Data-driven remaining useful life estimation of subsea pipelines under effect of interacting corrosion defects
This research presents a method for analyzing the Remaining Useful Life (RUL) of pipelines impacted by corrosion defects through the integration of Latin Hypercube Sampling (LHS), Finite Element Analysis (FEA), and Machine Learning (ML). A dataset consisting of 200 samples and 8 random variables is...
Uloženo v:
| Vydáno v: | Applied ocean research Ročník 155; s. 104438 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.02.2025
|
| Témata: | |
| ISSN: | 0141-1187 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This research presents a method for analyzing the Remaining Useful Life (RUL) of pipelines impacted by corrosion defects through the integration of Latin Hypercube Sampling (LHS), Finite Element Analysis (FEA), and Machine Learning (ML). A dataset consisting of 200 samples and 8 random variables is generated, representing various pipeline and corrosion defect specifications. Finite element modeling is performed using ABAQUS software and Python scripting to calculate the Failure Pressure and failure Maximum Von-Mises Stress (MVMS) under varying conditions of longitudinal spacing (Sl) and Internal Pressure (IP). This model generates a dataset that includes internal pressure, longitudinal spacing, and other relevant variables for the training and evaluation of ML models. Model performance is assessed through grid search and overfitting checks. A corrosion growth algorithm is incorporated to update input data dynamically, allowing for the prediction of future MVMS values and associated failure probabilities. The Probability of Failure (POF) is calculated, and Probability Density Functions (PDFs) for failure pressure are analyzed using standard distributions and Kolmogorov-Smirnov tests to identify the most accurate model. This approach provides a robust framework for predicting RUL by evaluating pipeline failures and probabilistic failure pressure over time, contributing valuable insights into the reliability and safety of pipeline systems under various conditions and time intervals. |
|---|---|
| AbstractList | This research presents a method for analyzing the Remaining Useful Life (RUL) of pipelines impacted by corrosion defects through the integration of Latin Hypercube Sampling (LHS), Finite Element Analysis (FEA), and Machine Learning (ML). A dataset consisting of 200 samples and 8 random variables is generated, representing various pipeline and corrosion defect specifications. Finite element modeling is performed using ABAQUS software and Python scripting to calculate the Failure Pressure and failure Maximum Von-Mises Stress (MVMS) under varying conditions of longitudinal spacing (Sl) and Internal Pressure (IP). This model generates a dataset that includes internal pressure, longitudinal spacing, and other relevant variables for the training and evaluation of ML models. Model performance is assessed through grid search and overfitting checks. A corrosion growth algorithm is incorporated to update input data dynamically, allowing for the prediction of future MVMS values and associated failure probabilities. The Probability of Failure (POF) is calculated, and Probability Density Functions (PDFs) for failure pressure are analyzed using standard distributions and Kolmogorov-Smirnov tests to identify the most accurate model. This approach provides a robust framework for predicting RUL by evaluating pipeline failures and probabilistic failure pressure over time, contributing valuable insights into the reliability and safety of pipeline systems under various conditions and time intervals. |
| ArticleNumber | 104438 |
| Author | Abyani, Mohsen Bahaari, Mohammadreza Hosseinzadeh, Soheyl Taheri, Milad |
| Author_xml | – sequence: 1 givenname: Soheyl orcidid: 0009-0009-1932-8069 surname: Hosseinzadeh fullname: Hosseinzadeh, Soheyl – sequence: 2 givenname: Mohammadreza orcidid: 0000-0002-6506-0130 surname: Bahaari fullname: Bahaari, Mohammadreza email: mbahari@ut.ac.ir – sequence: 3 givenname: Mohsen surname: Abyani fullname: Abyani, Mohsen – sequence: 4 givenname: Milad surname: Taheri fullname: Taheri, Milad |
| BookMark | eNp9kM9qwzAMxn3oYO22F9jJL5DOTtImgV1G9xcKu_RuFFkeKqkTbLewt1-y7rRDLxJI-n3i-xZi5ntPQtxrtdRKrx_2Sxj6sMxVvhoHZVnUMzFXutSZ1nV1LRYx7pXSeb2u58I_Q4LMBj6Rl4EOwJ79lzxGcsdOduxIUkx8gMS9l72T8dhGAjnwQB17ivLoLQVJzhGm6YB9ogCYJhnsQ-jjRFqa9vFWXDnoIt399Ruxe33Zbd6z7efbx-Zpm2FRlimDqikdNsq11KBbFa4GaHRbgyVrV3kDCLpB0lU71qqpsFRt7lyFBa0r1MWNqM-yOL6PgZxBTr8WUgDujFZmisrszRSVmaIy56hGNP-HDmG0H74vQ49niEZPJ6ZgIjJ5JMthtG1sz5fwH7I6i0I |
| CitedBy_id | crossref_primary_10_1016_j_oceaneng_2025_122523 crossref_primary_10_1016_j_ress_2025_111111 |
| Cites_doi | 10.1016/j.engfailanal.2020.104397 10.1177/0309324718782632 10.1016/j.ijpvp.2021.104471 10.1016/j.apenergy.2021.116452 10.1016/j.ijpvp.2021.104449 10.1016/j.engstruct.2019.02.010 10.1016/j.oceaneng.2024.118625 10.1515/corrrev-2015-0046 10.1080/17445302.2020.1735834 10.1016/j.jpse.2022.100053 10.1016/j.advengsoft.2017.05.006 10.1016/j.corsci.2009.05.019 10.3390/machines12010042 10.1111/ffe.12370 10.1080/15732479.2019.1692363 10.3390/s24020704 10.54097/1th80z38 10.1016/j.ijpvp.2016.01.002 10.14495/jsiaml.14.73 10.1108/IJSI-11-2020-0112 10.3390/bdcc3020028 10.1016/j.ijpvp.2019.03.001 10.1080/10916466.2013.842586 10.1002/eqe.141 10.1080/15732479.2015.1113300 10.1088/2515-7620/acd0f7 10.1016/j.apor.2015.07.002 10.3390/jmse9030281 10.3390/en15207460 10.1016/S2238-7854(12)70028-5 10.23940/ijpe.21.07.p7.627637 10.1016/j.engfailanal.2018.05.010 10.1016/j.jlp.2017.02.025 10.1016/j.corsci.2009.06.014 10.1016/j.engfailanal.2021.105810 10.3390/su12176749 10.3390/ma15062259 10.3390/pr11113134 10.1016/j.psep.2022.12.054 10.1007/s42452-020-2994-7 10.4028/www.scientific.net/AMM.318.562 10.5006/1.3319138 10.1016/j.psep.2021.07.031 10.1016/j.corsci.2013.04.020 10.1037/h0060275 10.1016/j.asoc.2016.10.040 10.1016/j.oceaneng.2022.111382 10.1016/j.ndteint.2019.102134 |
| ContentType | Journal Article |
| Copyright | 2025 |
| Copyright_xml | – notice: 2025 |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.apor.2025.104438 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Oceanography |
| ExternalDocumentID | 10_1016_j_apor_2025_104438 S0141118725000264 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE J1W JJJVA KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEP SES SET SEW SPC SPCBC SSH SST SSZ T5K TN5 UAO WUQ XPP ZMT ~02 ~A~ ~G- 9DU AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG GROUPED_DOAJ ~HD |
| ID | FETCH-LOGICAL-c344t-a794fc90fbe9cf53f8aa91b8adedd529aca19ce17b9ce797c40b2ff7c3e67c13 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001421632000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0141-1187 |
| IngestDate | Sat Nov 29 08:17:19 EST 2025 Tue Nov 18 21:51:00 EST 2025 Sun Apr 06 06:53:38 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | ECDF ANN DTR Random sampling CDF LR Pipeline integrity management ILI Structural reliability GPR KNN SVM Remaining useful life K-S MLP Latin hypercube sampling LHS MAOP ML FEA MIC POF IP AI RUL MFL-TFI Offshore pipeline engineering MVMS PSO FEM PCA SGD SCC Machine learning PIMS TBRA MTTF |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c344t-a794fc90fbe9cf53f8aa91b8adedd529aca19ce17b9ce797c40b2ff7c3e67c13 |
| ORCID | 0000-0002-6506-0130 0009-0009-1932-8069 |
| OpenAccessLink | http://dx.doi.org/10.1016/j.apor.2025.104438 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_apor_2025_104438 crossref_primary_10_1016_j_apor_2025_104438 elsevier_sciencedirect_doi_10_1016_j_apor_2025_104438 |
| PublicationCentury | 2000 |
| PublicationDate | February 2025 2025-02-00 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied ocean research |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Ma, Zhang, Wang, Ai, Zheng (bib0046) 2023; 171 Khalaj Khalajestani, Bahaari, Salehi, Shahbazi (bib0034) 2015; 53 Caleyo, Velázquez, Valor, Hallen (bib0019) 2009; 51 Li, Huang, Zeng, Sun (bib0039) 2022 Ossai (bib0052) 2019 Kumar, Mostafaei, Piedade, Devi, Karuppanan, Ovinis (bib0036) 2022; 15 Li, Bai, Su, Li (bib0040) 2016; 138 Yazdi, Khan, Abbassi, Quddus (bib0071) 2022; 2 Xu, Li, Choung, Lee (bib0068) 2017; 112 Abyani, Bahaari (bib0002) 2020; 0 Hosseinzadeh, Bahaari, Abyani (bib0031) 2024 Bhandari, Lau, Abbassi, Garaniya, Ojeda, Lisson, Khan (bib0017) 2017; 47 Obanijesu, Pareek, Tade (bib0050) 2014; 32 Wang, Yajima, Liang, Castaneda (bib0063) 2016; 12 Aulia, Tan, Sriramula (bib0011) 2021; 16 Amaya-Gómez, Riascos-Ochoa, Muñoz, Bastidas-Arteaga, Schoefs, Sánchez-Silva (bib0008) 2019; 172 Beale, Karpe, Jadhav, Muster, Palombo (bib0014) 2016; 34 Hadjisolomou, Stefanidis, Herodotou, Michaelides, Papatheodorou, Papastergiadou (bib0029) 2021 Fushiki (bib0027) 2009 Mohd, Lee, Cui, Paik (bib0047) 2015 Zhang, Feng (bib0077) 2013; 318 Xiang, Zhou (bib0065) 2020; 16 Yuan, Zhang, Ren (bib0072) 2024; 10 Li, Zhang, Khan, Han (bib0042) 2021; 153 Shadabfar, Mahsuli, Xue, Zhang, Wu (bib0059) 2023; 9 . Arumugam, Rosli, Karuppanan, Ovinis, Lo (bib0009) 2020; 2 Fu, Wang, Zhao (bib0026) 2024; 24 Hosseinzadeh, Bahaari, Abyani (bib0030) 2024 Zhang, Zhou, Qin (bib0076) 2013; 73 Zakikhani, Zayed (bib0073) 2020; 235 Wang (bib0064) 2023 Kumar, Lo, Arumugam, Karuppanan (bib0037) 2021 Hou, Wang, Zhang, Qin (bib0032) 2019; 12 Bruère, Bouchonneau, Motta, Afonso, Willmersdorf, Lyra, Torres, Andrade, Cunha (bib0018) 2019; 41 (bib0010) 2009 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bib0055) 2011; 12 Ahuja, Shukla, Ravulakollu (bib0007) 2021; 17 Ossai (bib0051) 2017; 2 Abyani, Bahaari, Zarrin, Nasseri (bib0004) 2022; 254 Qi, Liu, Zhao, Xia (bib0056) 2023 Vamvatsikos, Allin Cornell (bib0061) 2002; 31 Ossai (bib0053) 2020; 110 Adumene, Islam, Dick, Zarei, Inegiyemiema, Yang (bib0006) 2022; 15 Lo, Karuppanan, Ovinis (bib0044) 2021; 9 Hussain, Zhang, Chaudhry, Jamil, Kausar, Hussain (bib0033) 2024; 12 Benjamin, Vieira, Diniz, Freire, De Andrade (bib0016) 2008; 3 Mondal, Dhar (bib0049) 2016 Papavinasam, Revie, Friesen, Doiron, Panneerselvam (bib0054) 2006; 24 Zhang, Tan, Xiao, Zhang, Ariffin (bib0078) 2016; 39 Zhang, Wen, Li, Chen, Ye, Fu, Livingood (bib0075) 2021; 285 Dudzik (bib0024) 2020 Zhang, Sun, Zhang, Zhang, Li, Zhai (bib0074) 2023; 11 Yamaguchi, A., & Saito, A. (2021). Abyani, Bahaari (bib0001) 2020; 181 Yang, Wang, Zhong, Zhang, He, Chen (bib0070) 2021; 12 Bai, Yu (bib0012) 2011; 4 Goodman (bib0028) 1954; 51 Romanoff (bib0058) 1957 Rachman, Zhang, Chandima Ratnayake (bib0057) 2021 Soomro, Mokhtar, Kurnia, Lashari, Lu, Sambo (bib0060) 2022; 131 Xie, Tian (bib0066) 2018; 92 Mondal, Dhar (bib0048) 2019; 186 Layouni, Hamdi, Tahar (bib0038) 2017; 52 Xie, Wang, Xiong, Zhao, Pei (bib0067) 2022 Caleyo, Velázquez, Valor, Hallen (bib0020) 2009; 51 (bib0023) 2010 Cunha Lins, Magalhães Ferreira, Saliba (bib0022) 2012; 1 Lo, Karuppanan, Ovinis (bib0045) 2021; 9 Abyani, Bahaari (bib0003) 2021; 193 Colindres, Méndez, Velázquez, Cabrera-Sierra, Angeles-Herrera (bib0021) 2020 Ben Seghier, M.el A., Bettayeb, M., Correia, J., De Jesus, A., & Calçada, R. (2018). Structural reliability of corroded pipeline using the so-called separable Monte Carlo method, 53(8), 730–737. El-Sinawi, Al Ghailani (bib0025) 2015 Khanh, Ngan (bib0035) 2023 Velázquez, Caleyo, Valor, Hallen (bib0062) 2009; 65 Bastian, N, Ranjith, Jiji (bib0013) 2019; 107 Abyani, Karimi, Shahgholian-Ghahfarokhi (bib0005) 2024; 209 Abyani (10.1016/j.apor.2025.104438_bib0003) 2021; 193 Wang (10.1016/j.apor.2025.104438_bib0063) 2016; 12 Zhang (10.1016/j.apor.2025.104438_bib0078) 2016; 39 Adumene (10.1016/j.apor.2025.104438_bib0006) 2022; 15 Yuan (10.1016/j.apor.2025.104438_bib0072) 2024; 10 Xie (10.1016/j.apor.2025.104438_bib0067) 2022 10.1016/j.apor.2025.104438_bib0015 Hosseinzadeh (10.1016/j.apor.2025.104438_bib0030) 2024 Amaya-Gómez (10.1016/j.apor.2025.104438_bib0008) 2019; 172 Bastian (10.1016/j.apor.2025.104438_bib0013) 2019; 107 Ossai (10.1016/j.apor.2025.104438_bib0051) 2017; 2 Papavinasam (10.1016/j.apor.2025.104438_bib0054) 2006; 24 Ahuja (10.1016/j.apor.2025.104438_bib0007) 2021; 17 Shadabfar (10.1016/j.apor.2025.104438_bib0059) 2023; 9 Xie (10.1016/j.apor.2025.104438_bib0066) 2018; 92 Lo (10.1016/j.apor.2025.104438_bib0044) 2021; 9 Hosseinzadeh (10.1016/j.apor.2025.104438_bib0031) 2024 Goodman (10.1016/j.apor.2025.104438_bib0028) 1954; 51 Hou (10.1016/j.apor.2025.104438_bib0032) 2019; 12 Layouni (10.1016/j.apor.2025.104438_bib0038) 2017; 52 Zhang (10.1016/j.apor.2025.104438_bib0076) 2013; 73 Dudzik (10.1016/j.apor.2025.104438_bib0024) 2020 Ossai (10.1016/j.apor.2025.104438_bib0053) 2020; 110 Abyani (10.1016/j.apor.2025.104438_bib0001) 2020; 181 Li (10.1016/j.apor.2025.104438_bib0040) 2016; 138 Mondal (10.1016/j.apor.2025.104438_bib0048) 2019; 186 Kumar (10.1016/j.apor.2025.104438_bib0037) 2021 Mohd (10.1016/j.apor.2025.104438_bib0047) 2015 Wang (10.1016/j.apor.2025.104438_bib0064) 2023 Cunha Lins (10.1016/j.apor.2025.104438_bib0022) 2012; 1 Kumar (10.1016/j.apor.2025.104438_bib0036) 2022; 15 Velázquez (10.1016/j.apor.2025.104438_bib0062) 2009; 65 Qi (10.1016/j.apor.2025.104438_bib0056) 2023 Aulia (10.1016/j.apor.2025.104438_bib0011) 2021; 16 El-Sinawi (10.1016/j.apor.2025.104438_bib0025) 2015 Fu (10.1016/j.apor.2025.104438_bib0026) 2024; 24 Rachman (10.1016/j.apor.2025.104438_bib0057) 2021 Vamvatsikos (10.1016/j.apor.2025.104438_bib0061) 2002; 31 Xiang (10.1016/j.apor.2025.104438_bib0065) 2020; 16 Caleyo (10.1016/j.apor.2025.104438_bib0019) 2009; 51 (10.1016/j.apor.2025.104438_bib0010) 2009 Li (10.1016/j.apor.2025.104438_bib0039) 2022 Xu (10.1016/j.apor.2025.104438_bib0068) 2017; 112 Bruère (10.1016/j.apor.2025.104438_bib0018) 2019; 41 Lo (10.1016/j.apor.2025.104438_bib0045) 2021; 9 Ossai (10.1016/j.apor.2025.104438_bib0052) 2019 Romanoff (10.1016/j.apor.2025.104438_bib0058) 1957 Hussain (10.1016/j.apor.2025.104438_bib0033) 2024; 12 Abyani (10.1016/j.apor.2025.104438_bib0005) 2024; 209 Li (10.1016/j.apor.2025.104438_bib0042) 2021; 153 Hadjisolomou (10.1016/j.apor.2025.104438_bib0029) 2021 Bhandari (10.1016/j.apor.2025.104438_bib0017) 2017; 47 Yazdi (10.1016/j.apor.2025.104438_bib0071) 2022; 2 Khanh (10.1016/j.apor.2025.104438_bib0035) 2023 Arumugam (10.1016/j.apor.2025.104438_bib0009) 2020; 2 Beale (10.1016/j.apor.2025.104438_bib0014) 2016; 34 Yang (10.1016/j.apor.2025.104438_bib0070) 2021; 12 Bai (10.1016/j.apor.2025.104438_bib0012) 2011; 4 Mondal (10.1016/j.apor.2025.104438_bib0049) 2016 Zhang (10.1016/j.apor.2025.104438_bib0074) 2023; 11 Obanijesu (10.1016/j.apor.2025.104438_bib0050) 2014; 32 Fushiki (10.1016/j.apor.2025.104438_bib0027) 2009 Khalaj Khalajestani (10.1016/j.apor.2025.104438_bib0034) 2015; 53 Colindres (10.1016/j.apor.2025.104438_bib0021) 2020 Soomro (10.1016/j.apor.2025.104438_bib0060) 2022; 131 Zakikhani (10.1016/j.apor.2025.104438_bib0073) 2020; 235 Benjamin (10.1016/j.apor.2025.104438_bib0016) 2008; 3 Zhang (10.1016/j.apor.2025.104438_bib0077) 2013; 318 Abyani (10.1016/j.apor.2025.104438_bib0002) 2020; 0 10.1016/j.apor.2025.104438_bib0069 Abyani (10.1016/j.apor.2025.104438_bib0004) 2022; 254 Ma (10.1016/j.apor.2025.104438_bib0046) 2023; 171 (10.1016/j.apor.2025.104438_bib0023) 2010 Caleyo (10.1016/j.apor.2025.104438_bib0020) 2009; 51 Pedregosa (10.1016/j.apor.2025.104438_bib0055) 2011; 12 Zhang (10.1016/j.apor.2025.104438_bib0075) 2021; 285 |
| References_xml | – year: 2023 ident: bib0035 article-title: Machine learning-based pedo transfer function for estimating the soil compression index publication-title: J. Sci. Technol. Civil Eng. (Stce) - Huce – year: 2016 ident: bib0049 article-title: Burst pressure assessment for pipelines with multiple corrosion defects publication-title: Canadian Soc. Civil Eng. – volume: 15 start-page: 2259 year: 2022 ident: bib0036 article-title: Artificial neural network-based failure pressure prediction of API 5L X80 pipeline with circumferentially aligned interacting corrosion defects subjected to combined loadings publication-title: Materials. (Basel) – year: 2021 ident: bib0037 article-title: A review of finite element analysis and artificial neural networks as failure pressure prediction tools for corroded pipelines publication-title: Materials. (Basel) – reference: Ben Seghier, M.el A., Bettayeb, M., Correia, J., De Jesus, A., & Calçada, R. (2018). Structural reliability of corroded pipeline using the so-called separable Monte Carlo method, 53(8), 730–737. – year: 2020 ident: bib0024 article-title: Towards characterization of indoor environment in smart buildings: modelling PMV index using neural network with one hidden layer publication-title: Sustainability. – volume: 138 start-page: 8 year: 2016 end-page: 18 ident: bib0040 article-title: Effect of interaction between corrosion defects on failure pressure of thin wall steel pipeline publication-title: Int. J. Pressure Vessel. Pip. – volume: 9 start-page: 281 year: 2021 ident: bib0045 article-title: Failure pressure prediction of a corroded pipeline with longitudinally interacting corrosion defects subjected to combined loadings using FEM and ANN publication-title: J. Mar. Sci. Eng. – year: 2023 ident: bib0056 article-title: Prediction model and demonstration of regional agricultural carbon emissions based on PCA-GS-KNN: a case study of Zhejiang Province, China publication-title: Environ. Res. Commun. – year: 2023 ident: bib0064 article-title: Theoretical evaluation methods for remaining strength of seawater pipelines with corrosion defects publication-title: J. Phys. Conf. Ser. – volume: 17 start-page: 627 year: 2021 ident: bib0007 article-title: Optimized deep learning framework for detecting pitting corrosion based on image segmentation publication-title: Int. J. Performab. Eng. – volume: 32 start-page: 2538 year: 2014 end-page: 2548 ident: bib0050 article-title: Modeling the contribution of gas hydrate to corrosion rate along the subsea pipelines publication-title: Pet. Sci. Technol. – year: 2019 ident: bib0052 article-title: A data-driven machine learning approach for corrosion risk assessment—a comparative study publication-title: Big. Data Cogn. Comput. – volume: 2 year: 2022 ident: bib0071 article-title: Resilience assessment of a subsea pipeline using dynamic Bayesian network publication-title: J. Pipeline Sci. Eng. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib0055 article-title: Scikit-learn: machine learning in {P}ython publication-title: J. Mach. Learn. Res. – volume: 153 start-page: 413 year: 2021 end-page: 421 ident: bib0042 article-title: A data-driven corrosion prediction model to support digitization of subsea operations publication-title: Process Saf. Environ. Protect. – volume: 92 start-page: 222 year: 2018 end-page: 239 ident: bib0066 article-title: A review on pipeline integrity management utilizing in-line inspection data publication-title: Eng. Fail. Anal. – volume: 186 start-page: 43 year: 2019 end-page: 51 ident: bib0048 article-title: Burst pressure of corroded pipelines considering combined axial forces and bending moments publication-title: Eng. Struct. – year: 1957 ident: bib0058 article-title: Underground Corrosion – volume: 2 year: 2017 ident: bib0051 article-title: Finite element modelling and retained life estimation of corroded pipelines in consideration of burst pressures—A fractural mechanics approach publication-title: Infrastructures. (Basel) – volume: 110 year: 2020 ident: bib0053 article-title: Corrosion defect modelling of aged pipelines with a feed-forward multi-layer neural network for leak and burst failure estimation publication-title: Eng. Fail. Anal. – reference: Yamaguchi, A., & Saito, A. (2021). – volume: 171 start-page: 71 year: 2023 end-page: 86 ident: bib0046 article-title: Advances in corrosion growth modeling for oil and gas pipelines: a review publication-title: Process Saf. Environ. Protect. – volume: 285 year: 2021 ident: bib0075 article-title: A review of machine learning in building load prediction publication-title: Appl. Energy – volume: 12 start-page: 1281 year: 2016 end-page: 1294 ident: bib0063 article-title: Reliability-based temporal and spatial maintenance strategy for integrity management of corroded underground pipelines publication-title: Struct. Infrastruct. Eng. – year: 2015 ident: bib0025 article-title: On modeling the dynamics of pipelines: finite element approach publication-title: 6th International Conference on Modeling, Simulation, and Applied Optimization, ICMSAO 2015 - Dedicated to the Memory of Late Ibrahim El-Sadek – volume: 0 start-page: 1 year: 2020 end-page: 14 ident: bib0002 article-title: Effects of correlation between the adjacent components on time dependent failure probability of corroded pipelines publication-title: Struct. Infrastruct. Eng. – year: 2024 ident: bib0030 article-title: Machine Learning Models Development to Predict Corroded Pipeline Behavior Considering Defects Interaction – volume: 12 year: 2019 ident: bib0032 article-title: Non-probabilistic time-varying reliability-based analysis of corroded pipelines considering the interaction of multiple uncertainty variables publication-title: Energies. (Basel) – volume: 12 year: 2024 ident: bib0033 article-title: Review of prediction of stress corrosion cracking in gas pipelines using machine learning publication-title: Machines – volume: 4 start-page: 329 year: 2011 end-page: 333 ident: bib0012 article-title: Pipeline on-bottom stability analysis based on FEM model publication-title: Proc. Int. Conf. Offshore Mech. Arctic Eng. - OMAE – year: 2021 ident: bib0057 article-title: Applications of machine learning in Pipeline integrity management: a State-of-the-art review publication-title: Int. J. Pressure Vessel. Pip. – volume: 16 start-page: 1161 year: 2020 end-page: 1176 ident: bib0065 article-title: Integrated pipeline corrosion growth modeling and reliability analysis using dynamic Bayesian network and parameter learning technique publication-title: Struct. Infrastruct. Eng. – volume: 15 start-page: 7460 year: 2022 ident: bib0006 article-title: Influence-based consequence assessment of subsea pipeline failure under stochastic degradation publication-title: Energies. (Basel) – year: 2009 ident: bib0027 article-title: Estimation of prediction error by using K-fold cross-validation publication-title: Stat. Comput. – volume: 31 start-page: 491 year: 2002 end-page: 514 ident: bib0061 article-title: Incremental dynamic analysis publication-title: Earthq. Eng. Struct. Dyn. – volume: 24 start-page: 173 year: 2006 end-page: 230 ident: bib0054 article-title: Review of models to predict internal pitting corrosion of oil and gas pipelines publication-title: Corros. Rev. – reference: . – volume: 24 year: 2024 ident: bib0026 article-title: Experimental investigation of pore pressure on Sandy seabed around submarine pipeline under irregular wave loading publication-title: Sensors – volume: 11 start-page: 3134 year: 2023 ident: bib0074 article-title: Study on assessment method of failure pressure for pipelines with colony corrosion defects based on failure location publication-title: Processes – year: 2010 ident: bib0023 article-title: Recommended Practice DNV-RP-F101 Corroded Pipelines – volume: 131 year: 2022 ident: bib0060 article-title: Integrity assessment of corroded oil and gas pipelines using machine learning: a systematic review publication-title: Eng. Fail. Anal. – volume: 73 start-page: 309 year: 2013 end-page: 320 ident: bib0076 article-title: Inverse Gaussian process-based corrosion growth model for energy pipelines considering the sizing error in inspection data publication-title: Corros. Sci. – year: 2021 ident: bib0029 article-title: Modelling freshwater eutrophication with limited limnological data using artificial neural networks publication-title: Water. (Basel) – volume: 235 start-page: 374 year: 2020 end-page: 390 ident: bib0073 article-title: A failure prediction model for corrosion in gas transmission pipelines publication-title: Proc. Inst. Mech. Eng. Part O J. Risk Reliab. – volume: 9 year: 2021 ident: bib0044 article-title: Failure pressure prediction of a corroded pipeline with longitudinally interacting corrosion defects subjected to combined loadings using fem and ann publication-title: J. Mar. Sci. Eng. – volume: 39 start-page: 453 year: 2016 end-page: 466 ident: bib0078 article-title: Failure assessment on offshore girth welded pipelines due to corrosion defects publication-title: Fatigue Fract. Eng. Mater. Struct. – volume: 52 start-page: 247 year: 2017 end-page: 261 ident: bib0038 article-title: Detection and sizing of metal-loss defects in oil and gas pipelines using pattern-adapted wavelets and machine learning publication-title: Appl. Soft. Comput. – year: 2020 ident: bib0021 article-title: Effects of depth in external and internal corrosion defects on failure pressure predictions of oil and gas pipelines using finite element models publication-title: Adv. Struct. Eng. – volume: 12 start-page: 854 year: 2021 end-page: 863 ident: bib0070 article-title: Reliability analysis of gas pipeline with corrosion defect based on finite element method publication-title: Int. J. Struct. Integrit. – volume: 181 year: 2020 ident: bib0001 article-title: A comparative reliability study of corroded pipelines based on Monte Carlo Simulation and Latin Hypercube sampling methods publication-title: Int. J. Pressure Vessel. Pip. – year: 2009 ident: bib0010 article-title: Manual for determining the remaining strength of corroded pipelines publication-title: American Society of Mechanical Engineers (ASME) – volume: 9 year: 2023 ident: bib0059 article-title: Time-variant system reliability analysis of concrete sewer pipes under corrosion considering multiple failure modes publication-title: ASCE-ASME J. Risk Uncertain. Eng. Syst., Part A: Civil Eng. – volume: 112 start-page: 255 year: 2017 end-page: 266 ident: bib0068 article-title: Corroded pipeline failure analysis using artificial neural network scheme publication-title: Adv. Eng. Softw. – volume: 53 start-page: 15 year: 2015 end-page: 22 ident: bib0034 article-title: Predicting the limit pressure capacity of pipe elbows containing single defects publication-title: Appl. Ocean Res. – volume: 10 start-page: 118 year: 2024 end-page: 130 ident: bib0072 article-title: Application of improved support vector machine in predicting failure pressure of oil and gas pipelines with internal corrosion defects publication-title: Academic Journal of Science and Technology – volume: 3 start-page: 403 year: 2008 end-page: 417 ident: bib0016 article-title: Burst tests on pipeline containing interacting corrosion defects publication-title: Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE – volume: 172 start-page: 261 year: 2019 end-page: 271 ident: bib0008 article-title: Modeling of pipeline corrosion degradation mechanism with a Lévy Process based on ILI (In-Line) inspections publication-title: Int. J. Pressure Vessel. Pip. – volume: 51 start-page: 160 year: 1954 end-page: 168 ident: bib0028 article-title: Kolmogorov-Smirnov tests for psychological research publication-title: Psychol. Bull. – volume: 47 start-page: 10 year: 2017 end-page: 21 ident: bib0017 article-title: Accelerated pitting corrosion test of 304 stainless steel using ASTM G48; experimental investigation and concomitant challenges publication-title: J. Loss. Prev. Process. Ind. – volume: 254 year: 2022 ident: bib0004 article-title: Predicting failure pressure of the corroded offshore pipelines using an efficient finite element based algorithm and machine learning techniques publication-title: Ocean Eng. – volume: 51 start-page: 1925 year: 2009 end-page: 1934 ident: bib0019 article-title: Probability distribution of pitting corrosion depth and rate in underground pipelines: a Monte Carlo study publication-title: Corros. Sci. – year: 2022 ident: bib0067 article-title: A crack propagation method for pipelines with interacting corrosion and crack defects publication-title: Sensors – volume: 193 year: 2021 ident: bib0003 article-title: A new approach for finite element based reliability evaluation of offshore corroded pipelines publication-title: Int. J. Pressure Vessel. Pip. – volume: 65 start-page: 332 year: 2009 end-page: 342 ident: bib0062 article-title: Predictive model for pitting corrosion in buried oil and gas pipelines publication-title: Corrosion – reference: . – volume: 2 year: 2020 ident: bib0009 article-title: Burst capacity analysis of pipeline with multiple longitudinally aligned interacting corrosion defects subjected to internal pressure and axial compressive stress publication-title: SN. Appl. Sci. – volume: 51 start-page: 2197 year: 2009 end-page: 2207 ident: bib0020 article-title: Markov chain modelling of pitting corrosion in underground pipelines publication-title: Corros. Sci. – volume: 318 start-page: 562 year: 2013 end-page: 566 ident: bib0077 article-title: Oil and gas pipeline residual strength research based on reliability analysis publication-title: Appl. Mech. Mater. – volume: 209 year: 2024 ident: bib0005 article-title: Failure assessment of corroded offshore pipelines using code-based approaches and a combination of numerical analysis and artificial neural network publication-title: Int. J. Pressure Vessel. Pip. – volume: 1 start-page: 161 year: 2012 end-page: 166 ident: bib0022 article-title: Corrosion resistance of API X52 carbon steel in soil environment publication-title: J. Mater. Res. Technol. – volume: 41 start-page: 1 year: 2019 end-page: 10 ident: bib0018 article-title: Failure pressure prediction of corroded pipes under combined internal pressure and axial compressive force publication-title: J. Brazil. Soc. Mech. Sci. Eng. – volume: 107 year: 2019 ident: bib0013 article-title: Visual inspection and characterization of external corrosion in pipelines using deep neural network publication-title: NDT E Int. – volume: 16 start-page: 410 year: 2021 end-page: 422 ident: bib0011 article-title: Dynamic reliability analysis for residual life assessment of corroded subsea pipelines publication-title: Ships Offshore Struct. – year: 2022 ident: bib0039 article-title: Residual strength assessment and Residual life prediction of corroded pipelines: a decade review publication-title: Energies. (Basel) – volume: 34 start-page: 1 year: 2016 end-page: 15 ident: bib0014 article-title: Omics-based approaches and their use in the assessment of microbial-influenced corrosion of metals publication-title: Corrosion Rev. – start-page: 1 year: 2015 end-page: 11 ident: bib0047 article-title: Residual strength of corroded subsea pipelines subject to combined internal pressure and bending moment publication-title: Ship. Offshore Struct. – year: 2024 ident: bib0031 article-title: Reliability assessment for pipelines corroded by longitudinally aligned defects publication-title: Ocean Eng. – volume: 24 start-page: 173 issue: 3–4 year: 2006 ident: 10.1016/j.apor.2025.104438_bib0054 article-title: Review of models to predict internal pitting corrosion of oil and gas pipelines publication-title: Corros. Rev. – volume: 110 year: 2020 ident: 10.1016/j.apor.2025.104438_bib0053 article-title: Corrosion defect modelling of aged pipelines with a feed-forward multi-layer neural network for leak and burst failure estimation publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2020.104397 – ident: 10.1016/j.apor.2025.104438_bib0015 doi: 10.1177/0309324718782632 – year: 2021 ident: 10.1016/j.apor.2025.104438_bib0057 article-title: Applications of machine learning in Pipeline integrity management: a State-of-the-art review publication-title: Int. J. Pressure Vessel. Pip. doi: 10.1016/j.ijpvp.2021.104471 – volume: 285 year: 2021 ident: 10.1016/j.apor.2025.104438_bib0075 article-title: A review of machine learning in building load prediction publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.116452 – volume: 193 year: 2021 ident: 10.1016/j.apor.2025.104438_bib0003 article-title: A new approach for finite element based reliability evaluation of offshore corroded pipelines publication-title: Int. J. Pressure Vessel. Pip. doi: 10.1016/j.ijpvp.2021.104449 – volume: 186 start-page: 43 year: 2019 ident: 10.1016/j.apor.2025.104438_bib0048 article-title: Burst pressure of corroded pipelines considering combined axial forces and bending moments publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2019.02.010 – year: 2024 ident: 10.1016/j.apor.2025.104438_bib0031 article-title: Reliability assessment for pipelines corroded by longitudinally aligned defects publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2024.118625 – volume: 34 start-page: 1 issue: 1–2 year: 2016 ident: 10.1016/j.apor.2025.104438_bib0014 article-title: Omics-based approaches and their use in the assessment of microbial-influenced corrosion of metals publication-title: Corrosion Rev. doi: 10.1515/corrrev-2015-0046 – volume: 16 start-page: 410 issue: 4 year: 2021 ident: 10.1016/j.apor.2025.104438_bib0011 article-title: Dynamic reliability analysis for residual life assessment of corroded subsea pipelines publication-title: Ships Offshore Struct. doi: 10.1080/17445302.2020.1735834 – year: 2015 ident: 10.1016/j.apor.2025.104438_bib0025 article-title: On modeling the dynamics of pipelines: finite element approach – volume: 2 issue: 2 year: 2022 ident: 10.1016/j.apor.2025.104438_bib0071 article-title: Resilience assessment of a subsea pipeline using dynamic Bayesian network publication-title: J. Pipeline Sci. Eng. doi: 10.1016/j.jpse.2022.100053 – volume: 112 start-page: 255 year: 2017 ident: 10.1016/j.apor.2025.104438_bib0068 article-title: Corroded pipeline failure analysis using artificial neural network scheme publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.05.006 – volume: 51 start-page: 1925 issue: 9 year: 2009 ident: 10.1016/j.apor.2025.104438_bib0019 article-title: Probability distribution of pitting corrosion depth and rate in underground pipelines: a Monte Carlo study publication-title: Corros. Sci. doi: 10.1016/j.corsci.2009.05.019 – volume: 12 issue: 1 year: 2024 ident: 10.1016/j.apor.2025.104438_bib0033 article-title: Review of prediction of stress corrosion cracking in gas pipelines using machine learning publication-title: Machines doi: 10.3390/machines12010042 – volume: 39 start-page: 453 issue: 4 year: 2016 ident: 10.1016/j.apor.2025.104438_bib0078 article-title: Failure assessment on offshore girth welded pipelines due to corrosion defects publication-title: Fatigue Fract. Eng. Mater. Struct. doi: 10.1111/ffe.12370 – volume: 16 start-page: 1161 issue: 8 year: 2020 ident: 10.1016/j.apor.2025.104438_bib0065 article-title: Integrated pipeline corrosion growth modeling and reliability analysis using dynamic Bayesian network and parameter learning technique publication-title: Struct. Infrastruct. Eng. doi: 10.1080/15732479.2019.1692363 – volume: 24 issue: 2 year: 2024 ident: 10.1016/j.apor.2025.104438_bib0026 article-title: Experimental investigation of pore pressure on Sandy seabed around submarine pipeline under irregular wave loading publication-title: Sensors doi: 10.3390/s24020704 – volume: 10 start-page: 118 issue: 1 year: 2024 ident: 10.1016/j.apor.2025.104438_bib0072 article-title: Application of improved support vector machine in predicting failure pressure of oil and gas pipelines with internal corrosion defects publication-title: Academic Journal of Science and Technology doi: 10.54097/1th80z38 – volume: 138 start-page: 8 year: 2016 ident: 10.1016/j.apor.2025.104438_bib0040 article-title: Effect of interaction between corrosion defects on failure pressure of thin wall steel pipeline publication-title: Int. J. Pressure Vessel. Pip. doi: 10.1016/j.ijpvp.2016.01.002 – start-page: 1 year: 2015 ident: 10.1016/j.apor.2025.104438_bib0047 article-title: Residual strength of corroded subsea pipelines subject to combined internal pressure and bending moment publication-title: Ship. Offshore Struct. – ident: 10.1016/j.apor.2025.104438_bib0069 doi: 10.14495/jsiaml.14.73 – volume: 12 start-page: 854 issue: 6 year: 2021 ident: 10.1016/j.apor.2025.104438_bib0070 article-title: Reliability analysis of gas pipeline with corrosion defect based on finite element method publication-title: Int. J. Struct. Integrit. doi: 10.1108/IJSI-11-2020-0112 – year: 2019 ident: 10.1016/j.apor.2025.104438_bib0052 article-title: A data-driven machine learning approach for corrosion risk assessment—a comparative study publication-title: Big. Data Cogn. Comput. doi: 10.3390/bdcc3020028 – volume: 9 issue: 1 year: 2023 ident: 10.1016/j.apor.2025.104438_bib0059 article-title: Time-variant system reliability analysis of concrete sewer pipes under corrosion considering multiple failure modes publication-title: ASCE-ASME J. Risk Uncertain. Eng. Syst., Part A: Civil Eng. – volume: 235 start-page: 374 issue: 3 year: 2020 ident: 10.1016/j.apor.2025.104438_bib0073 article-title: A failure prediction model for corrosion in gas transmission pipelines publication-title: Proc. Inst. Mech. Eng. Part O J. Risk Reliab. – volume: 172 start-page: 261 issue: 19 year: 2019 ident: 10.1016/j.apor.2025.104438_bib0008 article-title: Modeling of pipeline corrosion degradation mechanism with a Lévy Process based on ILI (In-Line) inspections publication-title: Int. J. Pressure Vessel. Pip. doi: 10.1016/j.ijpvp.2019.03.001 – volume: 32 start-page: 2538 issue: 21 year: 2014 ident: 10.1016/j.apor.2025.104438_bib0050 article-title: Modeling the contribution of gas hydrate to corrosion rate along the subsea pipelines publication-title: Pet. Sci. Technol. doi: 10.1080/10916466.2013.842586 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.apor.2025.104438_bib0055 article-title: Scikit-learn: machine learning in {P}ython publication-title: J. Mach. Learn. Res. – volume: 31 start-page: 491 issue: 3 year: 2002 ident: 10.1016/j.apor.2025.104438_bib0061 article-title: Incremental dynamic analysis publication-title: Earthq. Eng. Struct. Dyn. doi: 10.1002/eqe.141 – year: 2022 ident: 10.1016/j.apor.2025.104438_bib0067 article-title: A crack propagation method for pipelines with interacting corrosion and crack defects publication-title: Sensors – year: 2009 ident: 10.1016/j.apor.2025.104438_bib0027 article-title: Estimation of prediction error by using K-fold cross-validation publication-title: Stat. Comput. – volume: 12 start-page: 1281 issue: 10 year: 2016 ident: 10.1016/j.apor.2025.104438_bib0063 article-title: Reliability-based temporal and spatial maintenance strategy for integrity management of corroded underground pipelines publication-title: Struct. Infrastruct. Eng. doi: 10.1080/15732479.2015.1113300 – year: 2023 ident: 10.1016/j.apor.2025.104438_bib0056 article-title: Prediction model and demonstration of regional agricultural carbon emissions based on PCA-GS-KNN: a case study of Zhejiang Province, China publication-title: Environ. Res. Commun. doi: 10.1088/2515-7620/acd0f7 – volume: 53 start-page: 15 year: 2015 ident: 10.1016/j.apor.2025.104438_bib0034 article-title: Predicting the limit pressure capacity of pipe elbows containing single defects publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2015.07.002 – volume: 3 start-page: 403 year: 2008 ident: 10.1016/j.apor.2025.104438_bib0016 article-title: Burst tests on pipeline containing interacting corrosion defects – volume: 9 issue: 3 year: 2021 ident: 10.1016/j.apor.2025.104438_bib0044 article-title: Failure pressure prediction of a corroded pipeline with longitudinally interacting corrosion defects subjected to combined loadings using fem and ann publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse9030281 – volume: 15 start-page: 7460 issue: 20 year: 2022 ident: 10.1016/j.apor.2025.104438_bib0006 article-title: Influence-based consequence assessment of subsea pipeline failure under stochastic degradation publication-title: Energies. (Basel) doi: 10.3390/en15207460 – volume: 4 start-page: 329 year: 2011 ident: 10.1016/j.apor.2025.104438_bib0012 article-title: Pipeline on-bottom stability analysis based on FEM model publication-title: Proc. Int. Conf. Offshore Mech. Arctic Eng. - OMAE – volume: 1 start-page: 161 issue: 3 year: 2012 ident: 10.1016/j.apor.2025.104438_bib0022 article-title: Corrosion resistance of API X52 carbon steel in soil environment publication-title: J. Mater. Res. Technol. doi: 10.1016/S2238-7854(12)70028-5 – volume: 181 issue: August 2019 year: 2020 ident: 10.1016/j.apor.2025.104438_bib0001 article-title: A comparative reliability study of corroded pipelines based on Monte Carlo Simulation and Latin Hypercube sampling methods publication-title: Int. J. Pressure Vessel. Pip. – volume: 41 start-page: 1 issue: 4 year: 2019 ident: 10.1016/j.apor.2025.104438_bib0018 article-title: Failure pressure prediction of corroded pipes under combined internal pressure and axial compressive force publication-title: J. Brazil. Soc. Mech. Sci. Eng. – year: 2021 ident: 10.1016/j.apor.2025.104438_bib0037 article-title: A review of finite element analysis and artificial neural networks as failure pressure prediction tools for corroded pipelines publication-title: Materials. (Basel) – volume: 0 start-page: 1 issue: 0 year: 2020 ident: 10.1016/j.apor.2025.104438_bib0002 article-title: Effects of correlation between the adjacent components on time dependent failure probability of corroded pipelines publication-title: Struct. Infrastruct. Eng. – volume: 17 start-page: 627 issue: 7 year: 2021 ident: 10.1016/j.apor.2025.104438_bib0007 article-title: Optimized deep learning framework for detecting pitting corrosion based on image segmentation publication-title: Int. J. Performab. Eng. doi: 10.23940/ijpe.21.07.p7.627637 – volume: 92 start-page: 222 year: 2018 ident: 10.1016/j.apor.2025.104438_bib0066 article-title: A review on pipeline integrity management utilizing in-line inspection data publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2018.05.010 – volume: 47 start-page: 10 year: 2017 ident: 10.1016/j.apor.2025.104438_bib0017 article-title: Accelerated pitting corrosion test of 304 stainless steel using ASTM G48; experimental investigation and concomitant challenges publication-title: J. Loss. Prev. Process. Ind. doi: 10.1016/j.jlp.2017.02.025 – volume: 51 start-page: 2197 issue: 9 year: 2009 ident: 10.1016/j.apor.2025.104438_bib0020 article-title: Markov chain modelling of pitting corrosion in underground pipelines publication-title: Corros. Sci. doi: 10.1016/j.corsci.2009.06.014 – volume: 131 year: 2022 ident: 10.1016/j.apor.2025.104438_bib0060 article-title: Integrity assessment of corroded oil and gas pipelines using machine learning: a systematic review publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2021.105810 – year: 2024 ident: 10.1016/j.apor.2025.104438_bib0030 – year: 2020 ident: 10.1016/j.apor.2025.104438_bib0024 article-title: Towards characterization of indoor environment in smart buildings: modelling PMV index using neural network with one hidden layer publication-title: Sustainability. doi: 10.3390/su12176749 – volume: 15 start-page: 2259 issue: 6 year: 2022 ident: 10.1016/j.apor.2025.104438_bib0036 article-title: Artificial neural network-based failure pressure prediction of API 5L X80 pipeline with circumferentially aligned interacting corrosion defects subjected to combined loadings publication-title: Materials. (Basel) doi: 10.3390/ma15062259 – volume: 2 issue: 4 year: 2017 ident: 10.1016/j.apor.2025.104438_bib0051 article-title: Finite element modelling and retained life estimation of corroded pipelines in consideration of burst pressures—A fractural mechanics approach publication-title: Infrastructures. (Basel) – volume: 209 issue: April year: 2024 ident: 10.1016/j.apor.2025.104438_bib0005 article-title: Failure assessment of corroded offshore pipelines using code-based approaches and a combination of numerical analysis and artificial neural network publication-title: Int. J. Pressure Vessel. Pip. – year: 1957 ident: 10.1016/j.apor.2025.104438_bib0058 – year: 2023 ident: 10.1016/j.apor.2025.104438_bib0064 article-title: Theoretical evaluation methods for remaining strength of seawater pipelines with corrosion defects publication-title: J. Phys. Conf. Ser. – year: 2020 ident: 10.1016/j.apor.2025.104438_bib0021 article-title: Effects of depth in external and internal corrosion defects on failure pressure predictions of oil and gas pipelines using finite element models publication-title: Adv. Struct. Eng. – year: 2021 ident: 10.1016/j.apor.2025.104438_bib0029 article-title: Modelling freshwater eutrophication with limited limnological data using artificial neural networks publication-title: Water. (Basel) – volume: 11 start-page: 3134 issue: 11 year: 2023 ident: 10.1016/j.apor.2025.104438_bib0074 article-title: Study on assessment method of failure pressure for pipelines with colony corrosion defects based on failure location publication-title: Processes doi: 10.3390/pr11113134 – volume: 171 start-page: 71 year: 2023 ident: 10.1016/j.apor.2025.104438_bib0046 article-title: Advances in corrosion growth modeling for oil and gas pipelines: a review publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2022.12.054 – volume: 2 issue: 7 year: 2020 ident: 10.1016/j.apor.2025.104438_bib0009 article-title: Burst capacity analysis of pipeline with multiple longitudinally aligned interacting corrosion defects subjected to internal pressure and axial compressive stress publication-title: SN. Appl. Sci. doi: 10.1007/s42452-020-2994-7 – year: 2023 ident: 10.1016/j.apor.2025.104438_bib0035 article-title: Machine learning-based pedo transfer function for estimating the soil compression index publication-title: J. Sci. Technol. Civil Eng. (Stce) - Huce – volume: 9 start-page: 281 issue: 3 year: 2021 ident: 10.1016/j.apor.2025.104438_bib0045 article-title: Failure pressure prediction of a corroded pipeline with longitudinally interacting corrosion defects subjected to combined loadings using FEM and ANN publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse9030281 – year: 2010 ident: 10.1016/j.apor.2025.104438_bib0023 – volume: 318 start-page: 562 year: 2013 ident: 10.1016/j.apor.2025.104438_bib0077 article-title: Oil and gas pipeline residual strength research based on reliability analysis publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.318.562 – year: 2016 ident: 10.1016/j.apor.2025.104438_bib0049 article-title: Burst pressure assessment for pipelines with multiple corrosion defects publication-title: Canadian Soc. Civil Eng. – year: 2009 ident: 10.1016/j.apor.2025.104438_bib0010 article-title: Manual for determining the remaining strength of corroded pipelines – year: 2022 ident: 10.1016/j.apor.2025.104438_bib0039 article-title: Residual strength assessment and Residual life prediction of corroded pipelines: a decade review publication-title: Energies. (Basel) – volume: 12 issue: 10 year: 2019 ident: 10.1016/j.apor.2025.104438_bib0032 article-title: Non-probabilistic time-varying reliability-based analysis of corroded pipelines considering the interaction of multiple uncertainty variables publication-title: Energies. (Basel) – volume: 65 start-page: 332 issue: 5 year: 2009 ident: 10.1016/j.apor.2025.104438_bib0062 article-title: Predictive model for pitting corrosion in buried oil and gas pipelines publication-title: Corrosion doi: 10.5006/1.3319138 – volume: 153 start-page: 413 year: 2021 ident: 10.1016/j.apor.2025.104438_bib0042 article-title: A data-driven corrosion prediction model to support digitization of subsea operations publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2021.07.031 – volume: 73 start-page: 309 year: 2013 ident: 10.1016/j.apor.2025.104438_bib0076 article-title: Inverse Gaussian process-based corrosion growth model for energy pipelines considering the sizing error in inspection data publication-title: Corros. Sci. doi: 10.1016/j.corsci.2013.04.020 – volume: 51 start-page: 160 issue: 2 year: 1954 ident: 10.1016/j.apor.2025.104438_bib0028 article-title: Kolmogorov-Smirnov tests for psychological research publication-title: Psychol. Bull. doi: 10.1037/h0060275 – volume: 52 start-page: 247 year: 2017 ident: 10.1016/j.apor.2025.104438_bib0038 article-title: Detection and sizing of metal-loss defects in oil and gas pipelines using pattern-adapted wavelets and machine learning publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2016.10.040 – volume: 254 year: 2022 ident: 10.1016/j.apor.2025.104438_bib0004 article-title: Predicting failure pressure of the corroded offshore pipelines using an efficient finite element based algorithm and machine learning techniques publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.111382 – volume: 107 year: 2019 ident: 10.1016/j.apor.2025.104438_bib0013 article-title: Visual inspection and characterization of external corrosion in pipelines using deep neural network publication-title: NDT E Int. doi: 10.1016/j.ndteint.2019.102134 |
| SSID | ssj0012868 |
| Score | 2.4055111 |
| Snippet | This research presents a method for analyzing the Remaining Useful Life (RUL) of pipelines impacted by corrosion defects through the integration of Latin... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 104438 |
| SubjectTerms | Latin hypercube sampling Machine learning Offshore pipeline engineering Pipeline integrity management Random sampling Remaining useful life Structural reliability |
| Title | Data-driven remaining useful life estimation of subsea pipelines under effect of interacting corrosion defects |
| URI | https://dx.doi.org/10.1016/j.apor.2025.104438 |
| Volume | 155 |
| WOSCitedRecordID | wos001421632000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 0141-1187 databaseCode: DOA dateStart: 20250101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: false ssIdentifier: ssj0012868 providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0141-1187 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0012868 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKxwMgIRggxsfkB96iTMun48cCQ4DYQKJCfYsu_lAztWmVdNM28cfji500DDQBEi9WlMZx5fvlfD7f746QV2ZNwuOwwtcyjf04FcLPIOA-U0ybzY-WvOWtffvETk6y2Yx_GY2-d1yY8wWrquzigq__q6jNPSNspM7-hbj7l5ob5toI3bRG7Kb9I8G_hQ34skYt5tVqaStAeGeNwmjkRamVh4k1lr2p2BjVocBbl2ukpqumrYxbu0CPLqNEy6Vq6bm1WVaxp1RtIMjQuO0sWrMkAo49cJS1AbpNo8rqCqRqXTlfV3N12cd3vIY5gGW9H6_msFyCrNVVv2ZMiktbfAp_bbb0tSnMHVf-uFyAHPowwqQLe-4cax25ZhvJZH2dgY_V0H9S1jap7y-K3_ogTg_A7FoOcAg8vI5t4phrCbUxni3A94ZYDMIYhLfITsgSno3JzuTD0exjfwoVZi2Vsv8jjnRl4wOvj_R7w2ZgrEwfkPtul0EnFh0PyUhVu-TuIPfkLrn3GaXkEpY_ItUANrSHDbWwoQgbuoUNXWlqYUN72NAWNtTCBh8YwIb2sKEONo_J9N3R9M1739Xi8EUUxxsfjN7Wgh_qQnGhk0hnADwoMoMZKZOQgzBfuFABK0zLOBPxYRFqzUSkUiaC6AkZV6tKPSWUqULGUkQpZvILpIaoSIFpEaY8SaIE9kjQzWMuXJ56LJeyyLuAxNMc5z7Huc_t3O8Rr--ztllabnw66cSTOzvT2o-5QdMN_Z79Y7_n5M4W9C_IeFOfqZfktjjflE2970C333qDfgBqxarC |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+remaining+useful+life+estimation+of+subsea+pipelines+under+effect+of+interacting+corrosion+defects&rft.jtitle=Applied+ocean+research&rft.au=Hosseinzadeh%2C+Soheyl&rft.au=Bahaari%2C+Mohammadreza&rft.au=Abyani%2C+Mohsen&rft.au=Taheri%2C+Milad&rft.date=2025-02-01&rft.pub=Elsevier+Ltd&rft.issn=0141-1187&rft.volume=155&rft_id=info:doi/10.1016%2Fj.apor.2025.104438&rft.externalDocID=S0141118725000264 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-1187&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-1187&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-1187&client=summon |