Refined notions of parameterized enumeration kernels with applications to matching cut enumeration

An enumeration kernel as defined by Creignou et al. (2017) [11] for a parameterized enumeration problem consists of an algorithm that transforms each instance into one whose size is bounded by the parameter plus a solution-lifting algorithm that efficiently enumerates all solutions from the set of t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computer and system sciences Ročník 123; s. 76 - 102
Hlavní autoři: Golovach, Petr A., Komusiewicz, Christian, Kratsch, Dieter, Le, Van Bang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.02.2022
Témata:
ISSN:0022-0000, 1090-2724
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:An enumeration kernel as defined by Creignou et al. (2017) [11] for a parameterized enumeration problem consists of an algorithm that transforms each instance into one whose size is bounded by the parameter plus a solution-lifting algorithm that efficiently enumerates all solutions from the set of the solutions of the kernel. We propose to consider two new versions of enumeration kernels by asking that the solutions of the original instance can be enumerated in polynomial time or with polynomial delay from the kernel solutions. Using the NP-hard Matching Cut problem parameterized by structural parameters such as the vertex cover number or the cyclomatic number of the input graph, we show that the new enumeration kernels present a useful notion of data reduction for enumeration problems which allows to compactly represent the set of feasible solutions.
ISSN:0022-0000
1090-2724
DOI:10.1016/j.jcss.2021.07.005