Accurate Classification of EEG Signals Using Neural Networks Trained by Hybrid Population-physic-based Algorithm

A brain-computer interface (BCI) system is one of the most effective ways that translates brain signals into output commands. Different imagery activities can be classified based on the changes in μ and β rhythms and their spatial distributions. Multi-layer perceptron neural networks (MLP-NNs) are c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Machine intelligence research (Print) Ročník 17; číslo 1; s. 108 - 122
Hlavní autoři: Afrakhteh, Sajjad, Mosavi, Mohammad-Reza, Khishe, Mohammad, Ayatollahi, Ahmad
Médium: Journal Article
Jazyk:angličtina
Vydáno: Beijing Springer Nature B.V 01.02.2020
Témata:
ISSN:2153-182X, 2153-1838
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A brain-computer interface (BCI) system is one of the most effective ways that translates brain signals into output commands. Different imagery activities can be classified based on the changes in μ and β rhythms and their spatial distributions. Multi-layer perceptron neural networks (MLP-NNs) are commonly used for classification. Training such MLP-NNs has great importance in a way that has attracted many researchers to this field recently. Conventional methods for training NNs, such as gradient descent and recursive methods, have some disadvantages including low accuracy, slow convergence speed and trapping in local minimums. In this paper, in order to overcome these issues, the MLP-NN trained by a hybrid population-physics-based algorithm, the combination of particle swarm optimization and gravitational search algorithm (PSOGSA), is proposed for our classification problem. To show the advantages of using PSOGSA that trains NNs, this algorithm is compared with other meta-heuristic algorithms such as particle swarm optimization (PSO), gravitational search algorithm (GSA) and new versions of PSO. The metrics that are discussed in this paper are the speed of convergence and classification accuracy metrics. The results show that the proposed algorithm in most subjects of encephalography (EEG) dataset has very better or acceptable performance compared to others.
AbstractList A brain-computer interface (BCI) system is one of the most effective ways that translates brain signals into output commands. Different imagery activities can be classified based on the changes in μ and β rhythms and their spatial distributions. Multi-layer perceptron neural networks (MLP-NNs) are commonly used for classification. Training such MLP-NNs has great importance in a way that has attracted many researchers to this field recently. Conventional methods for training NNs, such as gradient descent and recursive methods, have some disadvantages including low accuracy, slow convergence speed and trapping in local minimums. In this paper, in order to overcome these issues, the MLP-NN trained by a hybrid population-physics-based algorithm, the combination of particle swarm optimization and gravitational search algorithm (PSOGSA), is proposed for our classification problem. To show the advantages of using PSOGSA that trains NNs, this algorithm is compared with other meta-heuristic algorithms such as particle swarm optimization (PSO), gravitational search algorithm (GSA) and new versions of PSO. The metrics that are discussed in this paper are the speed of convergence and classification accuracy metrics. The results show that the proposed algorithm in most subjects of encephalography (EEG) dataset has very better or acceptable performance compared to others.
Author Afrakhteh, Sajjad
Khishe, Mohammad
Mosavi, Mohammad-Reza
Ayatollahi, Ahmad
Author_xml – sequence: 1
  givenname: Sajjad
  surname: Afrakhteh
  fullname: Afrakhteh, Sajjad
– sequence: 2
  givenname: Mohammad-Reza
  surname: Mosavi
  fullname: Mosavi, Mohammad-Reza
– sequence: 3
  givenname: Mohammad
  surname: Khishe
  fullname: Khishe, Mohammad
– sequence: 4
  givenname: Ahmad
  surname: Ayatollahi
  fullname: Ayatollahi, Ahmad
BookMark eNo9j09LwzAchoNMcM59AG8Bz9Ekv7TNjmPMTRgquIG3kaTJllmbmrRIv731D56e9_DwwHuJRnWoLULXjN4ySou7xFgOQCiThLFMEjhDY84yIEyCHP1v_nqBpimdKKUAnOYzGKNmbkwXVWvxolIpeeeNan2ocXB4uVzhF3-oVZXwLvn6gB_t4FYD2s8Q3xLeRuVrW2Ld43Wvoy_xc2i66qdAmmOfvCFapcGYV4cQfXt8v0Lnbgja6R8naHe_3C7WZPO0eljMN8SAEC1RIDMunBCOG6ZlwTOghSopOGGAzpjRxkmlhmdaFxJUqZzQlhZCFrmjMoMJuvntNjF8dDa1-1Po4veXPZ8xmUsJuYQvNPlfTQ
CitedBy_id crossref_primary_10_3390_su14137781
crossref_primary_10_1109_ACCESS_2023_3274704
crossref_primary_10_1515_bmt_2021_0025
crossref_primary_10_3390_make3040042
crossref_primary_10_1016_j_aei_2025_103510
crossref_primary_10_1007_s12530_019_09280_x
crossref_primary_10_1007_s11633_020_1231_6
crossref_primary_10_1016_j_energy_2022_125259
crossref_primary_10_1002_ima_22913
crossref_primary_10_1016_j_jclepro_2022_132697
crossref_primary_10_1007_s12530_025_09705_w
crossref_primary_10_1007_s00500_019_04515_0
crossref_primary_10_1007_s00773_022_00897_3
crossref_primary_10_1155_2022_3216400
crossref_primary_10_1007_s12530_024_09612_6
crossref_primary_10_1186_s13634_024_01180_w
crossref_primary_10_1007_s11063_022_11068_1
crossref_primary_10_1016_j_compbiomed_2025_111023
crossref_primary_10_1007_s11517_023_02782_6
crossref_primary_10_1007_s40815_021_01195_7
crossref_primary_10_1088_1741_2552_ad7f8e
crossref_primary_10_1016_j_eswa_2022_119206
crossref_primary_10_1007_s11633_019_1178_7
crossref_primary_10_1016_j_bspc_2025_107706
crossref_primary_10_1016_j_knosys_2025_113548
crossref_primary_10_3390_jpm12030455
crossref_primary_10_1007_s00500_021_05886_z
crossref_primary_10_1016_j_jestch_2024_101684
crossref_primary_10_1007_s40747_024_01502_3
crossref_primary_10_1007_s11277_022_09625_x
crossref_primary_10_1007_s11633_019_1197_4
crossref_primary_10_1016_j_neucom_2025_130603
ContentType Journal Article
Copyright Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018.
Copyright_xml – notice: Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018.
DBID 8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s11633-018-1158-3
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2153-1838
EndPage 122
GroupedDBID 8FE
8FG
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c344t-a38524f44f2c1b8725307ad03f4c3091cbcf8aa215bb783adaf4be074876f0853
IEDL.DBID K7-
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000515330400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2153-182X
IngestDate Fri Nov 07 23:37:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-a38524f44f2c1b8725307ad03f4c3091cbcf8aa215bb783adaf4be074876f0853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918688368
PQPubID 6623301
PageCount 15
ParticipantIDs proquest_journals_2918688368
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Machine intelligence research (Print)
PublicationYear 2020
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
SSID ssj0003320693
Score 2.3395944
Snippet A brain-computer interface (BCI) system is one of the most effective ways that translates brain signals into output commands. Different imagery activities can...
SourceID proquest
SourceType Aggregation Database
StartPage 108
SubjectTerms Algorithms
Classification
Convergence
Electroencephalography
Heuristic methods
Human-computer interface
Multilayer perceptrons
Multilayers
Neural networks
Particle swarm optimization
Recursive methods
Search algorithms
Signal classification
Spatial distribution
Training
Title Accurate Classification of EEG Signals Using Neural Networks Trained by Hybrid Population-physic-based Algorithm
URI https://www.proquest.com/docview/2918688368
Volume 17
WOSCitedRecordID wos000515330400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2153-1838
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0003320693
  issn: 2153-182X
  databaseCode: P5Z
  dateStart: 20041001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2153-1838
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0003320693
  issn: 2153-182X
  databaseCode: K7-
  dateStart: 20041001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2153-1838
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0003320693
  issn: 2153-182X
  databaseCode: BENPR
  dateStart: 20041001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4UPHjxETU-kPTgtRHaso-TQbPIabNRTIgX0nZbJFFAdjHh3ztTFjyYePGyl81umj5mvpnOfB8hNznSlCsumeLWMilCyWKLzTkxsktZF_DQebGJME2j4TDOqoRbUZVVbmyiN9T5zGCO_JbHSOweiSC6m38yVI3C29VKQmOX1NscjDBeyoZsm2MRgrcCz7sLjk0wgNLDzcWm754DLILFRBBGtTsRE7_MsfcxvcP_ju6IHFToknbX2-GY7NjpCZl3jVkiIwT1CphYG-SXg84cTZJH-jwZI4ky9dUDFNk64Bfpujy8oAPUkLA51SvaX2F7F822ml9snRdh6Apz2n0fw5DKt49T8tJLBg99VgktMCOkLJkSUYdLJ6Xjpq2jkHfg5Ku8JZw0AgCF0cZFSsEkah3C0ubKSW0BfIApdYDZxBmpTWdTe04oV1rzUDsFwA5WPoQvcxVYGyuI3LiKL0hjM4Gj6rQUo5_Zu_z79RXZ5xjv-qrpBqmVi6W9Jnvmq5wUiyap3ydp9tT0mwCeWef1Gyi3uzQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LL0QxFD5hSNh4BPHWBcsGbec-FiKDYQQ3E0Yyu9H2tkiYwQwyf8pvdE5nLguJnYV10ybtOTmvnvN9AJs5wZRrobgWznElY8VTR8M5KaFLOR-J2AeyiTjLkmYzrY_ARzELQ22VhU0MhjrvWKqRb4uUgN0TGSX7T8-cWKPod7Wg0BioxZnrv2PK1t07PUL5bglxXG0c1viQVYBbqVSPa5mUhfJKeWF3TRKLMqq5znekV1ai97TG-kRrdIXGxHiPXHtlHHpatBseAxSJ547CmJIqKpdg7KCa1S-_qjpSip0oIP3ifskxeG8WX6lhXg-jH2pfwsRtt5xw-cMBBK92PP3f3mMGpobxM6sMFH4WRlx7Dp4q1r4S5gULHJ_U_RQUjnU8q1ZP2NX9LcFEs9AfwQiPBI_IBg3wXdYglgyXM9NntT4NsLH6F6sZH1R-ODn7nFUebvEJeneP83D9J5dcgFK703aLwIQ2RsTGawxdUbdj3JnryLlUY24qdLoEq4XAWkN70G19S2v59-UNmKg1Ls5b56fZ2QpMCsruQ4_4KpR6L69uDcbtW----7I-VD0GN38t3U8e9Bax
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+Classification+of+EEG+Signals+Using+Neural+Networks+Trained+by+Hybrid+Population-physic-based+Algorithm&rft.jtitle=Machine+intelligence+research+%28Print%29&rft.au=Afrakhteh%2C+Sajjad&rft.au=Mosavi%2C+Mohammad-Reza&rft.au=Khishe%2C+Mohammad&rft.au=Ayatollahi%2C+Ahmad&rft.date=2020-02-01&rft.pub=Springer+Nature+B.V&rft.issn=2153-182X&rft.eissn=2153-1838&rft.volume=17&rft.issue=1&rft.spage=108&rft.epage=122&rft_id=info:doi/10.1007%2Fs11633-018-1158-3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2153-182X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2153-182X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2153-182X&client=summon