Stacking integration algorithm based on CNN-BiLSTM-Attention with XGBoost for short-term electricity load forecasting

Improving the accuracy of electric load forecasting is critical for grid stability, industrial production, and residents' daily lives. Traditional short-term load forecasting methods often struggle to fully capture the long-term dependencies and deep-seated features in unknown datasets, thus li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy reports Jg. 12; S. 2676 - 2689
Hauptverfasser: Luo, Shucheng, Wang, Baoshi, Gao, Qingzhong, Wang, Yibao, Pang, Xinfu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.12.2024
Schlagworte:
ISSN:2352-4847, 2352-4847
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Improving the accuracy of electric load forecasting is critical for grid stability, industrial production, and residents' daily lives. Traditional short-term load forecasting methods often struggle to fully capture the long-term dependencies and deep-seated features in unknown datasets, thus limiting their generalization ability. In this paper, we propose an algorithm for short-term power load forecasting based on the stacking integration algorithm of Convolutional Neural Network-Bidirectional Long Short-Term Neural Network-Attention Mechanism (CNN-BiLSTM-Attention) with Extreme Gradient Tree (XGBoost). First, an adaptive hierarchical clustering algorithm (AHC) selects a dataset with similar day characteristics. Then, combined with influencing factors, the Stacking integrated algorithm based on CNN-BiLSTM-Attention and XGBoost is employed for forecasting short-term load data. Finally, the integrated algorithm model was applied to the multi-feature load dataset in the Quanzhou area from 2016 to 2018. Comparative analysis showed that MAPE could be reduced by 5.88–69.40 % in the four selected typical days compared to the comparative algorithm, significantly improving load forecasting accuracy. •AHC is used to select similar daily samples.•Presented a Stacking ensemble algorithm based on CNN-BiLSTM-Attention and XGBoost.•Designed and conducted comparison experiments.•Conducted sensitivity analysis experiments.
AbstractList Improving the accuracy of electric load forecasting is critical for grid stability, industrial production, and residents' daily lives. Traditional short-term load forecasting methods often struggle to fully capture the long-term dependencies and deep-seated features in unknown datasets, thus limiting their generalization ability. In this paper, we propose an algorithm for short-term power load forecasting based on the stacking integration algorithm of Convolutional Neural Network-Bidirectional Long Short-Term Neural Network-Attention Mechanism (CNN-BiLSTM-Attention) with Extreme Gradient Tree (XGBoost). First, an adaptive hierarchical clustering algorithm (AHC) selects a dataset with similar day characteristics. Then, combined with influencing factors, the Stacking integrated algorithm based on CNN-BiLSTM-Attention and XGBoost is employed for forecasting short-term load data. Finally, the integrated algorithm model was applied to the multi-feature load dataset in the Quanzhou area from 2016 to 2018. Comparative analysis showed that MAPE could be reduced by 5.88–69.40 % in the four selected typical days compared to the comparative algorithm, significantly improving load forecasting accuracy. •AHC is used to select similar daily samples.•Presented a Stacking ensemble algorithm based on CNN-BiLSTM-Attention and XGBoost.•Designed and conducted comparison experiments.•Conducted sensitivity analysis experiments.
Author Luo, Shucheng
Wang, Yibao
Pang, Xinfu
Gao, Qingzhong
Wang, Baoshi
Author_xml – sequence: 1
  givenname: Shucheng
  surname: Luo
  fullname: Luo, Shucheng
  organization: Key Laboratory of Energy Saving and Controlling in Power System of Liaoning Province, Shenyang Institute of Engineering, Shenyang 110136, China
– sequence: 2
  givenname: Baoshi
  surname: Wang
  fullname: Wang, Baoshi
  email: wangbs@sie.edu.cn
  organization: Key Laboratory of Energy Saving and Controlling in Power System of Liaoning Province, Shenyang Institute of Engineering, Shenyang 110136, China
– sequence: 3
  givenname: Qingzhong
  surname: Gao
  fullname: Gao, Qingzhong
  organization: Key Laboratory of Energy Saving and Controlling in Power System of Liaoning Province, Shenyang Institute of Engineering, Shenyang 110136, China
– sequence: 4
  givenname: Yibao
  surname: Wang
  fullname: Wang, Yibao
  organization: Zhangjiakou Electric Power Supply Company, State Grid Jibei Electric Power Company Limited, Zhangjiakou 075000, China
– sequence: 5
  givenname: Xinfu
  surname: Pang
  fullname: Pang, Xinfu
  organization: Key Laboratory of Energy Saving and Controlling in Power System of Liaoning Province, Shenyang Institute of Engineering, Shenyang 110136, China
BookMark eNp9kMFOAjEQhhujiYi8gKe-wK7ddrdbEi9AFE0QD2DirSndWSguW9NWDW9vFzwYD5xmMjPfzPz_FTpvbQsI3WQkzUjGb7cprPcupYTmKREpKcUZ6lFW0CQXeXn-J79EA--3hJBsSEnOWQ99LoLS76ZdY9MGWDsVjG2xatbWmbDZ4ZXyUOFYmsznydjMFsvnZBQCtIe57ziD36Zja33AtXXYb6wLSQC3w9CADs5oE_a4sarq-qCVD_HYNbqoVeNh8Bv76PXhfjl5TGYv06fJaJZoluchUUSLFaerQtRKQJHxsqhKRTVlFegqAyEoH1IOTCvGCQMuBBE5K2kNutRVwfpIHPdqZ713UMv4zkFicMo0MiOyc1BuZeeg7ByURMjoYETpP_TDmZ1y-9PQ3RGCKOrLgJNeG2g1VCZqD7Ky5hT-A8wijrA
CitedBy_id crossref_primary_10_1016_j_egyr_2025_01_058
crossref_primary_10_1016_j_asej_2025_103478
crossref_primary_10_1016_j_energy_2025_135107
crossref_primary_10_1177_14727978251352157
crossref_primary_10_3390_rs17061047
crossref_primary_10_1109_ACCESS_2024_3519132
crossref_primary_10_1115_1_4068056
crossref_primary_10_3390_app15095214
crossref_primary_10_1016_j_ejrh_2025_102443
crossref_primary_10_1016_j_energy_2025_136938
crossref_primary_10_1038_s41598_025_94000_6
crossref_primary_10_1371_journal_pone_0329630
crossref_primary_10_1371_journal_pone_0321529
crossref_primary_10_1109_ACCESS_2025_3555737
crossref_primary_10_1016_j_engappai_2025_111198
crossref_primary_10_3390_en18123068
crossref_primary_10_1016_j_egyr_2024_11_057
crossref_primary_10_3390_app15052435
crossref_primary_10_1016_j_eswa_2024_125567
crossref_primary_10_1016_j_engfailanal_2025_109936
crossref_primary_10_3390_en18112760
crossref_primary_10_3390_app15179569
crossref_primary_10_3390_electronics14112287
crossref_primary_10_3390_machines13030248
crossref_primary_10_3390_en18092358
crossref_primary_10_3390_rs17142383
crossref_primary_10_1016_j_jwpe_2025_108341
crossref_primary_10_3390_app15094920
crossref_primary_10_3390_electronics14030403
crossref_primary_10_3390_en18061342
Cites_doi 10.1007/s11069-015-1842-3
10.1109/ACCESS.2020.3042848
10.1016/j.energy.2022.124468
10.1061/(ASCE)CP.1943-5487.0000553
10.1109/TNNLS.2016.2582924
10.1016/j.enbuild.2020.109921
10.1016/j.compeleceng.2021.107663
10.1016/j.ijepes.2021.107818
10.1007/s11053-019-09548-8
10.1016/j.energy.2021.122245
10.1016/j.energy.2019.03.059
10.1109/ACCESS.2022.3221454
10.1061/(ASCE)CF.1943-5509.0001292
10.1016/j.ijepes.2023.109013
10.1145/3065386
10.1016/j.apenergy.2019.114368
10.1016/j.neucom.2018.09.082
10.3390/su14095669
10.1016/j.ssci.2019.05.046
10.1371/journal.pone.0300229
10.1109/ICJECE.2021.3076124
10.3390/app9183715
10.1016/j.egyr.2021.11.172
10.1016/j.undsp.2020.03.001
10.3390/jmse12030414
10.1016/S0893-6080(05)80023-1
10.1016/j.energy.2020.118874
10.3390/info9070149
10.1109/CENCON.2015.7409585
10.1016/j.epsr.2020.106841
10.1109/TPWRS.2020.3018623
10.1145/2939672.2939785
10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00113
10.1109/ACCESS.2020.3010702
10.1016/j.renene.2019.07.081
10.1016/S1003-6326(11)61195-3
10.1016/j.neucom.2020.04.110
10.1016/j.epsr.2022.108066
10.3390/app9132714
10.3390/en11040949
10.1016/j.neucom.2021.03.091
10.1016/j.gsf.2020.03.007
10.1007/s11053-019-09470-z
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.egyr.2024.08.078
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2352-4847
EndPage 2689
ExternalDocumentID 10_1016_j_egyr_2024_08_078
S2352484724005705
GroupedDBID 0R~
4.4
457
5VS
6I.
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
KQ8
M41
M~E
O9-
OK1
ROL
SSZ
AAYXX
CITATION
ID FETCH-LOGICAL-c344t-a0c8b62b58fa8e51675d7a2c23decd1e8826926e3ca3603e688084372fec7cd53
ISICitedReferencesCount 41
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001305397600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2352-4847
IngestDate Sat Nov 29 07:42:52 EST 2025
Tue Nov 18 21:44:52 EST 2025
Sat Aug 23 17:11:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords CNN
BiLSTM
Electricity load forecasting
Stacking integration algorithm
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-a0c8b62b58fa8e51675d7a2c23decd1e8826926e3ca3603e688084372fec7cd53
OpenAccessLink http://dx.doi.org/10.1016/j.egyr.2024.08.078
PageCount 14
ParticipantIDs crossref_citationtrail_10_1016_j_egyr_2024_08_078
crossref_primary_10_1016_j_egyr_2024_08_078
elsevier_sciencedirect_doi_10_1016_j_egyr_2024_08_078
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle Energy reports
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yang, Li, Li, Miao (bib39) 2019; 175
Wei, Shaohua, Gang, Yang, Peng, Xia (bib35) 2024; 12
Kong, Wang, Xiao, Bai (bib13) 2023; 148
Du, Cheng, Zhou, Zhang, Zhang, Li (bib7) 2020; 440
Zhou, Li, Yang, Wang, Shi, Yao, Mitri (bib50) 2019; 118
Dhaliwal, Nahid, Abbas (bib3) 2018; 9
Krizhevsky, Sutskever, Hinton (bib14) 2012; 60
Huang, Hasan, Deng, Bao (bib10) 2022; 239
Jie, H.; Li, S.; Gang, S. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18-23 June 2018.
Sharma, Majumdar, Elvira, Chouzenoux (bib27) 2020; 35
Tong, Wang, Zhang, Wu, Wang, Wang (bib33) 2022; 8
Greff, Srivastava, Koutnik, Steunebrink, Schmidhuber (bib9) 2017; 28
Niu, Zhong, Yu (bib24) 2021; 452
Li, Wei, Dai (bib15) 2021; 34
Zhou, Wang, Hu, Wu (bib51) 2020; 1631
Sulaiman, Jeyanthy, Devaraj, Shihabudheen (bib31) 2022; 98
Shi, Zhou, Wu, Huang, Wei (bib28) 2012; 22
Mustapha, M.; Mustafa, M.W.; Khalid, S.N.; Abubakar, I.; Shareef, H. Classification of electricity load forecasting based on the factors influencing the load consumption and methods used: an-overview. In Proceedings of the 2015 IEEE Conference on Energy Conversion (CENCON), Johor Bahru, Malaysia, 19-20 October 2015.
Ding, Nguyen, Bui, Zhou, Moayedi (bib4) 2019; 29
Wang, Deng, Ge, Dong, Bethel, Yang, Xia (bib34) 2022; 73
Kong, Li, Wang, Zhang, Zhang (bib12) 2020; 261
Zhu, Geng, Wang (bib52) 2021; 190
Chen, T.Q.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceeding of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, California, USA, 13-17 August 2016.
Thi, Nguyen, Zhou, Pradhan, Moayedi (bib32) 2019; 9
Yoon (bib40) 2020; 57
Zhang, Zhang, Wu, Goh, Wang (bib44) 2020; 7
Xu, Zhou, Asteris, Jahed, Tahir (bib37) 2019; 9
Zhou, Li, Wang, Chen, Shi, Jiang (bib49) 2019; 33
Massaoudi, Refaat, Chihi, Trabelsi, Oueslati, Abu-Rub (bib20) 2021; 214
Singh, S.; Yassine, A.; Rachid, B. Internet of energy: Ensemble learning through multilevel stacking for load forecasting. In Proceedings of the 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Calgary, AB, Canada, 17-22 August 2020.
Zhou, Li, Mitri (bib48) 2016; 30
Moon, Jung, Rew, Rho, Hwang (bib21) 2020; 216
Alhmoud, Nawafleh (bib1) 2021; 44
Graves (bib8) 2012
Lu, Li, Li, Sun, Wang (bib18) 2020; 2020
Mamun, Sohel, Mohammad, Haque, Dipta, Hossain (bib19) 2020; 8
Zakaria, Ismail, Lipu, Hannan (bib41) 2020; 145
Lin, Ma, Zhu, Cui (bib16) 2022; 137
Nguyen, Drebenstedt, Bui, Bui (bib23) 2019; 29
Liu, Tang, Pu, Mei, Sidorov (bib17) 2022; 210
Zhang, Wu, Zhong, Li, Wang (bib43) 2021; 12
Sagheer, Kotb (bib26) 2019; 323
Yan, Tian, Alattas, Mohamadzadeh, Sabzalian, Mosavi (bib38) 2022; 10
Zhao, Zhang, Yang, Yuan (bib46) 2022; 255
Zhang, Gong (bib42) 2020; 8
Divina, Gilson, Goméz-Vela, García, Torres (bib6) 2018; 11
Pang, Sun, Li, Liu, Luan (bib25) 2024; 19
Ding, Zhu, Feng, Zhang, Cheng (bib5) 2020; 403
Wolpert (bib36) 1992; 5
Sujan, Akashdeep, Harshvardhan, Sowmya (bib30) 2022; 52
Zhou, Li, Mitri (bib47) 2015; 79
Zhang, Zhu (bib45) 2022; 14
Thi (10.1016/j.egyr.2024.08.078_bib32) 2019; 9
Zhou (10.1016/j.egyr.2024.08.078_bib49) 2019; 33
Li (10.1016/j.egyr.2024.08.078_bib15) 2021; 34
Zhou (10.1016/j.egyr.2024.08.078_bib47) 2015; 79
Kong (10.1016/j.egyr.2024.08.078_bib13) 2023; 148
Pang (10.1016/j.egyr.2024.08.078_bib25) 2024; 19
Massaoudi (10.1016/j.egyr.2024.08.078_bib20) 2021; 214
Tong (10.1016/j.egyr.2024.08.078_bib33) 2022; 8
Kong (10.1016/j.egyr.2024.08.078_bib12) 2020; 261
10.1016/j.egyr.2024.08.078_bib2
Krizhevsky (10.1016/j.egyr.2024.08.078_bib14) 2012; 60
Zhou (10.1016/j.egyr.2024.08.078_bib50) 2019; 118
10.1016/j.egyr.2024.08.078_bib22
Lu (10.1016/j.egyr.2024.08.078_bib18) 2020; 2020
Greff (10.1016/j.egyr.2024.08.078_bib9) 2017; 28
Zhang (10.1016/j.egyr.2024.08.078_bib44) 2020; 7
Graves (10.1016/j.egyr.2024.08.078_bib8) 2012
Zhao (10.1016/j.egyr.2024.08.078_bib46) 2022; 255
Moon (10.1016/j.egyr.2024.08.078_bib21) 2020; 216
10.1016/j.egyr.2024.08.078_bib29
Zhu (10.1016/j.egyr.2024.08.078_bib52) 2021; 190
Niu (10.1016/j.egyr.2024.08.078_bib24) 2021; 452
Sharma (10.1016/j.egyr.2024.08.078_bib27) 2020; 35
Ding (10.1016/j.egyr.2024.08.078_bib4) 2019; 29
Lin (10.1016/j.egyr.2024.08.078_bib16) 2022; 137
Shi (10.1016/j.egyr.2024.08.078_bib28) 2012; 22
Yang (10.1016/j.egyr.2024.08.078_bib39) 2019; 175
Dhaliwal (10.1016/j.egyr.2024.08.078_bib3) 2018; 9
Sagheer (10.1016/j.egyr.2024.08.078_bib26) 2019; 323
Wolpert (10.1016/j.egyr.2024.08.078_bib36) 1992; 5
Zakaria (10.1016/j.egyr.2024.08.078_bib41) 2020; 145
Zhou (10.1016/j.egyr.2024.08.078_bib48) 2016; 30
Sujan (10.1016/j.egyr.2024.08.078_bib30) 2022; 52
Zhang (10.1016/j.egyr.2024.08.078_bib42) 2020; 8
Ding (10.1016/j.egyr.2024.08.078_bib5) 2020; 403
Sulaiman (10.1016/j.egyr.2024.08.078_bib31) 2022; 98
Alhmoud (10.1016/j.egyr.2024.08.078_bib1) 2021; 44
Divina (10.1016/j.egyr.2024.08.078_bib6) 2018; 11
Wang (10.1016/j.egyr.2024.08.078_bib34) 2022; 73
Zhang (10.1016/j.egyr.2024.08.078_bib45) 2022; 14
Nguyen (10.1016/j.egyr.2024.08.078_bib23) 2019; 29
Du (10.1016/j.egyr.2024.08.078_bib7) 2020; 440
Yan (10.1016/j.egyr.2024.08.078_bib38) 2022; 10
Liu (10.1016/j.egyr.2024.08.078_bib17) 2022; 210
Zhang (10.1016/j.egyr.2024.08.078_bib43) 2021; 12
Wei (10.1016/j.egyr.2024.08.078_bib35) 2024; 12
Zhou (10.1016/j.egyr.2024.08.078_bib51) 2020; 1631
Huang (10.1016/j.egyr.2024.08.078_bib10) 2022; 239
Yoon (10.1016/j.egyr.2024.08.078_bib40) 2020; 57
10.1016/j.egyr.2024.08.078_bib11
Mamun (10.1016/j.egyr.2024.08.078_bib19) 2020; 8
Xu (10.1016/j.egyr.2024.08.078_bib37) 2019; 9
References_xml – volume: 35
  start-page: 4916
  year: 2020
  end-page: 4919
  ident: bib27
  article-title: Blind kalman filtering for short-term load forecasting
  publication-title: IEEE Trans. Power Syst.
– volume: 9
  start-page: 149
  year: 2018
  ident: bib3
  article-title: Effective intrusion detection system using XGBoost
  publication-title: Information
– volume: 216
  year: 2020
  ident: bib21
  article-title: Combination of short-term load forecasting models based on a stacking ensemble approach
  publication-title: Energy Build.
– volume: 30
  year: 2016
  ident: bib48
  article-title: Classification of Rockburst in underground projects: comparison of ten supervised learning methods
  publication-title: J. Comput. Civ. Eng.
– volume: 29
  start-page: 751
  year: 2019
  end-page: 769
  ident: bib4
  article-title: Computational intelligence model for estimating intensity of blast-induced ground vibration in a mine based on imperialist competitive and extreme gradient boosting algorithms
  publication-title: Nat. Resour.
– volume: 22
  start-page: 432
  year: 2012
  end-page: 441
  ident: bib28
  article-title: Support vector machines approach to mean particle size of rock fragmentation due to bench blasting prediction urban land cover
  publication-title: Trans. Nonferrous Met. Soc. China
– volume: 190
  year: 2021
  ident: bib52
  article-title: A hybrid prediction model based on pattern sequence-based matching method and extreme gradient boosting for holiday load forecasting
  publication-title: Electr. Power Syst. Res.
– reference: Mustapha, M.; Mustafa, M.W.; Khalid, S.N.; Abubakar, I.; Shareef, H. Classification of electricity load forecasting based on the factors influencing the load consumption and methods used: an-overview. In Proceedings of the 2015 IEEE Conference on Energy Conversion (CENCON), Johor Bahru, Malaysia, 19-20 October 2015.
– volume: 19
  year: 2024
  ident: bib25
  article-title: Short-term power load forecasting method based on bagging-stochastic configuration networks
  publication-title: PloS One
– start-page: 37
  year: 2012
  end-page: 45
  ident: bib8
  article-title: Long short-term memory
  publication-title: Supervised Sequence Labelling with Recurrent Neural Networks
– reference: Singh, S.; Yassine, A.; Rachid, B. Internet of energy: Ensemble learning through multilevel stacking for load forecasting. In Proceedings of the 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Calgary, AB, Canada, 17-22 August 2020.
– volume: 255
  year: 2022
  ident: bib46
  article-title: Load forecasting via grey model-least squares support vector machine model and spatial-temporal distribution of electric consumption intensity
  publication-title: Energy
– volume: 52
  year: 2022
  ident: bib30
  article-title: Stacking deep learning and machine learning models for short-term energy consumption forecasting
  publication-title: Adv. Eng. Inform.
– volume: 403
  start-page: 348
  year: 2020
  end-page: 359
  ident: bib5
  article-title: Interpretable spatio-temporal attention LSTM model for flood forecasting
  publication-title: Neurocomputing
– volume: 440
  year: 2020
  ident: bib7
  article-title: Power load forecasting using BiLSTM-attention
  publication-title: IOP Conf. Ser.: Earth Environ. Sci.
– volume: 73
  start-page: 2151
  year: 2022
  end-page: 2168
  ident: bib34
  article-title: J. CNN-BiLSTM-Attention model in forecasting wave height over South-East China Seas
  publication-title: Comput., Mater. Contin.
– volume: 323
  start-page: 203
  year: 2019
  end-page: 213
  ident: bib26
  article-title: Time series forecasting of petroleum production using deep LSTM recurrent networks
  publication-title: Neurocomputing
– volume: 29
  start-page: 691
  year: 2019
  end-page: 709
  ident: bib23
  article-title: Prediction of blast-induced ground vibration in an open-pit mine by a novel hybrid model based on clustering and artificial neural network
  publication-title: Nat. Resour. Res.
– reference: Jie, H.; Li, S.; Gang, S. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18-23 June 2018.
– volume: 214
  year: 2021
  ident: bib20
  article-title: A novel stacked generalization ensemble-based hybrid LGBM-XGB-MLP model for short-term load forecasting
  publication-title: Energy
– volume: 148
  year: 2023
  ident: bib13
  article-title: Power load forecasting method based on demand response deviation correction
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 57
  year: 2020
  ident: bib40
  article-title: Forecasting of real GDP growth using machine learning models: gradient boosting and random forest approach
  publication-title: Comput. Econ.
– volume: 12
  start-page: 469
  year: 2021
  end-page: 477
  ident: bib43
  article-title: Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization
  publication-title: Geosci. Front.
– volume: 145
  start-page: 1543
  year: 2020
  end-page: 1571
  ident: bib41
  article-title: Uncertainty models for stochastic optimization in renewable energy applications
  publication-title: Renew. Energy
– volume: 137
  year: 2022
  ident: bib16
  article-title: Short-term load forecasting based on LSTM networks considering attention mechanism
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 210
  year: 2022
  ident: bib17
  article-title: Short-term load forecasting of multi-energy in integrated energy system based on multivariate phase space reconstruction and support vector regression mode
  publication-title: Electr. Power Syst. Res.
– volume: 34
  start-page: 1
  year: 2021
  end-page: 10
  ident: bib15
  article-title: Combination of manifold learning and deep learning algorithms for mid-term electrical load forecasting
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 44
  start-page: 356
  year: 2021
  end-page: 363
  ident: bib1
  article-title: Short-term load forecasting for jordan power system based on NARX-ELMAN neural network and ARMA model
  publication-title: IEEE Can. J. Electr. Comput. Eng.
– volume: 60
  start-page: 84
  year: 2012
  end-page: 90
  ident: bib14
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun. ACM
– volume: 9
  start-page: 2714
  year: 2019
  ident: bib32
  article-title: Estimating the heating load of buildings for smart city planning using a novel artificial intelligence technique PSO-XGBoost
  publication-title: Appl. Sci.
– volume: 261
  year: 2020
  ident: bib12
  article-title: Short-term electrical load forecasting based on error correction using dynamic mode decomposition
  publication-title: Appl. Energy
– volume: 8
  start-page: 220990
  year: 2020
  end-page: 221003
  ident: bib42
  article-title: The comparison of LightGBM and XGBoost coupling factor analysis and prediagnosis of acute liver failure
  publication-title: IEEE Access
– reference: Chen, T.Q.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceeding of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, California, USA, 13-17 August 2016.
– volume: 239
  year: 2022
  ident: bib10
  article-title: Multivariate empirical mode decomposition based hybrid model for day-ahead peak load forecasting
  publication-title: Energy
– volume: 8
  start-page: 596
  year: 2022
  end-page: 603
  ident: bib33
  article-title: LS-LSTM-AE: power load forecasting via long-short series features and LSTM-autoencoder
  publication-title: Energy Rep.
– volume: 1631
  year: 2020
  ident: bib51
  article-title: Comparison of time series forecasting based on statistical ARIMA model and LSTM with attention mechanism
  publication-title: J. Phys.: Conf. Ser.
– volume: 8
  start-page: 134911
  year: 2020
  end-page: 134939
  ident: bib19
  article-title: A comprehensive review of the load forecasting techniques using single and hybrid predictive models
  publication-title: IEEE Access
– volume: 12
  start-page: 414
  year: 2024
  ident: bib35
  article-title: A method for sound speed profile prediction based on CNN-BiLSTM-Attention network
  publication-title: J. Mar. Sci. Eng.
– volume: 9
  start-page: 3715
  year: 2019
  ident: bib37
  article-title: Supervised machine learning techniques to the prediction of tunnel boring machine penetration rate
  publication-title: Appl. Sci.
– volume: 98
  year: 2022
  ident: bib31
  article-title: A novel hybrid short-term electricity forecasting technique for residential loads using empirical mode decomposition and extreme learning machines
  publication-title: Comput. Electr. Eng.
– volume: 7
  start-page: 233
  year: 2020
  end-page: 241
  ident: bib44
  article-title: Assessment of basal heave stability for braced excavations in anisotropic clay using extreme gradient boosting and random forest regression
  publication-title: Undergr. Space
– volume: 118
  start-page: 505
  year: 2019
  end-page: 518
  ident: bib50
  article-title: Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories
  publication-title: Saf. Sci.
– volume: 11
  start-page: 949
  year: 2018
  ident: bib6
  article-title: Stacking ensemble learning for short-term electricity consumption forecasting
  publication-title: Energies
– volume: 33
  year: 2019
  ident: bib49
  article-title: Feasibility of stochastic gradient boosting approach for evaluating seismic liquefaction potential based on SPT and CPT case histories
  publication-title: J. Perform. Constr. Facil.
– volume: 28
  start-page: 2222
  year: 2017
  end-page: 2232
  ident: bib9
  article-title: LSTM: a search space odyssey
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 10
  ident: bib18
  article-title: A CNN-LSTM-based model to forecast stock prices
  publication-title: Complexity
– volume: 79
  start-page: 291
  year: 2015
  end-page: 316
  ident: bib47
  article-title: Comparative performance of six supervised learning methods for the development of models of hard rock pillar stability prediction
  publication-title: Nat. Hazards
– volume: 14
  start-page: 5669
  year: 2022
  ident: bib45
  article-title: Stacking model for photovoltaic-power-generation prediction
  publication-title: Sustainability
– volume: 10
  start-page: 118926
  year: 2022
  end-page: 118940
  ident: bib38
  article-title: An experimental machine learning approach for mid-term energy demand forecasting
  publication-title: IEEE Access
– volume: 175
  start-page: 66
  year: 2019
  end-page: 75
  ident: bib39
  article-title: State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network
  publication-title: Energy
– volume: 5
  start-page: 241
  year: 1992
  end-page: 259
  ident: bib36
  article-title: Stacked generalization
  publication-title: Neural Netw.
– volume: 452
  start-page: 48
  year: 2021
  end-page: 62
  ident: bib24
  article-title: A review on the attention mechanism of deep learning
  publication-title: Neurocomputing
– volume: 79
  start-page: 291
  year: 2015
  ident: 10.1016/j.egyr.2024.08.078_bib47
  article-title: Comparative performance of six supervised learning methods for the development of models of hard rock pillar stability prediction
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-015-1842-3
– volume: 8
  start-page: 220990
  year: 2020
  ident: 10.1016/j.egyr.2024.08.078_bib42
  article-title: The comparison of LightGBM and XGBoost coupling factor analysis and prediagnosis of acute liver failure
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3042848
– volume: 52
  year: 2022
  ident: 10.1016/j.egyr.2024.08.078_bib30
  article-title: Stacking deep learning and machine learning models for short-term energy consumption forecasting
  publication-title: Adv. Eng. Inform.
– volume: 255
  year: 2022
  ident: 10.1016/j.egyr.2024.08.078_bib46
  article-title: Load forecasting via grey model-least squares support vector machine model and spatial-temporal distribution of electric consumption intensity
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124468
– volume: 30
  year: 2016
  ident: 10.1016/j.egyr.2024.08.078_bib48
  article-title: Classification of Rockburst in underground projects: comparison of ten supervised learning methods
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000553
– volume: 28
  start-page: 2222
  year: 2017
  ident: 10.1016/j.egyr.2024.08.078_bib9
  article-title: LSTM: a search space odyssey
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2582924
– volume: 216
  year: 2020
  ident: 10.1016/j.egyr.2024.08.078_bib21
  article-title: Combination of short-term load forecasting models based on a stacking ensemble approach
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2020.109921
– volume: 98
  year: 2022
  ident: 10.1016/j.egyr.2024.08.078_bib31
  article-title: A novel hybrid short-term electricity forecasting technique for residential loads using empirical mode decomposition and extreme learning machines
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2021.107663
– volume: 137
  year: 2022
  ident: 10.1016/j.egyr.2024.08.078_bib16
  article-title: Short-term load forecasting based on LSTM networks considering attention mechanism
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2021.107818
– volume: 29
  start-page: 751
  year: 2019
  ident: 10.1016/j.egyr.2024.08.078_bib4
  article-title: Computational intelligence model for estimating intensity of blast-induced ground vibration in a mine based on imperialist competitive and extreme gradient boosting algorithms
  publication-title: Nat. Resour.
  doi: 10.1007/s11053-019-09548-8
– volume: 239
  year: 2022
  ident: 10.1016/j.egyr.2024.08.078_bib10
  article-title: Multivariate empirical mode decomposition based hybrid model for day-ahead peak load forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122245
– volume: 175
  start-page: 66
  year: 2019
  ident: 10.1016/j.egyr.2024.08.078_bib39
  article-title: State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2019.03.059
– volume: 10
  start-page: 118926
  year: 2022
  ident: 10.1016/j.egyr.2024.08.078_bib38
  article-title: An experimental machine learning approach for mid-term energy demand forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3221454
– volume: 33
  year: 2019
  ident: 10.1016/j.egyr.2024.08.078_bib49
  article-title: Feasibility of stochastic gradient boosting approach for evaluating seismic liquefaction potential based on SPT and CPT case histories
  publication-title: J. Perform. Constr. Facil.
  doi: 10.1061/(ASCE)CF.1943-5509.0001292
– start-page: 37
  year: 2012
  ident: 10.1016/j.egyr.2024.08.078_bib8
  article-title: Long short-term memory
– volume: 148
  year: 2023
  ident: 10.1016/j.egyr.2024.08.078_bib13
  article-title: Power load forecasting method based on demand response deviation correction
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2023.109013
– volume: 60
  start-page: 84
  year: 2012
  ident: 10.1016/j.egyr.2024.08.078_bib14
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 34
  start-page: 1
  year: 2021
  ident: 10.1016/j.egyr.2024.08.078_bib15
  article-title: Combination of manifold learning and deep learning algorithms for mid-term electrical load forecasting
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 261
  year: 2020
  ident: 10.1016/j.egyr.2024.08.078_bib12
  article-title: Short-term electrical load forecasting based on error correction using dynamic mode decomposition
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.114368
– volume: 323
  start-page: 203
  year: 2019
  ident: 10.1016/j.egyr.2024.08.078_bib26
  article-title: Time series forecasting of petroleum production using deep LSTM recurrent networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.082
– volume: 14
  start-page: 5669
  year: 2022
  ident: 10.1016/j.egyr.2024.08.078_bib45
  article-title: Stacking model for photovoltaic-power-generation prediction
  publication-title: Sustainability
  doi: 10.3390/su14095669
– volume: 57
  year: 2020
  ident: 10.1016/j.egyr.2024.08.078_bib40
  article-title: Forecasting of real GDP growth using machine learning models: gradient boosting and random forest approach
  publication-title: Comput. Econ.
– volume: 118
  start-page: 505
  year: 2019
  ident: 10.1016/j.egyr.2024.08.078_bib50
  article-title: Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2019.05.046
– volume: 19
  year: 2024
  ident: 10.1016/j.egyr.2024.08.078_bib25
  article-title: Short-term power load forecasting method based on bagging-stochastic configuration networks
  publication-title: PloS One
  doi: 10.1371/journal.pone.0300229
– volume: 44
  start-page: 356
  year: 2021
  ident: 10.1016/j.egyr.2024.08.078_bib1
  article-title: Short-term load forecasting for jordan power system based on NARX-ELMAN neural network and ARMA model
  publication-title: IEEE Can. J. Electr. Comput. Eng.
  doi: 10.1109/ICJECE.2021.3076124
– volume: 9
  start-page: 3715
  year: 2019
  ident: 10.1016/j.egyr.2024.08.078_bib37
  article-title: Supervised machine learning techniques to the prediction of tunnel boring machine penetration rate
  publication-title: Appl. Sci.
  doi: 10.3390/app9183715
– volume: 8
  start-page: 596
  year: 2022
  ident: 10.1016/j.egyr.2024.08.078_bib33
  article-title: LS-LSTM-AE: power load forecasting via long-short series features and LSTM-autoencoder
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.11.172
– volume: 7
  start-page: 233
  year: 2020
  ident: 10.1016/j.egyr.2024.08.078_bib44
  article-title: Assessment of basal heave stability for braced excavations in anisotropic clay using extreme gradient boosting and random forest regression
  publication-title: Undergr. Space
  doi: 10.1016/j.undsp.2020.03.001
– volume: 12
  start-page: 414
  year: 2024
  ident: 10.1016/j.egyr.2024.08.078_bib35
  article-title: A method for sound speed profile prediction based on CNN-BiLSTM-Attention network
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse12030414
– volume: 5
  start-page: 241
  year: 1992
  ident: 10.1016/j.egyr.2024.08.078_bib36
  article-title: Stacked generalization
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(05)80023-1
– volume: 214
  year: 2021
  ident: 10.1016/j.egyr.2024.08.078_bib20
  article-title: A novel stacked generalization ensemble-based hybrid LGBM-XGB-MLP model for short-term load forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118874
– volume: 440
  year: 2020
  ident: 10.1016/j.egyr.2024.08.078_bib7
  article-title: Power load forecasting using BiLSTM-attention
  publication-title: IOP Conf. Ser.: Earth Environ. Sci.
– volume: 1631
  year: 2020
  ident: 10.1016/j.egyr.2024.08.078_bib51
  article-title: Comparison of time series forecasting based on statistical ARIMA model and LSTM with attention mechanism
  publication-title: J. Phys.: Conf. Ser.
– volume: 9
  start-page: 149
  year: 2018
  ident: 10.1016/j.egyr.2024.08.078_bib3
  article-title: Effective intrusion detection system using XGBoost
  publication-title: Information
  doi: 10.3390/info9070149
– ident: 10.1016/j.egyr.2024.08.078_bib22
  doi: 10.1109/CENCON.2015.7409585
– volume: 190
  year: 2021
  ident: 10.1016/j.egyr.2024.08.078_bib52
  article-title: A hybrid prediction model based on pattern sequence-based matching method and extreme gradient boosting for holiday load forecasting
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2020.106841
– volume: 35
  start-page: 4916
  year: 2020
  ident: 10.1016/j.egyr.2024.08.078_bib27
  article-title: Blind kalman filtering for short-term load forecasting
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2020.3018623
– ident: 10.1016/j.egyr.2024.08.078_bib2
  doi: 10.1145/2939672.2939785
– ident: 10.1016/j.egyr.2024.08.078_bib29
  doi: 10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00113
– ident: 10.1016/j.egyr.2024.08.078_bib11
– volume: 8
  start-page: 134911
  year: 2020
  ident: 10.1016/j.egyr.2024.08.078_bib19
  article-title: A comprehensive review of the load forecasting techniques using single and hybrid predictive models
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3010702
– volume: 145
  start-page: 1543
  year: 2020
  ident: 10.1016/j.egyr.2024.08.078_bib41
  article-title: Uncertainty models for stochastic optimization in renewable energy applications
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.07.081
– volume: 22
  start-page: 432
  year: 2012
  ident: 10.1016/j.egyr.2024.08.078_bib28
  article-title: Support vector machines approach to mean particle size of rock fragmentation due to bench blasting prediction urban land cover
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(11)61195-3
– volume: 403
  start-page: 348
  year: 2020
  ident: 10.1016/j.egyr.2024.08.078_bib5
  article-title: Interpretable spatio-temporal attention LSTM model for flood forecasting
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.04.110
– volume: 210
  year: 2022
  ident: 10.1016/j.egyr.2024.08.078_bib17
  article-title: Short-term load forecasting of multi-energy in integrated energy system based on multivariate phase space reconstruction and support vector regression mode
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2022.108066
– volume: 9
  start-page: 2714
  year: 2019
  ident: 10.1016/j.egyr.2024.08.078_bib32
  article-title: Estimating the heating load of buildings for smart city planning using a novel artificial intelligence technique PSO-XGBoost
  publication-title: Appl. Sci.
  doi: 10.3390/app9132714
– volume: 11
  start-page: 949
  year: 2018
  ident: 10.1016/j.egyr.2024.08.078_bib6
  article-title: Stacking ensemble learning for short-term electricity consumption forecasting
  publication-title: Energies
  doi: 10.3390/en11040949
– volume: 2020
  start-page: 1
  year: 2020
  ident: 10.1016/j.egyr.2024.08.078_bib18
  article-title: A CNN-LSTM-based model to forecast stock prices
  publication-title: Complexity
– volume: 73
  start-page: 2151
  year: 2022
  ident: 10.1016/j.egyr.2024.08.078_bib34
  article-title: J. CNN-BiLSTM-Attention model in forecasting wave height over South-East China Seas
  publication-title: Comput., Mater. Contin.
– volume: 452
  start-page: 48
  year: 2021
  ident: 10.1016/j.egyr.2024.08.078_bib24
  article-title: A review on the attention mechanism of deep learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.091
– volume: 12
  start-page: 469
  year: 2021
  ident: 10.1016/j.egyr.2024.08.078_bib43
  article-title: Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2020.03.007
– volume: 29
  start-page: 691
  year: 2019
  ident: 10.1016/j.egyr.2024.08.078_bib23
  article-title: Prediction of blast-induced ground vibration in an open-pit mine by a novel hybrid model based on clustering and artificial neural network
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-019-09470-z
SSID ssj0001920463
Score 2.479918
Snippet Improving the accuracy of electric load forecasting is critical for grid stability, industrial production, and residents' daily lives. Traditional short-term...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 2676
SubjectTerms BiLSTM
CNN
Electricity load forecasting
Stacking integration algorithm
Title Stacking integration algorithm based on CNN-BiLSTM-Attention with XGBoost for short-term electricity load forecasting
URI https://dx.doi.org/10.1016/j.egyr.2024.08.078
Volume 12
WOSCitedRecordID wos001305397600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2352-4847
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001920463
  issn: 2352-4847
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2352-4847
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001920463
  issn: 2352-4847
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5FhQMXBALEq9UeuEWukvVjvcem4nGgEShBCidrX25cgl3FTtVy4Ifwa5l92LHSqAIkLla02fFGO19mZmfngdCbJFKCacYDkkdwQKG5CFLOVRByITiluabMNZug02m6WLBPg8GvNhfmakXLMr2-Zpf_ldUwBsw2qbN_we7upTAAn4Hp8AS2w_OPGA_mo_zmMlVcJQgbcLw6r9ZFs_w-NGpLmSuC0-k0mBQfZ_Oz4KRpfNSjdcsu3k-qqm5sBGK9BPs8MPJ76DrmFNI2m6i4Mt9ryeum1X6tg9-lE_rbiC7iZ2OdsrPlBmDiCawj3wmbCa_qZdFFA3E7-TO8-ceyuj37ayF41XdYkGgn-KPLpNmGLYGwI2AIBlHqqm8e6z1jrbQmfXGb0KSnukni2hHdUgvOQ3FxrM9vTA1YEtmyra530E657ZlZ1Sxqgmtjasrj3iM0ZkZinv3s-e8YMcXWbO9C_zN9TpYLH9xdar_d07Nl5o_QQ38IwScOPI_RQJdP0KYFDu4BB3fAwRY4GIb2AQcb4GAPHAzAwFvg4B5wsAEO7gHnKfry7u389EPgm3IEMoyiJuAjmYqEiDjNearjMRw4FeVEklBpqcYaTmwJI4kOJQ-TUagTUBCpuRzOtaRSxeEzdFBWpX6OMEwVTAmux0xEoRpxPhI8gp00NjFovxdo3G5ZJn3FetM4ZZW1oYkXmdnmzGxzZrqpUqAZdjSXrl7LnbPjlhOZtzidJZkBcu6ge_mPdK_Qg-0_4jU6aNYbfYjuy6umqNdH1h90ZGH2G6GVqeE
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacking+integration+algorithm+based+on+CNN-BiLSTM-Attention+with+XGBoost+for+short-term+electricity+load+forecasting&rft.jtitle=Energy+reports&rft.au=Luo%2C+Shucheng&rft.au=Wang%2C+Baoshi&rft.au=Gao%2C+Qingzhong&rft.au=Wang%2C+Yibao&rft.date=2024-12-01&rft.pub=Elsevier+Ltd&rft.issn=2352-4847&rft.eissn=2352-4847&rft.volume=12&rft.spage=2676&rft.epage=2689&rft_id=info:doi/10.1016%2Fj.egyr.2024.08.078&rft.externalDocID=S2352484724005705
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4847&client=summon