A common approach to singular perturbation and homogenization II: Semilinear elliptic systems

We consider periodic homogenization of boundary value problems for second-order semilinear elliptic systems in 2D of the type∂xi(aijαβ(x/ε)∂xjuβ(x)+biα(x,u(x)))=bα(x,u(x)) for x∈Ω. For small ε>0 we prove existence of weak solutions u=uε as well as their local uniqueness for ‖u−u0‖∞≈0, where u0 is...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical analysis and applications Vol. 545; no. 1; p. 129099
Main Authors: Nefedov, Nikolai N., Recke, Lutz
Format: Journal Article
Language:English
Published: Elsevier Inc 01.05.2025
Subjects:
ISSN:0022-247X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We consider periodic homogenization of boundary value problems for second-order semilinear elliptic systems in 2D of the type∂xi(aijαβ(x/ε)∂xjuβ(x)+biα(x,u(x)))=bα(x,u(x)) for x∈Ω. For small ε>0 we prove existence of weak solutions u=uε as well as their local uniqueness for ‖u−u0‖∞≈0, where u0 is a given non-degenerate weak solution to the homogenized boundary value problem, and we estimate the rate of convergence to zero of ‖uε−u0‖∞ for ε→0. Our assumptions are, roughly speaking, as follows: The functions aijαβ are bounded, measurable and Z2-periodic, the functions biα(⋅,u) and bα(⋅,u) are bounded and measurable, the functions biα(x,⋅) and bα(x,⋅) are C1-smooth, and Ω is a bounded Lipschitz domain in R2. Neither global solution uniqueness is supposed nor growth restrictions of biα(x,⋅) or bα(x,⋅) nor higher regularity of u0, and cross-diffusion is allowed. The main tool of the proofs is an abstract result of implicit function theorem type which in the past has been applied to singularly perturbed nonlinear ODEs and elliptic and parabolic PDEs and, hence, which permits a common approach to existence, local uniqueness and error estimates for singularly perturbed problems and for homogenization problems.
AbstractList We consider periodic homogenization of boundary value problems for second-order semilinear elliptic systems in 2D of the type∂xi(aijαβ(x/ε)∂xjuβ(x)+biα(x,u(x)))=bα(x,u(x)) for x∈Ω. For small ε>0 we prove existence of weak solutions u=uε as well as their local uniqueness for ‖u−u0‖∞≈0, where u0 is a given non-degenerate weak solution to the homogenized boundary value problem, and we estimate the rate of convergence to zero of ‖uε−u0‖∞ for ε→0. Our assumptions are, roughly speaking, as follows: The functions aijαβ are bounded, measurable and Z2-periodic, the functions biα(⋅,u) and bα(⋅,u) are bounded and measurable, the functions biα(x,⋅) and bα(x,⋅) are C1-smooth, and Ω is a bounded Lipschitz domain in R2. Neither global solution uniqueness is supposed nor growth restrictions of biα(x,⋅) or bα(x,⋅) nor higher regularity of u0, and cross-diffusion is allowed. The main tool of the proofs is an abstract result of implicit function theorem type which in the past has been applied to singularly perturbed nonlinear ODEs and elliptic and parabolic PDEs and, hence, which permits a common approach to existence, local uniqueness and error estimates for singularly perturbed problems and for homogenization problems.
ArticleNumber 129099
Author Nefedov, Nikolai N.
Recke, Lutz
Author_xml – sequence: 1
  givenname: Nikolai N.
  surname: Nefedov
  fullname: Nefedov, Nikolai N.
  email: nefedov@phys.msu.ru
  organization: Lomonosov Moscow State University, Faculty of Physics, 19899 Moscow, Russia
– sequence: 2
  givenname: Lutz
  surname: Recke
  fullname: Recke, Lutz
  email: lutz.recke@hu-berlin.de
  organization: Humboldt University of Berlin, Institute of Mathematics, Rudower Chausee 25, 12489 Berlin, Germany
BookMark eNp9kMtKAzEUhrOoYFt9AVd5gRmTzF3clOKlUHChghsJmeRMm2EmGZJUqE_vjHXloqsDh__7OedboJmxBhC6oSSmhOa3bdz2QsSMsDSmrCJVNUNzQhiLWFp8XKKF9y0hlGYFnaPPFZa2763BYhicFXKPg8Vem92hEw4P4MLB1SLoKWEU3tve7sDo79Nqs7nDr9DrThsY49B1eghaYn_0AXp_hS4a0Xm4_ptL9P748LZ-jrYvT5v1ahvJJE1DVKkGoMhoKUWSMJKRUuaNkAQYhSpVROVK1ipleVKzVGWlzJgomaqaIq-rkUiWqDz1Sme9d9BwqcPvhcEJ3XFK-KSGt3xSwyc1_KRmRNk_dHC6F-54Hro_QTA-9aXBcS81GAlKO5CBK6vP4T9M6INH
CitedBy_id crossref_primary_10_1080_00036811_2025_2527785
Cites_doi 10.1137/15M1053335
10.3934/dcdsb.2021226
10.1017/S0013091518000858
10.1002/1522-2616(200105)225:1<39::AID-MANA39>3.0.CO;2-5
10.3934/nhm.2021012
10.1016/j.jde.2016.12.020
10.1016/j.jde.2023.08.006
10.1016/j.jmaa.2016.02.011
10.1007/BF01442860
10.1007/s00030-006-3017-0
10.1515/anona-2020-0001
10.1016/j.jde.2018.01.033
10.1016/j.jde.2008.01.017
10.1137/21M1419337
10.1007/s11425-010-0078-7
10.32917/hmj/1428365053
10.3934/cpaa.2023010
10.1007/s13163-017-0242-5
10.1016/j.jmaa.2021.125552
10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.0.CO;2-G
10.1002/cpa.21482
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.jmaa.2024.129099
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_jmaa_2024_129099
S0022247X24010217
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
0SF
1B1
1RT
1~.
4.4
457
4G.
5GY
6I.
71M
85S
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AASFE
AAXKI
AAXUO
ABAOU
ABJNI
ABMAC
ABVKL
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DM4
EBS
EFBJH
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
MCRUF
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
T5K
TN5
TWZ
UPT
WH7
XPP
YQT
ZMT
ZU3
~G-
1~5
29L
5VS
6TJ
7-5
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABUFD
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADMUD
ADNMO
ADVLN
ADXHL
AEIPS
AETEA
AEUPX
AEXQZ
AFFNX
AFPUW
AGHFR
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFKBS
EFLBG
EJD
FGOYB
G-2
HZ~
H~9
LG5
M25
M41
MVM
OHT
R2-
SSZ
VH1
VOH
WUQ
XOL
YYP
ZCG
~HD
ID FETCH-LOGICAL-c344t-9dfee7518ca3320508c6fac0e21e94d0d6dcbd4263b24d58c52a82d9f76b93323
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001374767600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-247X
IngestDate Sat Nov 29 03:27:15 EST 2025
Tue Nov 18 22:46:16 EST 2025
Sat Feb 01 16:07:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Existence and local uniqueness
Implicit function theorem
Nonsmooth data
Semilinear elliptic systems
L∞-estimate of the homogenization error
Periodic homogenization
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-9dfee7518ca3320508c6fac0e21e94d0d6dcbd4263b24d58c52a82d9f76b93323
OpenAccessLink https://dx.doi.org/10.1016/j.jmaa.2024.129099
ParticipantIDs crossref_citationtrail_10_1016_j_jmaa_2024_129099
crossref_primary_10_1016_j_jmaa_2024_129099
elsevier_sciencedirect_doi_10_1016_j_jmaa_2024_129099
PublicationCentury 2000
PublicationDate 2025-05-01
2025-05-00
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of mathematical analysis and applications
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Meyers (br0190) 1963; 17
He, Cui (br0200) 2010; 53
Recke (br0240) 2022; 506
Gröger, Recke (br0140) 2006; 13
Butuzov, Nefedov, Omel'chenko, Recke (br0060) 2022; 27
Cioranescu, Donato (br0100) 1999; vol. 17
Gröger (br0130) 1989; 283
Butuzov, Nefedov, Omel'chenko, Recke, Schneider (br0070) 2017; vol. 205
Caffarelli, Peral (br0080) 1998; 51
Bensoussan, Lions, Papanicolaou (br0020) 1978; vol. 3
Tewary (br0280) 2021; 16
de Cristoforis, Musolino (br0180) 2019; 62
Shen (br0270) 2018; vol. 269
de Cristoforis, Musolino (br0170) 2018; 31
Butuzov, Nefedov, Omel'chenko, Recke (br0050) 2017; 262
Kenig, Lin, Shen (br0160) 2014; 67
Nefedov, Orlov, Recke, Schneider (br0210) 2023; 375
Nefedov, Recke (br0220)
Barbu (br0010) 1998; vol. 441
Senik (br0260) 2023; 55
J.A. Griepentrog, L. Recke, A common approach to singular perturbation and homogenization III: quasilinear elliptic problems with arbitrary space dimension, in preparation.
Recke, Omel'chenko (br0250) 2008; 245
Omel'chenko, Recke (br0230) 2015; 45
Breden, Castelli (br0030) 2018; 264
Bunoiu, Precup (br0040) 2020; 9
Xu (br0300) 2016; 48
Krantz, Parks (br0150) 2002
Wang, Zhang (br0290) 2023; 22
Griepentrog, Recke (br0110) 2001; 225
Chechkin, Piatnitski, Shamaev (br0090) 2007; vol. 234
Xu (br0310) 2016; 438
Chechkin (10.1016/j.jmaa.2024.129099_br0090) 2007; vol. 234
10.1016/j.jmaa.2024.129099_br0120
Omel'chenko (10.1016/j.jmaa.2024.129099_br0230) 2015; 45
Krantz (10.1016/j.jmaa.2024.129099_br0150) 2002
Recke (10.1016/j.jmaa.2024.129099_br0240) 2022; 506
Nefedov (10.1016/j.jmaa.2024.129099_br0220)
Shen (10.1016/j.jmaa.2024.129099_br0270) 2018; vol. 269
Caffarelli (10.1016/j.jmaa.2024.129099_br0080) 1998; 51
Butuzov (10.1016/j.jmaa.2024.129099_br0060) 2022; 27
Kenig (10.1016/j.jmaa.2024.129099_br0160) 2014; 67
Griepentrog (10.1016/j.jmaa.2024.129099_br0110) 2001; 225
Barbu (10.1016/j.jmaa.2024.129099_br0010) 1998; vol. 441
Senik (10.1016/j.jmaa.2024.129099_br0260) 2023; 55
Butuzov (10.1016/j.jmaa.2024.129099_br0070) 2017; vol. 205
Nefedov (10.1016/j.jmaa.2024.129099_br0210) 2023; 375
Bunoiu (10.1016/j.jmaa.2024.129099_br0040) 2020; 9
Meyers (10.1016/j.jmaa.2024.129099_br0190) 1963; 17
Breden (10.1016/j.jmaa.2024.129099_br0030) 2018; 264
Tewary (10.1016/j.jmaa.2024.129099_br0280) 2021; 16
de Cristoforis (10.1016/j.jmaa.2024.129099_br0180) 2019; 62
de Cristoforis (10.1016/j.jmaa.2024.129099_br0170) 2018; 31
He (10.1016/j.jmaa.2024.129099_br0200) 2010; 53
Xu (10.1016/j.jmaa.2024.129099_br0300) 2016; 48
Recke (10.1016/j.jmaa.2024.129099_br0250) 2008; 245
Cioranescu (10.1016/j.jmaa.2024.129099_br0100) 1999; vol. 17
Gröger (10.1016/j.jmaa.2024.129099_br0130) 1989; 283
Gröger (10.1016/j.jmaa.2024.129099_br0140) 2006; 13
Xu (10.1016/j.jmaa.2024.129099_br0310) 2016; 438
Butuzov (10.1016/j.jmaa.2024.129099_br0050) 2017; 262
Bensoussan (10.1016/j.jmaa.2024.129099_br0020) 1978; vol. 3
Wang (10.1016/j.jmaa.2024.129099_br0290) 2023; 22
References_xml – volume: 264
  start-page: 6418
  year: 2018
  end-page: 6458
  ident: br0030
  article-title: Existence and instability of steady states for a triangular cross-diffusion system: a computer-assisted proof
  publication-title: J. Differ. Equ.
– volume: 53
  start-page: 1231
  year: 2010
  end-page: 1252
  ident: br0200
  article-title: Error estimate of the homogenization solution for elliptic problems with small periodic coefficients on
  publication-title: Sci. China Math.
– volume: vol. 269
  year: 2018
  ident: br0270
  article-title: Periodic Homogenization of Elliptic Systems
  publication-title: Operator Theory: Advances and Applications
– volume: 13
  start-page: 263
  year: 2006
  end-page: 285
  ident: br0140
  article-title: Applications of differential calculus to quasilinear elliptic boundary value problems with non-smooth data
  publication-title: NoDEA, Nonlinear Differ. Equ. Appl.
– volume: 48
  start-page: 3742
  year: 2016
  end-page: 3788
  ident: br0300
  article-title: Convergence rates for general elliptic homogenization problems in Lipschitz domains
  publication-title: SIAM J. Math. Anal.
– volume: 9
  start-page: 292
  year: 2020
  end-page: 304
  ident: br0040
  article-title: Localization and multiplicity in the homogenization of nonlinear problems
  publication-title: Adv. Nonlinear Anal.
– volume: 225
  start-page: 39
  year: 2001
  end-page: 74
  ident: br0110
  article-title: Linear elliptic boundary value problems with non-smooth data: normal solvability in Sobolev-Campanato spaces
  publication-title: Math. Nachr.
– volume: vol. 205
  start-page: 111
  year: 2017
  end-page: 127
  ident: br0070
  article-title: An implicit function theorem and applications to nonsmooth boundary layers
  publication-title: Patterns of Dynamics
– volume: 62
  start-page: 985
  year: 2019
  end-page: 1016
  ident: br0180
  article-title: Asymptotic behaviour of the energy integral of a two-parameter homogenization problem with nonlinear periodic Robin boundary conditions
  publication-title: Proc. Edinb. Math. Soc. (2)
– volume: 245
  start-page: 3806
  year: 2008
  end-page: 3822
  ident: br0250
  article-title: Boundary layer solutions to problems with infinite dimensional singular and regular perturbations
  publication-title: J. Differ. Equ.
– volume: 67
  start-page: 1219
  year: 2014
  end-page: 1262
  ident: br0160
  article-title: Periodic homogenization of Green and Neumann functions
  publication-title: Commun. Pure Appl. Math.
– volume: 16
  start-page: 427
  year: 2021
  end-page: 458
  ident: br0280
  article-title: Combined effects of homogenization and singular perturbation: a Bloch wave approach
  publication-title: Netw. Heterog. Media
– volume: 262
  start-page: 4823
  year: 2017
  end-page: 4862
  ident: br0050
  article-title: Time-periodic boundary layer solutions to singularly perturbed parabolic problems
  publication-title: J. Differ. Equ.
– ident: br0220
  article-title: A common approach to singular perturbation and homogenization I: quasilinear ODE systems
– volume: 51
  start-page: 1
  year: 1998
  end-page: 21
  ident: br0080
  article-title: On
  publication-title: Commun. Pure Appl. Math.
– volume: 27
  start-page: 4255
  year: 2022
  end-page: 4283
  ident: br0060
  article-title: Boundary layer solutions to singularly perturbed quasilinear systems
  publication-title: Discrete Contin. Dyn. Syst., Ser. B
– volume: 55
  start-page: 849
  year: 2023
  end-page: 881
  ident: br0260
  article-title: Homogenization for locally periodic elliptic problems in a domain
  publication-title: SIAM J. Math. Anal.
– volume: 31
  start-page: 63
  year: 2018
  end-page: 110
  ident: br0170
  article-title: Two-parameter homogenization for a nonlinear periodic Robin problem for a Poisson equation: a functional analytic approach
  publication-title: Rev. Mat. Complut.
– volume: 506
  year: 2022
  ident: br0240
  article-title: Use of very weak approximate boundary layer solutions to spatially nonsmooth singularly perturbed problems
  publication-title: J. Math. Anal. Appl.
– volume: vol. 234
  year: 2007
  ident: br0090
  article-title: Homogenization. Methods and Applications
  publication-title: Translations of Mathematical Monographs
– volume: vol. 17
  year: 1999
  ident: br0100
  article-title: An Introduction to Homogenization
  publication-title: Oxford Lecture Series in Mathematics and its Applications
– volume: 45
  start-page: 35
  year: 2015
  end-page: 89
  ident: br0230
  article-title: Existence, local uniqueness and asymptotic approximation of spike solutions to singularly perturbed elliptic problems
  publication-title: Hiroshima Math. J.
– year: 2002
  ident: br0150
  article-title: The Implicit Function Theorem. History, Theory, and Applications
– volume: 17
  start-page: 189
  year: 1963
  end-page: 206
  ident: br0190
  article-title: An
  publication-title: Ann. Sc. Norm. Super. Pisa
– volume: vol. 3
  year: 1978
  ident: br0020
  article-title: Asymptotic Analysis for Periodic Structures
  publication-title: Studies in Mathematics and its Applications
– volume: 375
  start-page: 206
  year: 2023
  end-page: 236
  ident: br0210
  article-title: Nonsmooth regular perturbations of singularly perturbed problems
  publication-title: J. Differ. Equ.
– volume: 283
  start-page: 679
  year: 1989
  end-page: 687
  ident: br0130
  article-title: A
  publication-title: Math. Ann.
– volume: vol. 441
  year: 1998
  ident: br0010
  article-title: Partial Differential Equations and Boundary Value Problems
  publication-title: Mathematics and its Applications
– volume: 438
  start-page: 1066
  year: 2016
  end-page: 1107
  ident: br0310
  article-title: Uniform regularity estimates in homogenization theory of elliptic systems with lower order terms
  publication-title: J. Math. Anal. Appl.
– reference: J.A. Griepentrog, L. Recke, A common approach to singular perturbation and homogenization III: quasilinear elliptic problems with arbitrary space dimension, in preparation.
– volume: 22
  start-page: 787
  year: 2023
  end-page: 824
  ident: br0290
  article-title: Homogenization theory of elliptic systems with lower order terms for dimension two
  publication-title: Commun. Pure Appl. Anal.
– volume: 48
  start-page: 3742
  year: 2016
  ident: 10.1016/j.jmaa.2024.129099_br0300
  article-title: Convergence rates for general elliptic homogenization problems in Lipschitz domains
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/15M1053335
– volume: 27
  start-page: 4255
  year: 2022
  ident: 10.1016/j.jmaa.2024.129099_br0060
  article-title: Boundary layer solutions to singularly perturbed quasilinear systems
  publication-title: Discrete Contin. Dyn. Syst., Ser. B
  doi: 10.3934/dcdsb.2021226
– volume: 62
  start-page: 985
  year: 2019
  ident: 10.1016/j.jmaa.2024.129099_br0180
  article-title: Asymptotic behaviour of the energy integral of a two-parameter homogenization problem with nonlinear periodic Robin boundary conditions
  publication-title: Proc. Edinb. Math. Soc. (2)
  doi: 10.1017/S0013091518000858
– volume: 225
  start-page: 39
  year: 2001
  ident: 10.1016/j.jmaa.2024.129099_br0110
  article-title: Linear elliptic boundary value problems with non-smooth data: normal solvability in Sobolev-Campanato spaces
  publication-title: Math. Nachr.
  doi: 10.1002/1522-2616(200105)225:1<39::AID-MANA39>3.0.CO;2-5
– volume: vol. 234
  year: 2007
  ident: 10.1016/j.jmaa.2024.129099_br0090
  article-title: Homogenization. Methods and Applications
– year: 2002
  ident: 10.1016/j.jmaa.2024.129099_br0150
– volume: 16
  start-page: 427
  year: 2021
  ident: 10.1016/j.jmaa.2024.129099_br0280
  article-title: Combined effects of homogenization and singular perturbation: a Bloch wave approach
  publication-title: Netw. Heterog. Media
  doi: 10.3934/nhm.2021012
– volume: 262
  start-page: 4823
  year: 2017
  ident: 10.1016/j.jmaa.2024.129099_br0050
  article-title: Time-periodic boundary layer solutions to singularly perturbed parabolic problems
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2016.12.020
– volume: 375
  start-page: 206
  year: 2023
  ident: 10.1016/j.jmaa.2024.129099_br0210
  article-title: Nonsmooth regular perturbations of singularly perturbed problems
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2023.08.006
– volume: 438
  start-page: 1066
  year: 2016
  ident: 10.1016/j.jmaa.2024.129099_br0310
  article-title: Uniform regularity estimates in homogenization theory of elliptic systems with lower order terms
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2016.02.011
– volume: 283
  start-page: 679
  year: 1989
  ident: 10.1016/j.jmaa.2024.129099_br0130
  article-title: A W1,p-estimate for solutions to mixed boundary value problems for second-order elliptic differential equations
  publication-title: Math. Ann.
  doi: 10.1007/BF01442860
– volume: 13
  start-page: 263
  year: 2006
  ident: 10.1016/j.jmaa.2024.129099_br0140
  article-title: Applications of differential calculus to quasilinear elliptic boundary value problems with non-smooth data
  publication-title: NoDEA, Nonlinear Differ. Equ. Appl.
  doi: 10.1007/s00030-006-3017-0
– volume: 9
  start-page: 292
  year: 2020
  ident: 10.1016/j.jmaa.2024.129099_br0040
  article-title: Localization and multiplicity in the homogenization of nonlinear problems
  publication-title: Adv. Nonlinear Anal.
  doi: 10.1515/anona-2020-0001
– volume: vol. 3
  year: 1978
  ident: 10.1016/j.jmaa.2024.129099_br0020
  article-title: Asymptotic Analysis for Periodic Structures
– volume: vol. 205
  start-page: 111
  year: 2017
  ident: 10.1016/j.jmaa.2024.129099_br0070
  article-title: An implicit function theorem and applications to nonsmooth boundary layers
– volume: 264
  start-page: 6418
  year: 2018
  ident: 10.1016/j.jmaa.2024.129099_br0030
  article-title: Existence and instability of steady states for a triangular cross-diffusion system: a computer-assisted proof
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2018.01.033
– volume: 245
  start-page: 3806
  year: 2008
  ident: 10.1016/j.jmaa.2024.129099_br0250
  article-title: Boundary layer solutions to problems with infinite dimensional singular and regular perturbations
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2008.01.017
– volume: vol. 269
  year: 2018
  ident: 10.1016/j.jmaa.2024.129099_br0270
  article-title: Periodic Homogenization of Elliptic Systems
– volume: vol. 17
  year: 1999
  ident: 10.1016/j.jmaa.2024.129099_br0100
  article-title: An Introduction to Homogenization
– volume: 55
  start-page: 849
  year: 2023
  ident: 10.1016/j.jmaa.2024.129099_br0260
  article-title: Homogenization for locally periodic elliptic problems in a domain
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/21M1419337
– volume: 53
  start-page: 1231
  year: 2010
  ident: 10.1016/j.jmaa.2024.129099_br0200
  article-title: Error estimate of the homogenization solution for elliptic problems with small periodic coefficients on L∞(Ω)
  publication-title: Sci. China Math.
  doi: 10.1007/s11425-010-0078-7
– volume: 17
  start-page: 189
  year: 1963
  ident: 10.1016/j.jmaa.2024.129099_br0190
  article-title: An Lp-estimate for the gradient of solutions of second-order elliptic divergence equations
  publication-title: Ann. Sc. Norm. Super. Pisa
– ident: 10.1016/j.jmaa.2024.129099_br0220
– volume: 45
  start-page: 35
  year: 2015
  ident: 10.1016/j.jmaa.2024.129099_br0230
  article-title: Existence, local uniqueness and asymptotic approximation of spike solutions to singularly perturbed elliptic problems
  publication-title: Hiroshima Math. J.
  doi: 10.32917/hmj/1428365053
– volume: 22
  start-page: 787
  year: 2023
  ident: 10.1016/j.jmaa.2024.129099_br0290
  article-title: Homogenization theory of elliptic systems with lower order terms for dimension two
  publication-title: Commun. Pure Appl. Anal.
  doi: 10.3934/cpaa.2023010
– volume: 31
  start-page: 63
  year: 2018
  ident: 10.1016/j.jmaa.2024.129099_br0170
  article-title: Two-parameter homogenization for a nonlinear periodic Robin problem for a Poisson equation: a functional analytic approach
  publication-title: Rev. Mat. Complut.
  doi: 10.1007/s13163-017-0242-5
– volume: 506
  year: 2022
  ident: 10.1016/j.jmaa.2024.129099_br0240
  article-title: Use of very weak approximate boundary layer solutions to spatially nonsmooth singularly perturbed problems
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2021.125552
– volume: vol. 441
  year: 1998
  ident: 10.1016/j.jmaa.2024.129099_br0010
  article-title: Partial Differential Equations and Boundary Value Problems
– ident: 10.1016/j.jmaa.2024.129099_br0120
– volume: 51
  start-page: 1
  year: 1998
  ident: 10.1016/j.jmaa.2024.129099_br0080
  article-title: On W1,p estimates for elliptic equations in divergence form
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.0.CO;2-G
– volume: 67
  start-page: 1219
  year: 2014
  ident: 10.1016/j.jmaa.2024.129099_br0160
  article-title: Periodic homogenization of Green and Neumann functions
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.21482
SSID ssj0011571
Score 2.4584508
Snippet We consider periodic homogenization of boundary value problems for second-order semilinear elliptic systems in 2D of the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 129099
SubjectTerms [formula omitted]-estimate of the homogenization error
Existence and local uniqueness
Implicit function theorem
Nonsmooth data
Periodic homogenization
Semilinear elliptic systems
Title A common approach to singular perturbation and homogenization II: Semilinear elliptic systems
URI https://dx.doi.org/10.1016/j.jmaa.2024.129099
Volume 545
WOSCitedRecordID wos001374767600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  issn: 0022-247X
  databaseCode: AIEXJ
  dateStart: 20211213
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0011571
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZt0kN7KH3S9IUOvS1ebFm2rNyWklKXdikkhb0UI0sy3U39YNcJIb--I0t-JCmhLfRiFuOxYb5v5fFo5huE3iW5IFL42hMijD2qpfZywpRXFEKKJGJgJLphE2y5TFYr_tW1EOy6cQKsqpKLC978V6jhHIBtWmf_Au7hpnACfgPocATY4fhHwC9MmXhpioybsV3KZAS6gtNGb-Elk1vYTdL8R13WcC_XjjlLU5MjONbl2sSfYGAEOxuj6rqbaJvfjGbLQf61Ex9wSiedEuxki3xMPRda1eeWiqfwdb2eLefD3o-WtmLo81l7Oc1KkGisAbSpsr5d5ko1Z9c6QChbTZffyMpJTnl2Y1m3GYbNfFMKoxVF6Nykz-xkpWty2cddey88A0IVM7ac3UX7hEUcFu39RXq0-jTsMQURC3oteWPgWqps9d_1J_0-bJmEIieP0EPndbyw2D9Gd3T1BD34MiCwe4q-L7BlAe5ZgNsa9yzAUxZgAAlfZQFO00M8cgD3HMCOA8_Qtw9HJ-8_em6ShidDSluPq0Jrs8EmRRgSH4JyGcOf0dck0JwqX8VK5spo9-eEqiiREREJUbxgcc7BInyO9qq60i8Q1qESPNYi4IrSEFbv2FdBIUMiGRMsZgco6B2VSSczb6ad_Mz6esJNZpybGedm1rkHaDbYNFZk5daro97_mQsTbfiXAV1usXv5j3av0P2R4a_RXrs902_QPXnernfbt45VvwBgz5IX
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+common+approach+to+singular+perturbation+and+homogenization+II%3A+Semilinear+elliptic+systems&rft.jtitle=Journal+of+mathematical+analysis+and+applications&rft.au=Nefedov%2C+Nikolai+N.&rft.au=Recke%2C+Lutz&rft.date=2025-05-01&rft.pub=Elsevier+Inc&rft.issn=0022-247X&rft.volume=545&rft.issue=1&rft_id=info:doi/10.1016%2Fj.jmaa.2024.129099&rft.externalDocID=S0022247X24010217
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-247X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-247X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-247X&client=summon