Approaching the solving of constrained variational inequalities via penalty term-based dynamical systems
We investigate the existence and uniqueness of (locally) absolutely continuous trajectories of a penalty term-based dynamical system associated to a constrained variational inequality expressed as a monotone inclusion problem. Relying on Lyapunov analysis and on the ergodic continuous version of the...
Gespeichert in:
| Veröffentlicht in: | Journal of mathematical analysis and applications Jg. 435; H. 2; S. 1688 - 1700 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
15.03.2016
|
| Schlagworte: | |
| ISSN: | 0022-247X, 1096-0813 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We investigate the existence and uniqueness of (locally) absolutely continuous trajectories of a penalty term-based dynamical system associated to a constrained variational inequality expressed as a monotone inclusion problem. Relying on Lyapunov analysis and on the ergodic continuous version of the celebrated Opial Lemma we prove weak ergodic convergence of the orbits to a solution of the constrained variational inequality under investigation. If one of the operators involved satisfies stronger monotonicity properties, then strong convergence of the trajectories can be shown. |
|---|---|
| ISSN: | 0022-247X 1096-0813 |
| DOI: | 10.1016/j.jmaa.2015.11.032 |