Stacking integration algorithm based on CNN-BiLSTM-Attention with XGBoost for short-term electricity load forecasting
Improving the accuracy of electric load forecasting is critical for grid stability, industrial production, and residents' daily lives. Traditional short-term load forecasting methods often struggle to fully capture the long-term dependencies and deep-seated features in unknown datasets, thus li...
Uloženo v:
| Vydáno v: | Energy reports Ročník 12; s. 2676 - 2689 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.12.2024
|
| Témata: | |
| ISSN: | 2352-4847, 2352-4847 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!