A time variant multi-objective particle swarm optimization algorithm for solving fuzzy number linear programming problems using modified Kerre’s method

Recently, Ghanbari et al. (IEEE Transactions on Fuzzy Systems 27:1286–1294, 2019) have proposed modified Kerre’s method for comparison of LR fuzzy numbers. Here, we make use of the modified Kerre’s method to solve fuzzy linear programming problems with LR coefficients. In an approach to solve a fuzz...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Opsearch Ročník 58; číslo 2; s. 403 - 424
Hlavní autoři: Ghanbari, Reza, Ghorbani-Moghadam, Khatere, Mahdavi-Amiri, Nezam
Médium: Journal Article
Jazyk:angličtina
Vydáno: New Delhi Springer India 01.06.2021
Springer Nature B.V
Témata:
ISSN:0030-3887, 0975-0320
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Recently, Ghanbari et al. (IEEE Transactions on Fuzzy Systems 27:1286–1294, 2019) have proposed modified Kerre’s method for comparison of LR fuzzy numbers. Here, we make use of the modified Kerre’s method to solve fuzzy linear programming problems with LR coefficients. In an approach to solve a fuzzy linear program with fuzzy LR coefficients, a bi-objective optimization problem is formulated. For the associated bi-objective optimization problem, we present a time variant multi-objective particle swarm optimization (TV-MOPSO) algorithm to compute the Pareto front, a set containing a large number of solutions. Contrary to methods that change the fuzzy optimization problem to a crisp problem by use of a ranking function, using modified Kerre’s method, the fuzzy optimization problem is solved directly, with no need for changing it to a crisp program. A comparative investigation using illustrative examples with triangular fuzzy coefficients show the effectiveness of the proposed algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0030-3887
0975-0320
DOI:10.1007/s12597-020-00482-5