Data-driven remaining useful life estimation of subsea pipelines under effect of interacting corrosion defects

This research presents a method for analyzing the Remaining Useful Life (RUL) of pipelines impacted by corrosion defects through the integration of Latin Hypercube Sampling (LHS), Finite Element Analysis (FEA), and Machine Learning (ML). A dataset consisting of 200 samples and 8 random variables is...

Full description

Saved in:
Bibliographic Details
Published in:Applied ocean research Vol. 155; p. 104438
Main Authors: Hosseinzadeh, Soheyl, Bahaari, Mohammadreza, Abyani, Mohsen, Taheri, Milad
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.02.2025
Subjects:
ISSN:0141-1187
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This research presents a method for analyzing the Remaining Useful Life (RUL) of pipelines impacted by corrosion defects through the integration of Latin Hypercube Sampling (LHS), Finite Element Analysis (FEA), and Machine Learning (ML). A dataset consisting of 200 samples and 8 random variables is generated, representing various pipeline and corrosion defect specifications. Finite element modeling is performed using ABAQUS software and Python scripting to calculate the Failure Pressure and failure Maximum Von-Mises Stress (MVMS) under varying conditions of longitudinal spacing (Sl) and Internal Pressure (IP). This model generates a dataset that includes internal pressure, longitudinal spacing, and other relevant variables for the training and evaluation of ML models. Model performance is assessed through grid search and overfitting checks. A corrosion growth algorithm is incorporated to update input data dynamically, allowing for the prediction of future MVMS values and associated failure probabilities. The Probability of Failure (POF) is calculated, and Probability Density Functions (PDFs) for failure pressure are analyzed using standard distributions and Kolmogorov-Smirnov tests to identify the most accurate model. This approach provides a robust framework for predicting RUL by evaluating pipeline failures and probabilistic failure pressure over time, contributing valuable insights into the reliability and safety of pipeline systems under various conditions and time intervals.
AbstractList This research presents a method for analyzing the Remaining Useful Life (RUL) of pipelines impacted by corrosion defects through the integration of Latin Hypercube Sampling (LHS), Finite Element Analysis (FEA), and Machine Learning (ML). A dataset consisting of 200 samples and 8 random variables is generated, representing various pipeline and corrosion defect specifications. Finite element modeling is performed using ABAQUS software and Python scripting to calculate the Failure Pressure and failure Maximum Von-Mises Stress (MVMS) under varying conditions of longitudinal spacing (Sl) and Internal Pressure (IP). This model generates a dataset that includes internal pressure, longitudinal spacing, and other relevant variables for the training and evaluation of ML models. Model performance is assessed through grid search and overfitting checks. A corrosion growth algorithm is incorporated to update input data dynamically, allowing for the prediction of future MVMS values and associated failure probabilities. The Probability of Failure (POF) is calculated, and Probability Density Functions (PDFs) for failure pressure are analyzed using standard distributions and Kolmogorov-Smirnov tests to identify the most accurate model. This approach provides a robust framework for predicting RUL by evaluating pipeline failures and probabilistic failure pressure over time, contributing valuable insights into the reliability and safety of pipeline systems under various conditions and time intervals.
ArticleNumber 104438
Author Abyani, Mohsen
Bahaari, Mohammadreza
Hosseinzadeh, Soheyl
Taheri, Milad
Author_xml – sequence: 1
  givenname: Soheyl
  orcidid: 0009-0009-1932-8069
  surname: Hosseinzadeh
  fullname: Hosseinzadeh, Soheyl
– sequence: 2
  givenname: Mohammadreza
  orcidid: 0000-0002-6506-0130
  surname: Bahaari
  fullname: Bahaari, Mohammadreza
  email: mbahari@ut.ac.ir
– sequence: 3
  givenname: Mohsen
  surname: Abyani
  fullname: Abyani, Mohsen
– sequence: 4
  givenname: Milad
  surname: Taheri
  fullname: Taheri, Milad
BookMark eNp9kM9qwzAMxn3oYO22F9jJL5DOTtImgV1G9xcKu_RuFFkeKqkTbLewt1-y7rRDLxJI-n3i-xZi5ntPQtxrtdRKrx_2Sxj6sMxVvhoHZVnUMzFXutSZ1nV1LRYx7pXSeb2u58I_Q4LMBj6Rl4EOwJ79lzxGcsdOduxIUkx8gMS9l72T8dhGAjnwQB17ivLoLQVJzhGm6YB9ogCYJhnsQ-jjRFqa9vFWXDnoIt399Ruxe33Zbd6z7efbx-Zpm2FRlimDqikdNsq11KBbFa4GaHRbgyVrV3kDCLpB0lU71qqpsFRt7lyFBa0r1MWNqM-yOL6PgZxBTr8WUgDujFZmisrszRSVmaIy56hGNP-HDmG0H74vQ49niEZPJ6ZgIjJ5JMthtG1sz5fwH7I6i0I
CitedBy_id crossref_primary_10_1016_j_oceaneng_2025_122523
crossref_primary_10_1016_j_ress_2025_111111
Cites_doi 10.1016/j.engfailanal.2020.104397
10.1177/0309324718782632
10.1016/j.ijpvp.2021.104471
10.1016/j.apenergy.2021.116452
10.1016/j.ijpvp.2021.104449
10.1016/j.engstruct.2019.02.010
10.1016/j.oceaneng.2024.118625
10.1515/corrrev-2015-0046
10.1080/17445302.2020.1735834
10.1016/j.jpse.2022.100053
10.1016/j.advengsoft.2017.05.006
10.1016/j.corsci.2009.05.019
10.3390/machines12010042
10.1111/ffe.12370
10.1080/15732479.2019.1692363
10.3390/s24020704
10.54097/1th80z38
10.1016/j.ijpvp.2016.01.002
10.14495/jsiaml.14.73
10.1108/IJSI-11-2020-0112
10.3390/bdcc3020028
10.1016/j.ijpvp.2019.03.001
10.1080/10916466.2013.842586
10.1002/eqe.141
10.1080/15732479.2015.1113300
10.1088/2515-7620/acd0f7
10.1016/j.apor.2015.07.002
10.3390/jmse9030281
10.3390/en15207460
10.1016/S2238-7854(12)70028-5
10.23940/ijpe.21.07.p7.627637
10.1016/j.engfailanal.2018.05.010
10.1016/j.jlp.2017.02.025
10.1016/j.corsci.2009.06.014
10.1016/j.engfailanal.2021.105810
10.3390/su12176749
10.3390/ma15062259
10.3390/pr11113134
10.1016/j.psep.2022.12.054
10.1007/s42452-020-2994-7
10.4028/www.scientific.net/AMM.318.562
10.5006/1.3319138
10.1016/j.psep.2021.07.031
10.1016/j.corsci.2013.04.020
10.1037/h0060275
10.1016/j.asoc.2016.10.040
10.1016/j.oceaneng.2022.111382
10.1016/j.ndteint.2019.102134
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.apor.2025.104438
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
ExternalDocumentID 10_1016_j_apor_2025_104438
S0141118725000264
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEP
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSZ
T5K
TN5
UAO
WUQ
XPP
ZMT
~02
~A~
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
GROUPED_DOAJ
~HD
ID FETCH-LOGICAL-c344t-a794fc90fbe9cf53f8aa91b8adedd529aca19ce17b9ce797c40b2ff7c3e67c13
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001421632000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0141-1187
IngestDate Sat Nov 29 08:17:19 EST 2025
Tue Nov 18 21:51:00 EST 2025
Sun Apr 06 06:53:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords ECDF
ANN
DTR
Random sampling
CDF
LR
Pipeline integrity management
ILI
Structural reliability
GPR
KNN
SVM
Remaining useful life
K-S
MLP
Latin hypercube sampling
PDF
LHS
MAOP
ML
FEA
MIC
POF
IP
AI
RUL
MFL-TFI
Offshore pipeline engineering
MVMS
PSO
FEM
PCA
SGD
SCC
Machine learning
PIMS
TBRA
MTTF
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-a794fc90fbe9cf53f8aa91b8adedd529aca19ce17b9ce797c40b2ff7c3e67c13
ORCID 0000-0002-6506-0130
0009-0009-1932-8069
OpenAccessLink http://dx.doi.org/10.1016/j.apor.2025.104438
ParticipantIDs crossref_citationtrail_10_1016_j_apor_2025_104438
crossref_primary_10_1016_j_apor_2025_104438
elsevier_sciencedirect_doi_10_1016_j_apor_2025_104438
PublicationCentury 2000
PublicationDate February 2025
2025-02-00
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationTitle Applied ocean research
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ma, Zhang, Wang, Ai, Zheng (bib0046) 2023; 171
Khalaj Khalajestani, Bahaari, Salehi, Shahbazi (bib0034) 2015; 53
Caleyo, Velázquez, Valor, Hallen (bib0019) 2009; 51
Li, Huang, Zeng, Sun (bib0039) 2022
Ossai (bib0052) 2019
Kumar, Mostafaei, Piedade, Devi, Karuppanan, Ovinis (bib0036) 2022; 15
Li, Bai, Su, Li (bib0040) 2016; 138
Yazdi, Khan, Abbassi, Quddus (bib0071) 2022; 2
Xu, Li, Choung, Lee (bib0068) 2017; 112
Abyani, Bahaari (bib0002) 2020; 0
Hosseinzadeh, Bahaari, Abyani (bib0031) 2024
Bhandari, Lau, Abbassi, Garaniya, Ojeda, Lisson, Khan (bib0017) 2017; 47
Obanijesu, Pareek, Tade (bib0050) 2014; 32
Wang, Yajima, Liang, Castaneda (bib0063) 2016; 12
Aulia, Tan, Sriramula (bib0011) 2021; 16
Amaya-Gómez, Riascos-Ochoa, Muñoz, Bastidas-Arteaga, Schoefs, Sánchez-Silva (bib0008) 2019; 172
Beale, Karpe, Jadhav, Muster, Palombo (bib0014) 2016; 34
Hadjisolomou, Stefanidis, Herodotou, Michaelides, Papatheodorou, Papastergiadou (bib0029) 2021
Fushiki (bib0027) 2009
Mohd, Lee, Cui, Paik (bib0047) 2015
Zhang, Feng (bib0077) 2013; 318
Xiang, Zhou (bib0065) 2020; 16
Yuan, Zhang, Ren (bib0072) 2024; 10
Li, Zhang, Khan, Han (bib0042) 2021; 153
Shadabfar, Mahsuli, Xue, Zhang, Wu (bib0059) 2023; 9
.
Arumugam, Rosli, Karuppanan, Ovinis, Lo (bib0009) 2020; 2
Fu, Wang, Zhao (bib0026) 2024; 24
Hosseinzadeh, Bahaari, Abyani (bib0030) 2024
Zhang, Zhou, Qin (bib0076) 2013; 73
Zakikhani, Zayed (bib0073) 2020; 235
Wang (bib0064) 2023
Kumar, Lo, Arumugam, Karuppanan (bib0037) 2021
Hou, Wang, Zhang, Qin (bib0032) 2019; 12
Bruère, Bouchonneau, Motta, Afonso, Willmersdorf, Lyra, Torres, Andrade, Cunha (bib0018) 2019; 41
(bib0010) 2009
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bib0055) 2011; 12
Ahuja, Shukla, Ravulakollu (bib0007) 2021; 17
Ossai (bib0051) 2017; 2
Abyani, Bahaari, Zarrin, Nasseri (bib0004) 2022; 254
Qi, Liu, Zhao, Xia (bib0056) 2023
Vamvatsikos, Allin Cornell (bib0061) 2002; 31
Ossai (bib0053) 2020; 110
Adumene, Islam, Dick, Zarei, Inegiyemiema, Yang (bib0006) 2022; 15
Lo, Karuppanan, Ovinis (bib0044) 2021; 9
Hussain, Zhang, Chaudhry, Jamil, Kausar, Hussain (bib0033) 2024; 12
Benjamin, Vieira, Diniz, Freire, De Andrade (bib0016) 2008; 3
Mondal, Dhar (bib0049) 2016
Papavinasam, Revie, Friesen, Doiron, Panneerselvam (bib0054) 2006; 24
Zhang, Tan, Xiao, Zhang, Ariffin (bib0078) 2016; 39
Zhang, Wen, Li, Chen, Ye, Fu, Livingood (bib0075) 2021; 285
Dudzik (bib0024) 2020
Zhang, Sun, Zhang, Zhang, Li, Zhai (bib0074) 2023; 11
Yamaguchi, A., & Saito, A. (2021).
Abyani, Bahaari (bib0001) 2020; 181
Yang, Wang, Zhong, Zhang, He, Chen (bib0070) 2021; 12
Bai, Yu (bib0012) 2011; 4
Goodman (bib0028) 1954; 51
Romanoff (bib0058) 1957
Rachman, Zhang, Chandima Ratnayake (bib0057) 2021
Soomro, Mokhtar, Kurnia, Lashari, Lu, Sambo (bib0060) 2022; 131
Xie, Tian (bib0066) 2018; 92
Mondal, Dhar (bib0048) 2019; 186
Layouni, Hamdi, Tahar (bib0038) 2017; 52
Xie, Wang, Xiong, Zhao, Pei (bib0067) 2022
Caleyo, Velázquez, Valor, Hallen (bib0020) 2009; 51
(bib0023) 2010
Cunha Lins, Magalhães Ferreira, Saliba (bib0022) 2012; 1
Lo, Karuppanan, Ovinis (bib0045) 2021; 9
Abyani, Bahaari (bib0003) 2021; 193
Colindres, Méndez, Velázquez, Cabrera-Sierra, Angeles-Herrera (bib0021) 2020
Ben Seghier, M.el A., Bettayeb, M., Correia, J., De Jesus, A., & Calçada, R. (2018). Structural reliability of corroded pipeline using the so-called separable Monte Carlo method, 53(8), 730–737.
El-Sinawi, Al Ghailani (bib0025) 2015
Khanh, Ngan (bib0035) 2023
Velázquez, Caleyo, Valor, Hallen (bib0062) 2009; 65
Bastian, N, Ranjith, Jiji (bib0013) 2019; 107
Abyani, Karimi, Shahgholian-Ghahfarokhi (bib0005) 2024; 209
Abyani (10.1016/j.apor.2025.104438_bib0003) 2021; 193
Wang (10.1016/j.apor.2025.104438_bib0063) 2016; 12
Zhang (10.1016/j.apor.2025.104438_bib0078) 2016; 39
Adumene (10.1016/j.apor.2025.104438_bib0006) 2022; 15
Yuan (10.1016/j.apor.2025.104438_bib0072) 2024; 10
Xie (10.1016/j.apor.2025.104438_bib0067) 2022
10.1016/j.apor.2025.104438_bib0015
Hosseinzadeh (10.1016/j.apor.2025.104438_bib0030) 2024
Amaya-Gómez (10.1016/j.apor.2025.104438_bib0008) 2019; 172
Bastian (10.1016/j.apor.2025.104438_bib0013) 2019; 107
Ossai (10.1016/j.apor.2025.104438_bib0051) 2017; 2
Papavinasam (10.1016/j.apor.2025.104438_bib0054) 2006; 24
Ahuja (10.1016/j.apor.2025.104438_bib0007) 2021; 17
Shadabfar (10.1016/j.apor.2025.104438_bib0059) 2023; 9
Xie (10.1016/j.apor.2025.104438_bib0066) 2018; 92
Lo (10.1016/j.apor.2025.104438_bib0044) 2021; 9
Hosseinzadeh (10.1016/j.apor.2025.104438_bib0031) 2024
Goodman (10.1016/j.apor.2025.104438_bib0028) 1954; 51
Hou (10.1016/j.apor.2025.104438_bib0032) 2019; 12
Layouni (10.1016/j.apor.2025.104438_bib0038) 2017; 52
Zhang (10.1016/j.apor.2025.104438_bib0076) 2013; 73
Dudzik (10.1016/j.apor.2025.104438_bib0024) 2020
Ossai (10.1016/j.apor.2025.104438_bib0053) 2020; 110
Abyani (10.1016/j.apor.2025.104438_bib0001) 2020; 181
Li (10.1016/j.apor.2025.104438_bib0040) 2016; 138
Mondal (10.1016/j.apor.2025.104438_bib0048) 2019; 186
Kumar (10.1016/j.apor.2025.104438_bib0037) 2021
Mohd (10.1016/j.apor.2025.104438_bib0047) 2015
Wang (10.1016/j.apor.2025.104438_bib0064) 2023
Cunha Lins (10.1016/j.apor.2025.104438_bib0022) 2012; 1
Kumar (10.1016/j.apor.2025.104438_bib0036) 2022; 15
Velázquez (10.1016/j.apor.2025.104438_bib0062) 2009; 65
Qi (10.1016/j.apor.2025.104438_bib0056) 2023
Aulia (10.1016/j.apor.2025.104438_bib0011) 2021; 16
El-Sinawi (10.1016/j.apor.2025.104438_bib0025) 2015
Fu (10.1016/j.apor.2025.104438_bib0026) 2024; 24
Rachman (10.1016/j.apor.2025.104438_bib0057) 2021
Vamvatsikos (10.1016/j.apor.2025.104438_bib0061) 2002; 31
Xiang (10.1016/j.apor.2025.104438_bib0065) 2020; 16
Caleyo (10.1016/j.apor.2025.104438_bib0019) 2009; 51
(10.1016/j.apor.2025.104438_bib0010) 2009
Li (10.1016/j.apor.2025.104438_bib0039) 2022
Xu (10.1016/j.apor.2025.104438_bib0068) 2017; 112
Bruère (10.1016/j.apor.2025.104438_bib0018) 2019; 41
Lo (10.1016/j.apor.2025.104438_bib0045) 2021; 9
Ossai (10.1016/j.apor.2025.104438_bib0052) 2019
Romanoff (10.1016/j.apor.2025.104438_bib0058) 1957
Hussain (10.1016/j.apor.2025.104438_bib0033) 2024; 12
Abyani (10.1016/j.apor.2025.104438_bib0005) 2024; 209
Li (10.1016/j.apor.2025.104438_bib0042) 2021; 153
Hadjisolomou (10.1016/j.apor.2025.104438_bib0029) 2021
Bhandari (10.1016/j.apor.2025.104438_bib0017) 2017; 47
Yazdi (10.1016/j.apor.2025.104438_bib0071) 2022; 2
Khanh (10.1016/j.apor.2025.104438_bib0035) 2023
Arumugam (10.1016/j.apor.2025.104438_bib0009) 2020; 2
Beale (10.1016/j.apor.2025.104438_bib0014) 2016; 34
Yang (10.1016/j.apor.2025.104438_bib0070) 2021; 12
Bai (10.1016/j.apor.2025.104438_bib0012) 2011; 4
Mondal (10.1016/j.apor.2025.104438_bib0049) 2016
Zhang (10.1016/j.apor.2025.104438_bib0074) 2023; 11
Obanijesu (10.1016/j.apor.2025.104438_bib0050) 2014; 32
Fushiki (10.1016/j.apor.2025.104438_bib0027) 2009
Khalaj Khalajestani (10.1016/j.apor.2025.104438_bib0034) 2015; 53
Colindres (10.1016/j.apor.2025.104438_bib0021) 2020
Soomro (10.1016/j.apor.2025.104438_bib0060) 2022; 131
Zakikhani (10.1016/j.apor.2025.104438_bib0073) 2020; 235
Benjamin (10.1016/j.apor.2025.104438_bib0016) 2008; 3
Zhang (10.1016/j.apor.2025.104438_bib0077) 2013; 318
Abyani (10.1016/j.apor.2025.104438_bib0002) 2020; 0
10.1016/j.apor.2025.104438_bib0069
Abyani (10.1016/j.apor.2025.104438_bib0004) 2022; 254
Ma (10.1016/j.apor.2025.104438_bib0046) 2023; 171
(10.1016/j.apor.2025.104438_bib0023) 2010
Caleyo (10.1016/j.apor.2025.104438_bib0020) 2009; 51
Pedregosa (10.1016/j.apor.2025.104438_bib0055) 2011; 12
Zhang (10.1016/j.apor.2025.104438_bib0075) 2021; 285
References_xml – year: 2023
  ident: bib0035
  article-title: Machine learning-based pedo transfer function for estimating the soil compression index
  publication-title: J. Sci. Technol. Civil Eng. (Stce) - Huce
– year: 2016
  ident: bib0049
  article-title: Burst pressure assessment for pipelines with multiple corrosion defects
  publication-title: Canadian Soc. Civil Eng.
– volume: 15
  start-page: 2259
  year: 2022
  ident: bib0036
  article-title: Artificial neural network-based failure pressure prediction of API 5L X80 pipeline with circumferentially aligned interacting corrosion defects subjected to combined loadings
  publication-title: Materials. (Basel)
– year: 2021
  ident: bib0037
  article-title: A review of finite element analysis and artificial neural networks as failure pressure prediction tools for corroded pipelines
  publication-title: Materials. (Basel)
– reference: Ben Seghier, M.el A., Bettayeb, M., Correia, J., De Jesus, A., & Calçada, R. (2018). Structural reliability of corroded pipeline using the so-called separable Monte Carlo method, 53(8), 730–737.
– year: 2020
  ident: bib0024
  article-title: Towards characterization of indoor environment in smart buildings: modelling PMV index using neural network with one hidden layer
  publication-title: Sustainability.
– volume: 138
  start-page: 8
  year: 2016
  end-page: 18
  ident: bib0040
  article-title: Effect of interaction between corrosion defects on failure pressure of thin wall steel pipeline
  publication-title: Int. J. Pressure Vessel. Pip.
– volume: 9
  start-page: 281
  year: 2021
  ident: bib0045
  article-title: Failure pressure prediction of a corroded pipeline with longitudinally interacting corrosion defects subjected to combined loadings using FEM and ANN
  publication-title: J. Mar. Sci. Eng.
– year: 2023
  ident: bib0056
  article-title: Prediction model and demonstration of regional agricultural carbon emissions based on PCA-GS-KNN: a case study of Zhejiang Province, China
  publication-title: Environ. Res. Commun.
– year: 2023
  ident: bib0064
  article-title: Theoretical evaluation methods for remaining strength of seawater pipelines with corrosion defects
  publication-title: J. Phys. Conf. Ser.
– volume: 17
  start-page: 627
  year: 2021
  ident: bib0007
  article-title: Optimized deep learning framework for detecting pitting corrosion based on image segmentation
  publication-title: Int. J. Performab. Eng.
– volume: 32
  start-page: 2538
  year: 2014
  end-page: 2548
  ident: bib0050
  article-title: Modeling the contribution of gas hydrate to corrosion rate along the subsea pipelines
  publication-title: Pet. Sci. Technol.
– year: 2019
  ident: bib0052
  article-title: A data-driven machine learning approach for corrosion risk assessment—a comparative study
  publication-title: Big. Data Cogn. Comput.
– volume: 2
  year: 2022
  ident: bib0071
  article-title: Resilience assessment of a subsea pipeline using dynamic Bayesian network
  publication-title: J. Pipeline Sci. Eng.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib0055
  article-title: Scikit-learn: machine learning in {P}ython
  publication-title: J. Mach. Learn. Res.
– volume: 153
  start-page: 413
  year: 2021
  end-page: 421
  ident: bib0042
  article-title: A data-driven corrosion prediction model to support digitization of subsea operations
  publication-title: Process Saf. Environ. Protect.
– volume: 92
  start-page: 222
  year: 2018
  end-page: 239
  ident: bib0066
  article-title: A review on pipeline integrity management utilizing in-line inspection data
  publication-title: Eng. Fail. Anal.
– volume: 186
  start-page: 43
  year: 2019
  end-page: 51
  ident: bib0048
  article-title: Burst pressure of corroded pipelines considering combined axial forces and bending moments
  publication-title: Eng. Struct.
– year: 1957
  ident: bib0058
  article-title: Underground Corrosion
– volume: 2
  year: 2017
  ident: bib0051
  article-title: Finite element modelling and retained life estimation of corroded pipelines in consideration of burst pressures—A fractural mechanics approach
  publication-title: Infrastructures. (Basel)
– volume: 110
  year: 2020
  ident: bib0053
  article-title: Corrosion defect modelling of aged pipelines with a feed-forward multi-layer neural network for leak and burst failure estimation
  publication-title: Eng. Fail. Anal.
– reference: Yamaguchi, A., & Saito, A. (2021).
– volume: 171
  start-page: 71
  year: 2023
  end-page: 86
  ident: bib0046
  article-title: Advances in corrosion growth modeling for oil and gas pipelines: a review
  publication-title: Process Saf. Environ. Protect.
– volume: 285
  year: 2021
  ident: bib0075
  article-title: A review of machine learning in building load prediction
  publication-title: Appl. Energy
– volume: 12
  start-page: 1281
  year: 2016
  end-page: 1294
  ident: bib0063
  article-title: Reliability-based temporal and spatial maintenance strategy for integrity management of corroded underground pipelines
  publication-title: Struct. Infrastruct. Eng.
– year: 2015
  ident: bib0025
  article-title: On modeling the dynamics of pipelines: finite element approach
  publication-title: 6th International Conference on Modeling, Simulation, and Applied Optimization, ICMSAO 2015 - Dedicated to the Memory of Late Ibrahim El-Sadek
– volume: 0
  start-page: 1
  year: 2020
  end-page: 14
  ident: bib0002
  article-title: Effects of correlation between the adjacent components on time dependent failure probability of corroded pipelines
  publication-title: Struct. Infrastruct. Eng.
– year: 2024
  ident: bib0030
  article-title: Machine Learning Models Development to Predict Corroded Pipeline Behavior Considering Defects Interaction
– volume: 12
  year: 2019
  ident: bib0032
  article-title: Non-probabilistic time-varying reliability-based analysis of corroded pipelines considering the interaction of multiple uncertainty variables
  publication-title: Energies. (Basel)
– volume: 12
  year: 2024
  ident: bib0033
  article-title: Review of prediction of stress corrosion cracking in gas pipelines using machine learning
  publication-title: Machines
– volume: 4
  start-page: 329
  year: 2011
  end-page: 333
  ident: bib0012
  article-title: Pipeline on-bottom stability analysis based on FEM model
  publication-title: Proc. Int. Conf. Offshore Mech. Arctic Eng. - OMAE
– year: 2021
  ident: bib0057
  article-title: Applications of machine learning in Pipeline integrity management: a State-of-the-art review
  publication-title: Int. J. Pressure Vessel. Pip.
– volume: 16
  start-page: 1161
  year: 2020
  end-page: 1176
  ident: bib0065
  article-title: Integrated pipeline corrosion growth modeling and reliability analysis using dynamic Bayesian network and parameter learning technique
  publication-title: Struct. Infrastruct. Eng.
– volume: 15
  start-page: 7460
  year: 2022
  ident: bib0006
  article-title: Influence-based consequence assessment of subsea pipeline failure under stochastic degradation
  publication-title: Energies. (Basel)
– year: 2009
  ident: bib0027
  article-title: Estimation of prediction error by using K-fold cross-validation
  publication-title: Stat. Comput.
– volume: 31
  start-page: 491
  year: 2002
  end-page: 514
  ident: bib0061
  article-title: Incremental dynamic analysis
  publication-title: Earthq. Eng. Struct. Dyn.
– volume: 24
  start-page: 173
  year: 2006
  end-page: 230
  ident: bib0054
  article-title: Review of models to predict internal pitting corrosion of oil and gas pipelines
  publication-title: Corros. Rev.
– reference: .
– volume: 24
  year: 2024
  ident: bib0026
  article-title: Experimental investigation of pore pressure on Sandy seabed around submarine pipeline under irregular wave loading
  publication-title: Sensors
– volume: 11
  start-page: 3134
  year: 2023
  ident: bib0074
  article-title: Study on assessment method of failure pressure for pipelines with colony corrosion defects based on failure location
  publication-title: Processes
– year: 2010
  ident: bib0023
  article-title: Recommended Practice DNV-RP-F101 Corroded Pipelines
– volume: 131
  year: 2022
  ident: bib0060
  article-title: Integrity assessment of corroded oil and gas pipelines using machine learning: a systematic review
  publication-title: Eng. Fail. Anal.
– volume: 73
  start-page: 309
  year: 2013
  end-page: 320
  ident: bib0076
  article-title: Inverse Gaussian process-based corrosion growth model for energy pipelines considering the sizing error in inspection data
  publication-title: Corros. Sci.
– year: 2021
  ident: bib0029
  article-title: Modelling freshwater eutrophication with limited limnological data using artificial neural networks
  publication-title: Water. (Basel)
– volume: 235
  start-page: 374
  year: 2020
  end-page: 390
  ident: bib0073
  article-title: A failure prediction model for corrosion in gas transmission pipelines
  publication-title: Proc. Inst. Mech. Eng. Part O J. Risk Reliab.
– volume: 9
  year: 2021
  ident: bib0044
  article-title: Failure pressure prediction of a corroded pipeline with longitudinally interacting corrosion defects subjected to combined loadings using fem and ann
  publication-title: J. Mar. Sci. Eng.
– volume: 39
  start-page: 453
  year: 2016
  end-page: 466
  ident: bib0078
  article-title: Failure assessment on offshore girth welded pipelines due to corrosion defects
  publication-title: Fatigue Fract. Eng. Mater. Struct.
– volume: 52
  start-page: 247
  year: 2017
  end-page: 261
  ident: bib0038
  article-title: Detection and sizing of metal-loss defects in oil and gas pipelines using pattern-adapted wavelets and machine learning
  publication-title: Appl. Soft. Comput.
– year: 2020
  ident: bib0021
  article-title: Effects of depth in external and internal corrosion defects on failure pressure predictions of oil and gas pipelines using finite element models
  publication-title: Adv. Struct. Eng.
– volume: 12
  start-page: 854
  year: 2021
  end-page: 863
  ident: bib0070
  article-title: Reliability analysis of gas pipeline with corrosion defect based on finite element method
  publication-title: Int. J. Struct. Integrit.
– volume: 181
  year: 2020
  ident: bib0001
  article-title: A comparative reliability study of corroded pipelines based on Monte Carlo Simulation and Latin Hypercube sampling methods
  publication-title: Int. J. Pressure Vessel. Pip.
– year: 2009
  ident: bib0010
  article-title: Manual for determining the remaining strength of corroded pipelines
  publication-title: American Society of Mechanical Engineers (ASME)
– volume: 9
  year: 2023
  ident: bib0059
  article-title: Time-variant system reliability analysis of concrete sewer pipes under corrosion considering multiple failure modes
  publication-title: ASCE-ASME J. Risk Uncertain. Eng. Syst., Part A: Civil Eng.
– volume: 112
  start-page: 255
  year: 2017
  end-page: 266
  ident: bib0068
  article-title: Corroded pipeline failure analysis using artificial neural network scheme
  publication-title: Adv. Eng. Softw.
– volume: 53
  start-page: 15
  year: 2015
  end-page: 22
  ident: bib0034
  article-title: Predicting the limit pressure capacity of pipe elbows containing single defects
  publication-title: Appl. Ocean Res.
– volume: 10
  start-page: 118
  year: 2024
  end-page: 130
  ident: bib0072
  article-title: Application of improved support vector machine in predicting failure pressure of oil and gas pipelines with internal corrosion defects
  publication-title: Academic Journal of Science and Technology
– volume: 3
  start-page: 403
  year: 2008
  end-page: 417
  ident: bib0016
  article-title: Burst tests on pipeline containing interacting corrosion defects
  publication-title: Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE
– volume: 172
  start-page: 261
  year: 2019
  end-page: 271
  ident: bib0008
  article-title: Modeling of pipeline corrosion degradation mechanism with a Lévy Process based on ILI (In-Line) inspections
  publication-title: Int. J. Pressure Vessel. Pip.
– volume: 51
  start-page: 160
  year: 1954
  end-page: 168
  ident: bib0028
  article-title: Kolmogorov-Smirnov tests for psychological research
  publication-title: Psychol. Bull.
– volume: 47
  start-page: 10
  year: 2017
  end-page: 21
  ident: bib0017
  article-title: Accelerated pitting corrosion test of 304 stainless steel using ASTM G48; experimental investigation and concomitant challenges
  publication-title: J. Loss. Prev. Process. Ind.
– volume: 254
  year: 2022
  ident: bib0004
  article-title: Predicting failure pressure of the corroded offshore pipelines using an efficient finite element based algorithm and machine learning techniques
  publication-title: Ocean Eng.
– volume: 51
  start-page: 1925
  year: 2009
  end-page: 1934
  ident: bib0019
  article-title: Probability distribution of pitting corrosion depth and rate in underground pipelines: a Monte Carlo study
  publication-title: Corros. Sci.
– year: 2022
  ident: bib0067
  article-title: A crack propagation method for pipelines with interacting corrosion and crack defects
  publication-title: Sensors
– volume: 193
  year: 2021
  ident: bib0003
  article-title: A new approach for finite element based reliability evaluation of offshore corroded pipelines
  publication-title: Int. J. Pressure Vessel. Pip.
– volume: 65
  start-page: 332
  year: 2009
  end-page: 342
  ident: bib0062
  article-title: Predictive model for pitting corrosion in buried oil and gas pipelines
  publication-title: Corrosion
– reference: .
– volume: 2
  year: 2020
  ident: bib0009
  article-title: Burst capacity analysis of pipeline with multiple longitudinally aligned interacting corrosion defects subjected to internal pressure and axial compressive stress
  publication-title: SN. Appl. Sci.
– volume: 51
  start-page: 2197
  year: 2009
  end-page: 2207
  ident: bib0020
  article-title: Markov chain modelling of pitting corrosion in underground pipelines
  publication-title: Corros. Sci.
– volume: 318
  start-page: 562
  year: 2013
  end-page: 566
  ident: bib0077
  article-title: Oil and gas pipeline residual strength research based on reliability analysis
  publication-title: Appl. Mech. Mater.
– volume: 209
  year: 2024
  ident: bib0005
  article-title: Failure assessment of corroded offshore pipelines using code-based approaches and a combination of numerical analysis and artificial neural network
  publication-title: Int. J. Pressure Vessel. Pip.
– volume: 1
  start-page: 161
  year: 2012
  end-page: 166
  ident: bib0022
  article-title: Corrosion resistance of API X52 carbon steel in soil environment
  publication-title: J. Mater. Res. Technol.
– volume: 41
  start-page: 1
  year: 2019
  end-page: 10
  ident: bib0018
  article-title: Failure pressure prediction of corroded pipes under combined internal pressure and axial compressive force
  publication-title: J. Brazil. Soc. Mech. Sci. Eng.
– volume: 107
  year: 2019
  ident: bib0013
  article-title: Visual inspection and characterization of external corrosion in pipelines using deep neural network
  publication-title: NDT E Int.
– volume: 16
  start-page: 410
  year: 2021
  end-page: 422
  ident: bib0011
  article-title: Dynamic reliability analysis for residual life assessment of corroded subsea pipelines
  publication-title: Ships Offshore Struct.
– year: 2022
  ident: bib0039
  article-title: Residual strength assessment and Residual life prediction of corroded pipelines: a decade review
  publication-title: Energies. (Basel)
– volume: 34
  start-page: 1
  year: 2016
  end-page: 15
  ident: bib0014
  article-title: Omics-based approaches and their use in the assessment of microbial-influenced corrosion of metals
  publication-title: Corrosion Rev.
– start-page: 1
  year: 2015
  end-page: 11
  ident: bib0047
  article-title: Residual strength of corroded subsea pipelines subject to combined internal pressure and bending moment
  publication-title: Ship. Offshore Struct.
– year: 2024
  ident: bib0031
  article-title: Reliability assessment for pipelines corroded by longitudinally aligned defects
  publication-title: Ocean Eng.
– volume: 24
  start-page: 173
  issue: 3–4
  year: 2006
  ident: 10.1016/j.apor.2025.104438_bib0054
  article-title: Review of models to predict internal pitting corrosion of oil and gas pipelines
  publication-title: Corros. Rev.
– volume: 110
  year: 2020
  ident: 10.1016/j.apor.2025.104438_bib0053
  article-title: Corrosion defect modelling of aged pipelines with a feed-forward multi-layer neural network for leak and burst failure estimation
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2020.104397
– ident: 10.1016/j.apor.2025.104438_bib0015
  doi: 10.1177/0309324718782632
– year: 2021
  ident: 10.1016/j.apor.2025.104438_bib0057
  article-title: Applications of machine learning in Pipeline integrity management: a State-of-the-art review
  publication-title: Int. J. Pressure Vessel. Pip.
  doi: 10.1016/j.ijpvp.2021.104471
– volume: 285
  year: 2021
  ident: 10.1016/j.apor.2025.104438_bib0075
  article-title: A review of machine learning in building load prediction
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.116452
– volume: 193
  year: 2021
  ident: 10.1016/j.apor.2025.104438_bib0003
  article-title: A new approach for finite element based reliability evaluation of offshore corroded pipelines
  publication-title: Int. J. Pressure Vessel. Pip.
  doi: 10.1016/j.ijpvp.2021.104449
– volume: 186
  start-page: 43
  year: 2019
  ident: 10.1016/j.apor.2025.104438_bib0048
  article-title: Burst pressure of corroded pipelines considering combined axial forces and bending moments
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2019.02.010
– year: 2024
  ident: 10.1016/j.apor.2025.104438_bib0031
  article-title: Reliability assessment for pipelines corroded by longitudinally aligned defects
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2024.118625
– volume: 34
  start-page: 1
  issue: 1–2
  year: 2016
  ident: 10.1016/j.apor.2025.104438_bib0014
  article-title: Omics-based approaches and their use in the assessment of microbial-influenced corrosion of metals
  publication-title: Corrosion Rev.
  doi: 10.1515/corrrev-2015-0046
– volume: 16
  start-page: 410
  issue: 4
  year: 2021
  ident: 10.1016/j.apor.2025.104438_bib0011
  article-title: Dynamic reliability analysis for residual life assessment of corroded subsea pipelines
  publication-title: Ships Offshore Struct.
  doi: 10.1080/17445302.2020.1735834
– year: 2015
  ident: 10.1016/j.apor.2025.104438_bib0025
  article-title: On modeling the dynamics of pipelines: finite element approach
– volume: 2
  issue: 2
  year: 2022
  ident: 10.1016/j.apor.2025.104438_bib0071
  article-title: Resilience assessment of a subsea pipeline using dynamic Bayesian network
  publication-title: J. Pipeline Sci. Eng.
  doi: 10.1016/j.jpse.2022.100053
– volume: 112
  start-page: 255
  year: 2017
  ident: 10.1016/j.apor.2025.104438_bib0068
  article-title: Corroded pipeline failure analysis using artificial neural network scheme
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.05.006
– volume: 51
  start-page: 1925
  issue: 9
  year: 2009
  ident: 10.1016/j.apor.2025.104438_bib0019
  article-title: Probability distribution of pitting corrosion depth and rate in underground pipelines: a Monte Carlo study
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2009.05.019
– volume: 12
  issue: 1
  year: 2024
  ident: 10.1016/j.apor.2025.104438_bib0033
  article-title: Review of prediction of stress corrosion cracking in gas pipelines using machine learning
  publication-title: Machines
  doi: 10.3390/machines12010042
– volume: 39
  start-page: 453
  issue: 4
  year: 2016
  ident: 10.1016/j.apor.2025.104438_bib0078
  article-title: Failure assessment on offshore girth welded pipelines due to corrosion defects
  publication-title: Fatigue Fract. Eng. Mater. Struct.
  doi: 10.1111/ffe.12370
– volume: 16
  start-page: 1161
  issue: 8
  year: 2020
  ident: 10.1016/j.apor.2025.104438_bib0065
  article-title: Integrated pipeline corrosion growth modeling and reliability analysis using dynamic Bayesian network and parameter learning technique
  publication-title: Struct. Infrastruct. Eng.
  doi: 10.1080/15732479.2019.1692363
– volume: 24
  issue: 2
  year: 2024
  ident: 10.1016/j.apor.2025.104438_bib0026
  article-title: Experimental investigation of pore pressure on Sandy seabed around submarine pipeline under irregular wave loading
  publication-title: Sensors
  doi: 10.3390/s24020704
– volume: 10
  start-page: 118
  issue: 1
  year: 2024
  ident: 10.1016/j.apor.2025.104438_bib0072
  article-title: Application of improved support vector machine in predicting failure pressure of oil and gas pipelines with internal corrosion defects
  publication-title: Academic Journal of Science and Technology
  doi: 10.54097/1th80z38
– volume: 138
  start-page: 8
  year: 2016
  ident: 10.1016/j.apor.2025.104438_bib0040
  article-title: Effect of interaction between corrosion defects on failure pressure of thin wall steel pipeline
  publication-title: Int. J. Pressure Vessel. Pip.
  doi: 10.1016/j.ijpvp.2016.01.002
– start-page: 1
  year: 2015
  ident: 10.1016/j.apor.2025.104438_bib0047
  article-title: Residual strength of corroded subsea pipelines subject to combined internal pressure and bending moment
  publication-title: Ship. Offshore Struct.
– ident: 10.1016/j.apor.2025.104438_bib0069
  doi: 10.14495/jsiaml.14.73
– volume: 12
  start-page: 854
  issue: 6
  year: 2021
  ident: 10.1016/j.apor.2025.104438_bib0070
  article-title: Reliability analysis of gas pipeline with corrosion defect based on finite element method
  publication-title: Int. J. Struct. Integrit.
  doi: 10.1108/IJSI-11-2020-0112
– year: 2019
  ident: 10.1016/j.apor.2025.104438_bib0052
  article-title: A data-driven machine learning approach for corrosion risk assessment—a comparative study
  publication-title: Big. Data Cogn. Comput.
  doi: 10.3390/bdcc3020028
– volume: 9
  issue: 1
  year: 2023
  ident: 10.1016/j.apor.2025.104438_bib0059
  article-title: Time-variant system reliability analysis of concrete sewer pipes under corrosion considering multiple failure modes
  publication-title: ASCE-ASME J. Risk Uncertain. Eng. Syst., Part A: Civil Eng.
– volume: 235
  start-page: 374
  issue: 3
  year: 2020
  ident: 10.1016/j.apor.2025.104438_bib0073
  article-title: A failure prediction model for corrosion in gas transmission pipelines
  publication-title: Proc. Inst. Mech. Eng. Part O J. Risk Reliab.
– volume: 172
  start-page: 261
  issue: 19
  year: 2019
  ident: 10.1016/j.apor.2025.104438_bib0008
  article-title: Modeling of pipeline corrosion degradation mechanism with a Lévy Process based on ILI (In-Line) inspections
  publication-title: Int. J. Pressure Vessel. Pip.
  doi: 10.1016/j.ijpvp.2019.03.001
– volume: 32
  start-page: 2538
  issue: 21
  year: 2014
  ident: 10.1016/j.apor.2025.104438_bib0050
  article-title: Modeling the contribution of gas hydrate to corrosion rate along the subsea pipelines
  publication-title: Pet. Sci. Technol.
  doi: 10.1080/10916466.2013.842586
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.apor.2025.104438_bib0055
  article-title: Scikit-learn: machine learning in {P}ython
  publication-title: J. Mach. Learn. Res.
– volume: 31
  start-page: 491
  issue: 3
  year: 2002
  ident: 10.1016/j.apor.2025.104438_bib0061
  article-title: Incremental dynamic analysis
  publication-title: Earthq. Eng. Struct. Dyn.
  doi: 10.1002/eqe.141
– year: 2022
  ident: 10.1016/j.apor.2025.104438_bib0067
  article-title: A crack propagation method for pipelines with interacting corrosion and crack defects
  publication-title: Sensors
– year: 2009
  ident: 10.1016/j.apor.2025.104438_bib0027
  article-title: Estimation of prediction error by using K-fold cross-validation
  publication-title: Stat. Comput.
– volume: 12
  start-page: 1281
  issue: 10
  year: 2016
  ident: 10.1016/j.apor.2025.104438_bib0063
  article-title: Reliability-based temporal and spatial maintenance strategy for integrity management of corroded underground pipelines
  publication-title: Struct. Infrastruct. Eng.
  doi: 10.1080/15732479.2015.1113300
– year: 2023
  ident: 10.1016/j.apor.2025.104438_bib0056
  article-title: Prediction model and demonstration of regional agricultural carbon emissions based on PCA-GS-KNN: a case study of Zhejiang Province, China
  publication-title: Environ. Res. Commun.
  doi: 10.1088/2515-7620/acd0f7
– volume: 53
  start-page: 15
  year: 2015
  ident: 10.1016/j.apor.2025.104438_bib0034
  article-title: Predicting the limit pressure capacity of pipe elbows containing single defects
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2015.07.002
– volume: 3
  start-page: 403
  year: 2008
  ident: 10.1016/j.apor.2025.104438_bib0016
  article-title: Burst tests on pipeline containing interacting corrosion defects
– volume: 9
  issue: 3
  year: 2021
  ident: 10.1016/j.apor.2025.104438_bib0044
  article-title: Failure pressure prediction of a corroded pipeline with longitudinally interacting corrosion defects subjected to combined loadings using fem and ann
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse9030281
– volume: 15
  start-page: 7460
  issue: 20
  year: 2022
  ident: 10.1016/j.apor.2025.104438_bib0006
  article-title: Influence-based consequence assessment of subsea pipeline failure under stochastic degradation
  publication-title: Energies. (Basel)
  doi: 10.3390/en15207460
– volume: 4
  start-page: 329
  year: 2011
  ident: 10.1016/j.apor.2025.104438_bib0012
  article-title: Pipeline on-bottom stability analysis based on FEM model
  publication-title: Proc. Int. Conf. Offshore Mech. Arctic Eng. - OMAE
– volume: 1
  start-page: 161
  issue: 3
  year: 2012
  ident: 10.1016/j.apor.2025.104438_bib0022
  article-title: Corrosion resistance of API X52 carbon steel in soil environment
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/S2238-7854(12)70028-5
– volume: 181
  issue: August 2019
  year: 2020
  ident: 10.1016/j.apor.2025.104438_bib0001
  article-title: A comparative reliability study of corroded pipelines based on Monte Carlo Simulation and Latin Hypercube sampling methods
  publication-title: Int. J. Pressure Vessel. Pip.
– volume: 41
  start-page: 1
  issue: 4
  year: 2019
  ident: 10.1016/j.apor.2025.104438_bib0018
  article-title: Failure pressure prediction of corroded pipes under combined internal pressure and axial compressive force
  publication-title: J. Brazil. Soc. Mech. Sci. Eng.
– year: 2021
  ident: 10.1016/j.apor.2025.104438_bib0037
  article-title: A review of finite element analysis and artificial neural networks as failure pressure prediction tools for corroded pipelines
  publication-title: Materials. (Basel)
– volume: 0
  start-page: 1
  issue: 0
  year: 2020
  ident: 10.1016/j.apor.2025.104438_bib0002
  article-title: Effects of correlation between the adjacent components on time dependent failure probability of corroded pipelines
  publication-title: Struct. Infrastruct. Eng.
– volume: 17
  start-page: 627
  issue: 7
  year: 2021
  ident: 10.1016/j.apor.2025.104438_bib0007
  article-title: Optimized deep learning framework for detecting pitting corrosion based on image segmentation
  publication-title: Int. J. Performab. Eng.
  doi: 10.23940/ijpe.21.07.p7.627637
– volume: 92
  start-page: 222
  year: 2018
  ident: 10.1016/j.apor.2025.104438_bib0066
  article-title: A review on pipeline integrity management utilizing in-line inspection data
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2018.05.010
– volume: 47
  start-page: 10
  year: 2017
  ident: 10.1016/j.apor.2025.104438_bib0017
  article-title: Accelerated pitting corrosion test of 304 stainless steel using ASTM G48; experimental investigation and concomitant challenges
  publication-title: J. Loss. Prev. Process. Ind.
  doi: 10.1016/j.jlp.2017.02.025
– volume: 51
  start-page: 2197
  issue: 9
  year: 2009
  ident: 10.1016/j.apor.2025.104438_bib0020
  article-title: Markov chain modelling of pitting corrosion in underground pipelines
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2009.06.014
– volume: 131
  year: 2022
  ident: 10.1016/j.apor.2025.104438_bib0060
  article-title: Integrity assessment of corroded oil and gas pipelines using machine learning: a systematic review
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2021.105810
– year: 2024
  ident: 10.1016/j.apor.2025.104438_bib0030
– year: 2020
  ident: 10.1016/j.apor.2025.104438_bib0024
  article-title: Towards characterization of indoor environment in smart buildings: modelling PMV index using neural network with one hidden layer
  publication-title: Sustainability.
  doi: 10.3390/su12176749
– volume: 15
  start-page: 2259
  issue: 6
  year: 2022
  ident: 10.1016/j.apor.2025.104438_bib0036
  article-title: Artificial neural network-based failure pressure prediction of API 5L X80 pipeline with circumferentially aligned interacting corrosion defects subjected to combined loadings
  publication-title: Materials. (Basel)
  doi: 10.3390/ma15062259
– volume: 2
  issue: 4
  year: 2017
  ident: 10.1016/j.apor.2025.104438_bib0051
  article-title: Finite element modelling and retained life estimation of corroded pipelines in consideration of burst pressures—A fractural mechanics approach
  publication-title: Infrastructures. (Basel)
– volume: 209
  issue: April
  year: 2024
  ident: 10.1016/j.apor.2025.104438_bib0005
  article-title: Failure assessment of corroded offshore pipelines using code-based approaches and a combination of numerical analysis and artificial neural network
  publication-title: Int. J. Pressure Vessel. Pip.
– year: 1957
  ident: 10.1016/j.apor.2025.104438_bib0058
– year: 2023
  ident: 10.1016/j.apor.2025.104438_bib0064
  article-title: Theoretical evaluation methods for remaining strength of seawater pipelines with corrosion defects
  publication-title: J. Phys. Conf. Ser.
– year: 2020
  ident: 10.1016/j.apor.2025.104438_bib0021
  article-title: Effects of depth in external and internal corrosion defects on failure pressure predictions of oil and gas pipelines using finite element models
  publication-title: Adv. Struct. Eng.
– year: 2021
  ident: 10.1016/j.apor.2025.104438_bib0029
  article-title: Modelling freshwater eutrophication with limited limnological data using artificial neural networks
  publication-title: Water. (Basel)
– volume: 11
  start-page: 3134
  issue: 11
  year: 2023
  ident: 10.1016/j.apor.2025.104438_bib0074
  article-title: Study on assessment method of failure pressure for pipelines with colony corrosion defects based on failure location
  publication-title: Processes
  doi: 10.3390/pr11113134
– volume: 171
  start-page: 71
  year: 2023
  ident: 10.1016/j.apor.2025.104438_bib0046
  article-title: Advances in corrosion growth modeling for oil and gas pipelines: a review
  publication-title: Process Saf. Environ. Protect.
  doi: 10.1016/j.psep.2022.12.054
– volume: 2
  issue: 7
  year: 2020
  ident: 10.1016/j.apor.2025.104438_bib0009
  article-title: Burst capacity analysis of pipeline with multiple longitudinally aligned interacting corrosion defects subjected to internal pressure and axial compressive stress
  publication-title: SN. Appl. Sci.
  doi: 10.1007/s42452-020-2994-7
– year: 2023
  ident: 10.1016/j.apor.2025.104438_bib0035
  article-title: Machine learning-based pedo transfer function for estimating the soil compression index
  publication-title: J. Sci. Technol. Civil Eng. (Stce) - Huce
– volume: 9
  start-page: 281
  issue: 3
  year: 2021
  ident: 10.1016/j.apor.2025.104438_bib0045
  article-title: Failure pressure prediction of a corroded pipeline with longitudinally interacting corrosion defects subjected to combined loadings using FEM and ANN
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse9030281
– year: 2010
  ident: 10.1016/j.apor.2025.104438_bib0023
– volume: 318
  start-page: 562
  year: 2013
  ident: 10.1016/j.apor.2025.104438_bib0077
  article-title: Oil and gas pipeline residual strength research based on reliability analysis
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.318.562
– year: 2016
  ident: 10.1016/j.apor.2025.104438_bib0049
  article-title: Burst pressure assessment for pipelines with multiple corrosion defects
  publication-title: Canadian Soc. Civil Eng.
– year: 2009
  ident: 10.1016/j.apor.2025.104438_bib0010
  article-title: Manual for determining the remaining strength of corroded pipelines
– year: 2022
  ident: 10.1016/j.apor.2025.104438_bib0039
  article-title: Residual strength assessment and Residual life prediction of corroded pipelines: a decade review
  publication-title: Energies. (Basel)
– volume: 12
  issue: 10
  year: 2019
  ident: 10.1016/j.apor.2025.104438_bib0032
  article-title: Non-probabilistic time-varying reliability-based analysis of corroded pipelines considering the interaction of multiple uncertainty variables
  publication-title: Energies. (Basel)
– volume: 65
  start-page: 332
  issue: 5
  year: 2009
  ident: 10.1016/j.apor.2025.104438_bib0062
  article-title: Predictive model for pitting corrosion in buried oil and gas pipelines
  publication-title: Corrosion
  doi: 10.5006/1.3319138
– volume: 153
  start-page: 413
  year: 2021
  ident: 10.1016/j.apor.2025.104438_bib0042
  article-title: A data-driven corrosion prediction model to support digitization of subsea operations
  publication-title: Process Saf. Environ. Protect.
  doi: 10.1016/j.psep.2021.07.031
– volume: 73
  start-page: 309
  year: 2013
  ident: 10.1016/j.apor.2025.104438_bib0076
  article-title: Inverse Gaussian process-based corrosion growth model for energy pipelines considering the sizing error in inspection data
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2013.04.020
– volume: 51
  start-page: 160
  issue: 2
  year: 1954
  ident: 10.1016/j.apor.2025.104438_bib0028
  article-title: Kolmogorov-Smirnov tests for psychological research
  publication-title: Psychol. Bull.
  doi: 10.1037/h0060275
– volume: 52
  start-page: 247
  year: 2017
  ident: 10.1016/j.apor.2025.104438_bib0038
  article-title: Detection and sizing of metal-loss defects in oil and gas pipelines using pattern-adapted wavelets and machine learning
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2016.10.040
– volume: 254
  year: 2022
  ident: 10.1016/j.apor.2025.104438_bib0004
  article-title: Predicting failure pressure of the corroded offshore pipelines using an efficient finite element based algorithm and machine learning techniques
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.111382
– volume: 107
  year: 2019
  ident: 10.1016/j.apor.2025.104438_bib0013
  article-title: Visual inspection and characterization of external corrosion in pipelines using deep neural network
  publication-title: NDT E Int.
  doi: 10.1016/j.ndteint.2019.102134
SSID ssj0012868
Score 2.4055963
Snippet This research presents a method for analyzing the Remaining Useful Life (RUL) of pipelines impacted by corrosion defects through the integration of Latin...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104438
SubjectTerms Latin hypercube sampling
Machine learning
Offshore pipeline engineering
Pipeline integrity management
Random sampling
Remaining useful life
Structural reliability
Title Data-driven remaining useful life estimation of subsea pipelines under effect of interacting corrosion defects
URI https://dx.doi.org/10.1016/j.apor.2025.104438
Volume 155
WOSCitedRecordID wos001421632000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 0141-1187
  databaseCode: DOA
  dateStart: 20250101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: false
  ssIdentifier: ssj0012868
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0141-1187
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0012868
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKxwNDQjCYGB-TH3iLUuXLJH4sMARIG0j0oW_RxT6rndq0Srpp21-yPxc7TtxswMQeeLGq1Hai3q_nu8v97gh5h9qmx4JLn0GSagcFpQ-xVL6UkYC4COJIJU2zifTkJJtO-Y_B4Lrjwpwv0rLMLi74-r-KWl_TwjbU2XuI222qL-jPWuh61GLX4z8J_hNswJeV0WJehUvbAcI7q9FkIy_mCj1TWGPpTMVaqw4Ebz1fG2o61k1n3KpN9OgqSjRcqoaeW-lj1ayU2CSC9I3bzqLVRyKYe_cCZU2Cbl3jvLwCiU0o5-dqhpcuv-MDzAAs6_14NYPlEmSFV-7MGBeXtvmU-bbe0tcmMGu58sfzBch-DCNiXdpzL6wZ-qbx-Q29zFhPs2q3MbF1YH5T-jb-cDoC7bGMzPaj7eSbFbZvnXwuH7FLdTvNzR652SO3ezwgO1HKeDYkO-OvR9Nv7g1VlDU0S_fkLSHL5g7efpI_Gz09Q2bylDxpPRA6tsh5RgZY7pHdXl3KPfL4u5FgW8z8OSl7kKIOUtRCihpI0S2k6EpRCynqIEUbSFELKTOhBynqIEVbSL0gk89Hk49f_LZPhy_iJNn4oHW6EjxQBXKhWKwyAB4WmcaTlCziICDkAsO00GPKU5EERaRUKmJ8n4ow3ifDclXiS0IZ0wYygxgwjRKuQm5KMwUZIKD2GyA4IGH3O-airWFvWqks8r9L8IB4bs3aVnC5czbrxJO3Nqi1LXONtjvWvbrXXV6TR9u_wRsy3FRn-JY8FOebeV0dtlA7bOJDvwCHDrAS
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+remaining+useful+life+estimation+of+subsea+pipelines+under+effect+of+interacting+corrosion+defects&rft.jtitle=Applied+ocean+research&rft.au=Hosseinzadeh%2C+Soheyl&rft.au=Bahaari%2C+Mohammadreza&rft.au=Abyani%2C+Mohsen&rft.au=Taheri%2C+Milad&rft.date=2025-02-01&rft.issn=0141-1187&rft.volume=155&rft.spage=104438&rft_id=info:doi/10.1016%2Fj.apor.2025.104438&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apor_2025_104438
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-1187&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-1187&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-1187&client=summon