Approaching the solving of constrained variational inequalities via penalty term-based dynamical systems
We investigate the existence and uniqueness of (locally) absolutely continuous trajectories of a penalty term-based dynamical system associated to a constrained variational inequality expressed as a monotone inclusion problem. Relying on Lyapunov analysis and on the ergodic continuous version of the...
Uložené v:
| Vydané v: | Journal of mathematical analysis and applications Ročník 435; číslo 2; s. 1688 - 1700 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
15.03.2016
|
| Predmet: | |
| ISSN: | 0022-247X, 1096-0813 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We investigate the existence and uniqueness of (locally) absolutely continuous trajectories of a penalty term-based dynamical system associated to a constrained variational inequality expressed as a monotone inclusion problem. Relying on Lyapunov analysis and on the ergodic continuous version of the celebrated Opial Lemma we prove weak ergodic convergence of the orbits to a solution of the constrained variational inequality under investigation. If one of the operators involved satisfies stronger monotonicity properties, then strong convergence of the trajectories can be shown. |
|---|---|
| ISSN: | 0022-247X 1096-0813 |
| DOI: | 10.1016/j.jmaa.2015.11.032 |