangXLiuDMaHXuYOnline approximate solution of HJI equation for unknown constrained-input nonlinear continuous-time systemsInform Sci.201632843545410.1016/j.ins.2015.09.00106870817
– reference: ZhangHLuoYLiuDNeural-network-based near-optimal control for a class of discrete-time affine nonlinear systems with control constraintsIEEE Trans. Neural Netw.20092091490150310.1109/TNN.2009.2027233
– reference: GeSHangCZhangTAdaptive neural network control of nonlinear systems by state and output feedbackIEEE Trans. Syst. Man Cybern. Part B (Cybernetics)199929681882810.1109/3477.809035
– reference: KaelblingLPLittmanMLMooreAWReinforcement learning: a surveyJ. Artif. Intell. Res.1996423728510.1613/jair.301
– reference: HePJagannathanSReinforcement learning-based output feedback control of nonlinear systems with input constraintsIEEE Trans. Syst. Man Cybern. Part B (Cybernetics)200535115015410.1109/TSMCB.2004.840124
– reference: SiJWangYTOn-line learning control by association and reinforcementIEEE Trans. Neural Netw.20011226427610.1109/72.914523
– reference: ZhaoBLiuDLiYObserver based adaptive dynamic programming for fault tolerant control of a class of nonlinear systemsInform Sci.2017384213310.1016/j.ins.2016.12.016
– reference: PomprapaALeonhardtSMisgeldBJEOptimal learning control of oxygen saturation using a policy iteration algorithm and a proof-of-concept in an interconnecting three-tank systemControl Eng. Pract.20175919420310.1016/j.conengprac.2016.07.014
– reference: Abu-KhalafMLewisFLHuangJNeurodynamic programming and zero-sum games for constrained control systemsIEEE Trans. Neural Netw.20081971243125210.1109/TNN.2008.2000204
– reference: SunJLiuCFinite-horizon differential games for missile–target interception system using adaptive dynamic programming with input constraintsInt. J. Syst. Sci.2018492120376531210.1080/00207721.2018.14812401390.49049
– reference: TerraMHCerriJPIshiharaJYOptimal robust linear quadratic regulator for systems subject to uncertaintiesIEEE Trans. Automat. Control201459925862591325456010.1109/TAC.2014.23092821360.49025
– reference: ChenXJiaYMatsunoFTracking control for differential-drive mobile robots with diamond-shaped input constraintsIEEE Trans. Control Syst. Technol.20142251999200610.1109/TCST.2013.2296900
– reference: ZhangHSongRWeiQZhangTOptimal tracking control for a class of nonlinear discrete-time systems with time delays based on heuristic dynamic programmingIEEE Trans. Neural Netw.201122121851186210.1109/TNN.2011.2172628
– reference: SunLHuoWJiaoZAdaptive backstepping control of spacecraft rendezvous and proximity operations with input saturation and full-state constraintIEEE Trans. Industr. Electron.201764148049210.1109/TIE.2016.2609399
– reference: SongRZhangHLuoYWeiQOptimal control laws for time-delay systems with saturating actuators based on heuristic dynamic programmingNeurocomputing201073163020302710.1016/j.neucom.2010.07.005
– reference: ChenMGeSRenBAdaptive tracking control of uncertain MIMO nonlinear systems with input constraintsAutomatica2011473452465287829810.1016/j.automatica.2011.01.0251219.93053
– reference: ZhangHQinCLuoYNeural-network-based constrained optimal control scheme for discrete-time switched nonlinear system using dual heuristic programmingIEEE Trans. Autom. Sci. Eng.201411383984910.1109/TASE.2014.2303139
– reference: CuiXZhangHLuoYJiangHAdaptive dynamic programming for H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\infty $$\end{document} tracking design of uncertain nonlinear systems with disturbances and input constraintsInt. J. Adapt. Control.2017311115671583373760310.1002/acs.27861386.93156
– reference: LiuDWangDLiHDecentralized stabilization for a class of continuous-time nonlinear interconnected systems using online learning optimal control approachIEEE Trans. Neural Netw. Learn. Syst.201425241842810.1109/TNNLS.2013.2280013
– reference: HeydariABalakrishnanSNFinite-horizon control-constrained nonlinear optimal control using single network adaptive criticsIEEE Trans. Neural Netw. Learn. Syst.201324114515710.1109/TNNLS.2012.2227339
– reference: Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-dynamic programming: an overview. In: Proceedings of the 34th IEEE Conference on Decision and Control, pp. 560–564 (1995)
– reference: BellmanREDynamic Programming1957New JerseyPrinceton University Press0077.13605
– reference: ProkhorovDVWunschDCAdaptive critic designsIEEE Trans. Neural Netw.199785997100710.1109/72.623201
– reference: WangFYZhangHLiuDAdaptive dynamic programming: an introductionIEEE Comput. Intell. Mag.200942394710.1109/MCI.2009.932261
– reference: WerbosPJWhiteDASofgeDAApproximate dynamic programming for real time control and neural modelingHandbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches1992New YorkVan Nostrand Reinhold
– reference: WangFHuaCZongQAttitude control of reusable launch vehicle in reentry phase with input constraint via robust adaptive backstepping controlInt. J. Aadpt. Control.2015291013081327340784310.1002/acs.25411330.93079
– reference: ZhaoBLiYLocal joint information based active fault tolerant control for reconfigurable manipulatorNonlinear Dyn.2014773859876322920510.1007/s11071-014-1347-81314.93041
– reference: LiuDWangDYangXAn iterative adaptive dynamic programming algorithm for optimal control of unknown discrete-time nonlinear systems with constrained inputsInform Sci.2013220331342299368810.1016/j.ins.2012.07.0061291.49018
– reference: ZhaoBLiuDYangXLiYObserver-critic structure-based adaptive dynamic programming for decentralised tracking control of unknown large-scale nonlinear systemsInt. J. Syst. Sci.201748919781989365262610.1080/00207721.2017.12969821371.93032
– reference: ZhaiDXiaYAdaptive control for teleoperation system with varying time delays and input saturation constraintsIEEE Trans. Industr. Electron.201663116921692910.1109/TIE.2016.2583199
– reference: WuHNLiMMGuoLFinite-horizon approximate optimal guaranteed cost control of uncertain nonlinear systems with application to mars entry guidanceIEEE Trans. Neural Netw. Learn. Syst.201526714561467347991310.1109/TNNLS.2014.2346233
– reference: WangDMuCHeHLiuDEvent-driven adaptive robust control of nonlinear systems with uncertainties through NDP strategyIEEE Trans. Syst. Man Cybern. Syst.20174771358137010.1109/TSMC.2016.2592682
– reference: LiuDYangXWangDWeiQReinforcement-learning-based robust controller design for continuous-time uncertain nonlinear systems subject to input constraintsIEEE Trans. Cybern.20154571372138510.1109/TCYB.2015.2417170
– reference: LiDJTangLLiuYJAdaptive intelligence learning for nonlinear chaotic systemsNonlinear Dyn.201373421032109309477910.1007/s11071-013-0926-41281.34071
– reference: MendozaMZavala-RłoASantibnezVReyesFOutput-feedback proportional–integral-derivative-type control with simple tuning for the global regulation of robot manipulators with input constraintsIET Control Theory Appl.201591420972106341078810.1049/iet-cta.2014.0680
– reference: XuHZhaoQJagannathanSFinite-horizon near-optimal output feedback neural network control of quantized nonlinear discrete-time systems with input constraintIEEE Trans. Neural Netw. Learn. Syst.201526817761788345497210.1109/TNNLS.2015.2409301
– reference: YangXLiuDLuoBLiCData-based robust adaptive control for a class of unknown nonlinear constrained-input systems via integral reinforcement learningInform Sci.201636973174710.1016/j.ins.2016.07.051
– reference: LinQWeiQZhaoBOptimal control for discrete-time systems with actuator saturationOptim. Contr. Appl. Met.20173810711080373485110.1002/oca.23131386.90164
– reference: GaoWJiangYJiangZPChaiTOutput-feedback adaptive optimal control of interconnected systems based on robust adaptive dynamic programmingAutomatica2016723745354291210.1016/j.automatica.2016.05.0081344.93060
– reference: Al-TamimiALewisFLAbu-KhalafMDiscrete-time nonlinear HJB solution using approximate dynamic programming: Convergence proofIEEE Trans. Syst. Man Cybern. Part B (Cybernetics)200838494394910.1109/TSMCB.2008.926614
– reference: YangXLiuDWangDReinforcement learning for adaptive optimal control of unknown continuous-time nonlinear systems with input constraintsInt. J. Contr.2014873553566317252710.1080/00207179.2013.8482921317.93158
– reference: LiuDWeiQPolicy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systemsIEEE Trans. Neural Netw. Learn. Syst.201425362163410.1109/TNNLS.2013.2281663
– reference: DongLZhongXSunCHeHEvent-triggered adaptive dynamic programming for continuous-time systems with control constraintsIEEE Trans. Neural Netw. Learn.201728819411952368424410.1109/TNNLS.2016.2586303
– reference: ZhaoBLiYModel-free adaptive dynamic programming based near-optimal decentralized tracking Control of reconfigurable manipulatorsInt. J. Control Autom. Syst.201816247849010.1007/s12555-016-0711-5
– reference: KieferTGraichenKKugiATrajectory tracking of a 3-DOF laboratory helicopter under input and state constraintsIEEE Trans. Control Syst. Technol.201018494495210.1109/TCST.2009.2028877
– reference: ZhaoBLiuDLiYOnline fault compensation control based on policy iteration algorithm for a class of affine non-linear systems with actuator failuresIET Control Theory Appl.2016101518161823358731610.1049/iet-cta.2015.1105
– reference: FanQYangGAdaptive actor-critic design-based integral sliding-mode control for partially unknown nonlinear systems with input disturbancesIEEE Trans. Neural Netw. Learn. Syst.2016271165177346563110.1109/TNNLS.2015.2472974
– reference: FuYFuJChaiTRobust adaptive dynamic programming of two-player zero-sum games for continuous-time linear systemsIEEE Trans. Neural Netw. Learn. Syst.2015261233143319345327910.1109/TNNLS.2015.2461452
– reference: SongGLiTHuKZhengBObserver-based quantized control of nonlinear systems with input saturationNonlinear Dyn.201686211571169354656710.1007/s11071-016-2954-31349.93185
– reference: LiuDWeiQWangDYangXLiHAdaptive dynamic programming with applications in optimal control2017ChamSpringer10.1007/978-3-319-50815-31390.93003
– reference: ZhaoFGeSTuFQinYDongMAdaptive neural network control for active suspension system with actuator saturationIET Control Theory Appl.2016101416961705358527810.1049/iet-cta.2015.1317
– reference: WangDHeHZhaoBLiuDAdaptive near-optimal controllers for nonlinear decentralised feedback stabilisation problemsIET Control Theory Appl.2017116799806369976010.1049/iet-cta.2016.1383
– reference: ModaresHLewisFLNaghibi-SistaniMBAdaptive optimal control of unknown constrained-input systems using policy iteration and neural networksIEEE Trans. Neural Netw. Learn. Syst.201324101513152510.1109/TNNLS.2013.2276571
– reference: ZhaoBLiYLiuDSelf-tuned local feedback gain based decentralized fault tolerant control for a class of large-scale nonlinear systemsNeurocomputing201723514715610.1016/j.neucom.2016.12.063
– reference: LiuYTongSLiDGaoYFuzzy adaptive control with state observer for a class of nonlinear discrete-time systems with input constraintIEEE Trans. Fuzzy Syst.20162451147115810.1109/TFUZZ.2015.2505088
– reference: XieCYangGApproximate guaranteed cost fault-tolerant control of unknown nonlinear systems with time-varying actuator faultsNonlinear Dyn.2016831–2269282343586710.1007/s11071-015-2324-61349.93189
– reference: MehraeenSJagannathanSDecentralized optimal control of a class of interconnected nonlinear discrete-time systems by using online Hamilton–Jacobi–Bellman formulationIEEE Trans. Neural Netw.201122111757176910.1109/TNN.2011.2160968
– reference: SongRLewisFLWeiQZhangHOff-policy actor-critic structure for optimal control of unknown systems with disturbancesIEEE Trans. Cybern.20164651041105010.1109/TCYB.2015.2421338
– volume: 328
  start-page: 435
  year: 2016
  ident: 4309_CR49
  publication-title: Inform Sci.
  doi: 10.1016/j.ins.2015.09.001
– volume: 26
  start-page: 1456
  issue: 7
  year: 2015
  ident: 4309_CR54
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2014.2346233
– volume: 22
  start-page: 1851
  issue: 12
  year: 2011
  ident: 4309_CR22
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2011.2172628
– volume: 369
  start-page: 731
  year: 2016
  ident: 4309_CR50
  publication-title: Inform Sci.
  doi: 10.1016/j.ins.2016.07.051
– volume: 72
  start-page: 37
  year: 2016
  ident: 4309_CR18
  publication-title: Automatica
  doi: 10.1016/j.automatica.2016.05.008
– volume: 48
  start-page: 1978
  issue: 9
  year: 2017
  ident: 4309_CR20
  publication-title: Int. J. Syst. Sci.
  doi: 10.1080/00207721.2017.1296982
– volume: 73
  start-page: 2103
  issue: 4
  year: 2013
  ident: 4309_CR12
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-013-0926-4
– volume: 22
  start-page: 1999
  issue: 5
  year: 2014
  ident: 4309_CR30
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2013.2296900
– volume: 8
  start-page: 997
  issue: 5
  year: 1997
  ident: 4309_CR9
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.623201
– volume: 83
  start-page: 269
  issue: 1–2
  year: 2016
  ident: 4309_CR23
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-015-2324-6
– volume: 22
  start-page: 1757
  issue: 11
  year: 2011
  ident: 4309_CR16
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2011.2160968
– volume: 25
  start-page: 621
  issue: 3
  year: 2014
  ident: 4309_CR58
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2013.2281663
– volume: 45
  start-page: 1372
  issue: 7
  year: 2015
  ident: 4309_CR47
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2417170
– volume: 220
  start-page: 331
  year: 2013
  ident: 4309_CR48
  publication-title: Inform Sci.
  doi: 10.1016/j.ins.2012.07.006
– volume: 4
  start-page: 39
  issue: 2
  year: 2009
  ident: 4309_CR7
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2009.932261
– volume: 77
  start-page: 859
  issue: 3
  year: 2014
  ident: 4309_CR5
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-014-1347-8
– volume: 87
  start-page: 553
  issue: 3
  year: 2014
  ident: 4309_CR52
  publication-title: Int. J. Contr.
  doi: 10.1080/00207179.2013.848292
– volume: 26
  start-page: 1776
  issue: 8
  year: 2015
  ident: 4309_CR44
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2409301
– volume: 18
  start-page: 944
  issue: 4
  year: 2010
  ident: 4309_CR31
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2009.2028877
– volume: 16
  start-page: 478
  issue: 2
  year: 2018
  ident: 4309_CR21
  publication-title: Int. J. Control Autom. Syst.
  doi: 10.1007/s12555-016-0711-5
– volume-title: Dynamic Programming
  year: 1957
  ident: 4309_CR1
– volume: 29
  start-page: 818
  issue: 6
  year: 1999
  ident: 4309_CR4
  publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybernetics)
  doi: 10.1109/3477.809035
– volume: 24
  start-page: 1147
  issue: 5
  year: 2016
  ident: 4309_CR35
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2015.2505088
– volume: 19
  start-page: 1243
  issue: 7
  year: 2008
  ident: 4309_CR39
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2008.2000204
– volume: 9
  start-page: 2097
  issue: 14
  year: 2015
  ident: 4309_CR29
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2014.0680
– volume: 29
  start-page: 1308
  issue: 10
  year: 2015
  ident: 4309_CR28
  publication-title: Int. J. Aadpt. Control.
  doi: 10.1002/acs.2541
– volume: 35
  start-page: 150
  issue: 1
  year: 2005
  ident: 4309_CR38
  publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybernetics)
  doi: 10.1109/TSMCB.2004.840124
– volume: 49
  start-page: 1
  issue: 2
  year: 2018
  ident: 4309_CR34
  publication-title: Int. J. Syst. Sci.
  doi: 10.1080/00207721.2018.1481240
– volume: 384
  start-page: 21
  year: 2017
  ident: 4309_CR57
  publication-title: Inform Sci.
  doi: 10.1016/j.ins.2016.12.016
– volume-title: Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches
  year: 1992
  ident: 4309_CR2
– volume: 46
  start-page: 1041
  issue: 5
  year: 2016
  ident: 4309_CR53
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2421338
– volume: 27
  start-page: 165
  issue: 1
  year: 2016
  ident: 4309_CR19
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2472974
– volume: 63
  start-page: 6921
  issue: 11
  year: 2016
  ident: 4309_CR32
  publication-title: IEEE Trans. Industr. Electron.
  doi: 10.1109/TIE.2016.2583199
– volume: 235
  start-page: 147
  year: 2017
  ident: 4309_CR6
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.063
– volume: 10
  start-page: 1816
  issue: 15
  year: 2016
  ident: 4309_CR24
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2015.1105
– volume: 12
  start-page: 264
  year: 2001
  ident: 4309_CR11
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.914523
– volume: 25
  start-page: 418
  issue: 2
  year: 2014
  ident: 4309_CR14
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2013.2280013
– volume: 24
  start-page: 1513
  issue: 10
  year: 2013
  ident: 4309_CR43
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2013.2276571
– volume: 4
  start-page: 237
  year: 1996
  ident: 4309_CR13
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.301
– volume-title: Adaptive dynamic programming with applications in optimal control
  year: 2017
  ident: 4309_CR3
  doi: 10.1007/978-3-319-50815-3
– volume: 59
  start-page: 194
  year: 2017
  ident: 4309_CR51
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2016.07.014
– volume: 38
  start-page: 943
  issue: 4
  year: 2008
  ident: 4309_CR8
  publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybernetics)
  doi: 10.1109/TSMCB.2008.926614
– volume: 64
  start-page: 480
  issue: 1
  year: 2017
  ident: 4309_CR27
  publication-title: IEEE Trans. Industr. Electron.
  doi: 10.1109/TIE.2016.2609399
– volume: 31
  start-page: 1567
  issue: 11
  year: 2017
  ident: 4309_CR56
  publication-title: Int. J. Adapt. Control.
  doi: 10.1002/acs.2786
– volume: 47
  start-page: 1358
  issue: 7
  year: 2017
  ident: 4309_CR26
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2016.2592682
– volume: 10
  start-page: 1696
  issue: 14
  year: 2016
  ident: 4309_CR33
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2015.1317
– volume: 86
  start-page: 1157
  issue: 2
  year: 2016
  ident: 4309_CR37
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-016-2954-3
– volume: 38
  start-page: 1071
  year: 2017
  ident: 4309_CR17
  publication-title: Optim. Contr. Appl. Met.
  doi: 10.1002/oca.2313
– volume: 11
  start-page: 799
  issue: 6
  year: 2017
  ident: 4309_CR15
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2016.1383
– volume: 73
  start-page: 3020
  issue: 16
  year: 2010
  ident: 4309_CR45
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.07.005
– volume: 20
  start-page: 1490
  issue: 9
  year: 2009
  ident: 4309_CR46
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2009.2027233
– ident: 4309_CR10
  doi: 10.1109/CDC.1995.478953
– volume: 11
  start-page: 839
  issue: 3
  year: 2014
  ident: 4309_CR41
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2014.2303139
– volume: 26
  start-page: 3314
  issue: 12
  year: 2015
  ident: 4309_CR25
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2461452
– volume: 24
  start-page: 145
  issue: 1
  year: 2013
  ident: 4309_CR40
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2012.2227339
– volume: 28
  start-page: 1941
  issue: 8
  year: 2017
  ident: 4309_CR42
  publication-title: IEEE Trans. Neural Netw. Learn.
  doi: 10.1109/TNNLS.2016.2586303
– volume: 59
  start-page: 2586
  issue: 9
  year: 2014
  ident: 4309_CR55
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2014.2309282
– volume: 47
  start-page: 452
  issue: 3
  year: 2011
  ident: 4309_CR36
  publication-title: Automatica
  doi: 10.1016/j.automatica.2011.01.025
SSID ssj0003208
Score 2.3823094
Snippet This paper addresses the stabilizing control problem for nonlinear systems subject to unknown actuator saturation by using adaptive dynamic programming...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2089
SubjectTerms Actuators
Adaptive algorithms
Adaptive control
Automotive Engineering
Classical Mechanics
Computer simulation
Control
Control stability
Control theory
Dynamic programming
Dynamical Systems
Engineering
Feedforward control
Liapunov direct method
Mechanical Engineering
Neural networks
Nonlinear analysis
Nonlinear control
Nonlinear systems
Nonlinearity
Optimal control
Original Paper
Saturation
Stability analysis
Vibration
SummonAdditionalLinks – databaseName: SpringerLink Contemporary Journals
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gcIADgwFiMFAOnECV2iZr0-OEmDhNiJd2q_KUkGBM68bvx27TFdBAgrOTNoqd2I7tz4ScCwRJVyC8XDITcLBZA8lSGcQqA2MisSyxumw2kY5GYjzObn0dd1Fnu9chyfKmbordwFNB11cEHMMCYp1sIHYJti24u39aXr8sLtvQheBY4CPEuA5lrvrEV2XUWJjfgqKlrhm2_7XKXbLjTUs6qGRhj6zZSYe0vZlJ_SEuOmT7EwbhPnEDI6d451FTNaenPmXrFcgBKjlDwYLEHNqqYpO-OTqpADbkjFZI0AXF91y6mOAT3YRKrEoBZ54WCBtazjogj8Prh6ubwDdfCDTjfB4orbh1qWRKJ9ox4JxTwvK-5S6ycabCvnHgXFnQ8IZbIVOXaRkZYRwixsGxPiQtWIw9IlRJq5RjVlidcqlcJiTYVUqGfRVFhrkuCWsu5Nojk2ODjJe8wVTGXc1hV3Pc1Vx0ycVyyrSC5fhtcK9mbe5PaJGDlCRpLBIerSaDW4hFtyHMvqw53ZB__Nfxn0afkK0YRaXMWeuR1ny2sKdkU7_Pn4vZWSnXH9Mh9Iw
  priority: 102
  providerName: Springer Nature
Title Adaptive dynamic programming-based stabilization of nonlinear systems with unknown actuator saturation
URI https://link.springer.com/article/10.1007/s11071-018-4309-8
https://www.proquest.com/docview/2086728641
https://www.proquest.com/docview/2259434308
Volume 93
WOSCitedRecordID wos000441305900020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61wKEcoDyqLqXIB05FFknsTZwTogjU0wpBW-0t8lNCorvbzcLvZ8ZxdltUuPSSi-PE0oznPd8AHCsCSTfIvFILxyXarFyLSvPC1GhMlF6U3sZhE9VopMbj-joF3NpUVtnLxCio3dRSjPwU-Y6gzESmzma_OU2NouxqGqHxFtYJJSGLpXu3S0ksijiRLkMfg-IR4z6rGVvn0O8hR1pxSUkG9bdeWhmbz_KjUe1cbf_vgd_DVjI42XnHITvwxk92YTsZnyxd7XYXNv9AJtyDcO70jCQhc93IepYKuX7hMifV5xjalVRZ2_Vxsmlgkw52Q89Zhw_dMorysocJBe4mTFOvCrr4rCUw0bhrH35cXX6_-MbTSAZuhZQLbqyRPlRaGFvaIJCewSgvh16G3Be1yYYuoMvlUe876ZWuQm117pQLhCOHl_0DrOFh_EdgRntjgvDK20pqE2ql0doyOhuaPHciDCDrCdLYhFdOYzPumxXSMtGwQRo2RMNGDeDLcsusA-t47eXDnm5NurdtgwxTVoUqZf7v5SVNB3DSM8Zq-cV_Hbz-sU_wriBOjKVrh7C2mD_4z7BhHxd37fwI1r9ejq5vjiJv4_Pm9ucTpzIB6g
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9RAFD7BxUR9AEWMq6DzoC-aCW1ntp0-GIJcAgE3xGCyb3WuCQl01-2i4U_5Gz2nl10xyhsPPp92Om2_OdeZ7wC8UUSSbhC8UgvHJfqsXItM88Tk6EykXqTe1s0msuFQjUb56RL87M7C0LbKTifWitqNLeXItxB3RGUmIrU9-capaxRVV7sWGg0sjv31DwzZqg9He_h_3ybJwf7Z7iFvuwpwK6SccWON9CHTwtjUBoFTCkZ5OfAyxD7JTTRwAaMGj6bLSa90FnKrY6dcICo0xCuOew-WcS4D2YPlj_vD089z3S-SugdehFENZUBGXR21PqyHkRaF7opLKmuom5Zw4d7-UZGtDd3B6v_2iR7DSutSs51mDTyBJV-uwWrrXrNWeVVr8Og37sWnEHacnpCuZ-661JfnlrVb1S5RzMm4O4aeM-0dbk6qsnFgZUMsoqesYcCuGOWx2VVJqcmSaTqNMxujlOhS67vW4cudvPsz6OFk_HNgRntjgvDK20xqE3Kl0Z80OhqYOHYi9CHqAFDYlpGdGoNcFAsuacJMgZgpCDOF6sO7-S2Tho7ktos3OpwUrWaqCgRomiUqlfHfxXMM9eF9B8SF-J_PenH7YK_hweHZp5Pi5Gh4_BIeJrQK6o16G9CbTa_8Jty332fn1fRVu6IYfL1rhP4CpF5gLg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-xADA4elYM-uOpRvDsPPnkotp3Zdvoo6qIoi-CFfStzhQPHumxXf79JL7sqKojPmWmHSWaSTJIvAAeSQNI1Cq9Q3AYCbdZA8VQFsc7QmEgcT5ypmk2k_b4cDLLrps9p2Wa7tyHJuqaBUJqK8dHQ-qNp4Rt6LeQGy0BQiED-gjlBYGjkrt_cT65iHlct6UJ0MuhBYtCGNT_6xFvFNLU23wVIK73T6_x4xcuw1Jic7LiWkRWYccUqdBrzkzWHu1yFxVfYhH_AH1s1pLuQ2bppPWtSuR6QHJDyswwtS8qtrSs52aNnRQ28oUasRoguGb3zsqeCnu4KpqhaBZ18VhKcaDVrDe56Z7cn50HTlCEwXIhxoI0WzqeKa5MYz5GjXksnuk74yMWZDrvWo9PlUPNb4aRKfWZUZKX1hCSHx30dZnExbgOYVk5rz510JhVK-0wqtLe0Crs6iiz3mxC2HMlNg1hOjTP-51OsZdrVHHc1p13N5SYcTqYMa7iOrwbvtGzOm5Nb5igxSRrLREQfk9FdpGLcEGf_bbk-JX_6r61vjd6H39envfzqon-5DQsxSU2V1rYDs-PRk9uFefM8_leO9ipxfwHISABj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+dynamic+programming-based+stabilization+of+nonlinear+systems+with+unknown+actuator+saturation&rft.jtitle=Nonlinear+dynamics&rft.au=Zhao%2C+Bo&rft.au=Jia%2C+Lihao&rft.au=Xia%2C+Hongbing&rft.au=Li%2C+Yuanchun&rft.date=2018-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=93&rft.issue=4&rft.spage=2089&rft.epage=2103&rft_id=info:doi/10.1007%2Fs11071-018-4309-8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon