A common approach to singular perturbation and homogenization II: Semilinear elliptic systems
We consider periodic homogenization of boundary value problems for second-order semilinear elliptic systems in 2D of the type∂xi(aijαβ(x/ε)∂xjuβ(x)+biα(x,u(x)))=bα(x,u(x)) for x∈Ω. For small ε>0 we prove existence of weak solutions u=uε as well as their local uniqueness for ‖u−u0‖∞≈0, where u0 is...
Gespeichert in:
| Veröffentlicht in: | Journal of mathematical analysis and applications Jg. 545; H. 1; S. 129099 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
01.05.2025
|
| Schlagworte: | |
| ISSN: | 0022-247X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We consider periodic homogenization of boundary value problems for second-order semilinear elliptic systems in 2D of the type∂xi(aijαβ(x/ε)∂xjuβ(x)+biα(x,u(x)))=bα(x,u(x)) for x∈Ω. For small ε>0 we prove existence of weak solutions u=uε as well as their local uniqueness for ‖u−u0‖∞≈0, where u0 is a given non-degenerate weak solution to the homogenized boundary value problem, and we estimate the rate of convergence to zero of ‖uε−u0‖∞ for ε→0. Our assumptions are, roughly speaking, as follows: The functions aijαβ are bounded, measurable and Z2-periodic, the functions biα(⋅,u) and bα(⋅,u) are bounded and measurable, the functions biα(x,⋅) and bα(x,⋅) are C1-smooth, and Ω is a bounded Lipschitz domain in R2. Neither global solution uniqueness is supposed nor growth restrictions of biα(x,⋅) or bα(x,⋅) nor higher regularity of u0, and cross-diffusion is allowed. The main tool of the proofs is an abstract result of implicit function theorem type which in the past has been applied to singularly perturbed nonlinear ODEs and elliptic and parabolic PDEs and, hence, which permits a common approach to existence, local uniqueness and error estimates for singularly perturbed problems and for homogenization problems. |
|---|---|
| AbstractList | We consider periodic homogenization of boundary value problems for second-order semilinear elliptic systems in 2D of the type∂xi(aijαβ(x/ε)∂xjuβ(x)+biα(x,u(x)))=bα(x,u(x)) for x∈Ω. For small ε>0 we prove existence of weak solutions u=uε as well as their local uniqueness for ‖u−u0‖∞≈0, where u0 is a given non-degenerate weak solution to the homogenized boundary value problem, and we estimate the rate of convergence to zero of ‖uε−u0‖∞ for ε→0. Our assumptions are, roughly speaking, as follows: The functions aijαβ are bounded, measurable and Z2-periodic, the functions biα(⋅,u) and bα(⋅,u) are bounded and measurable, the functions biα(x,⋅) and bα(x,⋅) are C1-smooth, and Ω is a bounded Lipschitz domain in R2. Neither global solution uniqueness is supposed nor growth restrictions of biα(x,⋅) or bα(x,⋅) nor higher regularity of u0, and cross-diffusion is allowed. The main tool of the proofs is an abstract result of implicit function theorem type which in the past has been applied to singularly perturbed nonlinear ODEs and elliptic and parabolic PDEs and, hence, which permits a common approach to existence, local uniqueness and error estimates for singularly perturbed problems and for homogenization problems. |
| ArticleNumber | 129099 |
| Author | Nefedov, Nikolai N. Recke, Lutz |
| Author_xml | – sequence: 1 givenname: Nikolai N. surname: Nefedov fullname: Nefedov, Nikolai N. email: nefedov@phys.msu.ru organization: Lomonosov Moscow State University, Faculty of Physics, 19899 Moscow, Russia – sequence: 2 givenname: Lutz surname: Recke fullname: Recke, Lutz email: lutz.recke@hu-berlin.de organization: Humboldt University of Berlin, Institute of Mathematics, Rudower Chausee 25, 12489 Berlin, Germany |
| BookMark | eNp9kMtKAzEUhrOoYFt9AVd5gRmTzF3clOKlUHChghsJmeRMm2EmGZJUqE_vjHXloqsDh__7OedboJmxBhC6oSSmhOa3bdz2QsSMsDSmrCJVNUNzQhiLWFp8XKKF9y0hlGYFnaPPFZa2763BYhicFXKPg8Vem92hEw4P4MLB1SLoKWEU3tve7sDo79Nqs7nDr9DrThsY49B1eghaYn_0AXp_hS4a0Xm4_ptL9P748LZ-jrYvT5v1ahvJJE1DVKkGoMhoKUWSMJKRUuaNkAQYhSpVROVK1ipleVKzVGWlzJgomaqaIq-rkUiWqDz1Sme9d9BwqcPvhcEJ3XFK-KSGt3xSwyc1_KRmRNk_dHC6F-54Hro_QTA-9aXBcS81GAlKO5CBK6vP4T9M6INH |
| CitedBy_id | crossref_primary_10_1080_00036811_2025_2527785 |
| Cites_doi | 10.1137/15M1053335 10.3934/dcdsb.2021226 10.1017/S0013091518000858 10.1002/1522-2616(200105)225:1<39::AID-MANA39>3.0.CO;2-5 10.3934/nhm.2021012 10.1016/j.jde.2016.12.020 10.1016/j.jde.2023.08.006 10.1016/j.jmaa.2016.02.011 10.1007/BF01442860 10.1007/s00030-006-3017-0 10.1515/anona-2020-0001 10.1016/j.jde.2018.01.033 10.1016/j.jde.2008.01.017 10.1137/21M1419337 10.1007/s11425-010-0078-7 10.32917/hmj/1428365053 10.3934/cpaa.2023010 10.1007/s13163-017-0242-5 10.1016/j.jmaa.2021.125552 10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.0.CO;2-G 10.1002/cpa.21482 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s) |
| Copyright_xml | – notice: 2024 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.jmaa.2024.129099 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| ExternalDocumentID | 10_1016_j_jmaa_2024_129099 S0022247X24010217 |
| GroupedDBID | --K --M --Z -~X .~1 0R~ 0SF 1B1 1RT 1~. 4.4 457 4G. 5GY 6I. 71M 85S 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AASFE AAXKI AAXUO ABAOU ABJNI ABMAC ABVKL ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFJKZ AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 DM4 EBS EFBJH EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM MCRUF MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW T5K TN5 TWZ UPT WH7 XPP YQT ZMT ZU3 ~G- 1~5 29L 5VS 6TJ 7-5 9DU AAQXK AATTM AAYWO AAYXX ABDPE ABEFU ABFNM ABUFD ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADFGL ADIYS ADMUD ADNMO ADVLN ADXHL AEIPS AETEA AEUPX AEXQZ AFFNX AFPUW AGHFR AGQPQ AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CAG CITATION COF EFKBS EFLBG EJD FGOYB G-2 HZ~ H~9 LG5 M25 M41 MVM OHT R2- SSZ VH1 VOH WUQ XOL YYP ZCG ~HD |
| ID | FETCH-LOGICAL-c344t-9dfee7518ca3320508c6fac0e21e94d0d6dcbd4263b24d58c52a82d9f76b93323 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001374767600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-247X |
| IngestDate | Sat Nov 29 03:27:15 EST 2025 Tue Nov 18 22:46:16 EST 2025 Sat Feb 01 16:07:51 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Existence and local uniqueness Implicit function theorem Nonsmooth data Semilinear elliptic systems L∞-estimate of the homogenization error Periodic homogenization |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c344t-9dfee7518ca3320508c6fac0e21e94d0d6dcbd4263b24d58c52a82d9f76b93323 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.jmaa.2024.129099 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_jmaa_2024_129099 crossref_primary_10_1016_j_jmaa_2024_129099 elsevier_sciencedirect_doi_10_1016_j_jmaa_2024_129099 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-01 2025-05-00 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of mathematical analysis and applications |
| PublicationYear | 2025 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Meyers (br0190) 1963; 17 He, Cui (br0200) 2010; 53 Recke (br0240) 2022; 506 Gröger, Recke (br0140) 2006; 13 Butuzov, Nefedov, Omel'chenko, Recke (br0060) 2022; 27 Cioranescu, Donato (br0100) 1999; vol. 17 Gröger (br0130) 1989; 283 Butuzov, Nefedov, Omel'chenko, Recke, Schneider (br0070) 2017; vol. 205 Caffarelli, Peral (br0080) 1998; 51 Bensoussan, Lions, Papanicolaou (br0020) 1978; vol. 3 Tewary (br0280) 2021; 16 de Cristoforis, Musolino (br0180) 2019; 62 Shen (br0270) 2018; vol. 269 de Cristoforis, Musolino (br0170) 2018; 31 Butuzov, Nefedov, Omel'chenko, Recke (br0050) 2017; 262 Kenig, Lin, Shen (br0160) 2014; 67 Nefedov, Orlov, Recke, Schneider (br0210) 2023; 375 Nefedov, Recke (br0220) Barbu (br0010) 1998; vol. 441 Senik (br0260) 2023; 55 J.A. Griepentrog, L. Recke, A common approach to singular perturbation and homogenization III: quasilinear elliptic problems with arbitrary space dimension, in preparation. Recke, Omel'chenko (br0250) 2008; 245 Omel'chenko, Recke (br0230) 2015; 45 Breden, Castelli (br0030) 2018; 264 Bunoiu, Precup (br0040) 2020; 9 Xu (br0300) 2016; 48 Krantz, Parks (br0150) 2002 Wang, Zhang (br0290) 2023; 22 Griepentrog, Recke (br0110) 2001; 225 Chechkin, Piatnitski, Shamaev (br0090) 2007; vol. 234 Xu (br0310) 2016; 438 Chechkin (10.1016/j.jmaa.2024.129099_br0090) 2007; vol. 234 10.1016/j.jmaa.2024.129099_br0120 Omel'chenko (10.1016/j.jmaa.2024.129099_br0230) 2015; 45 Krantz (10.1016/j.jmaa.2024.129099_br0150) 2002 Recke (10.1016/j.jmaa.2024.129099_br0240) 2022; 506 Nefedov (10.1016/j.jmaa.2024.129099_br0220) Shen (10.1016/j.jmaa.2024.129099_br0270) 2018; vol. 269 Caffarelli (10.1016/j.jmaa.2024.129099_br0080) 1998; 51 Butuzov (10.1016/j.jmaa.2024.129099_br0060) 2022; 27 Kenig (10.1016/j.jmaa.2024.129099_br0160) 2014; 67 Griepentrog (10.1016/j.jmaa.2024.129099_br0110) 2001; 225 Barbu (10.1016/j.jmaa.2024.129099_br0010) 1998; vol. 441 Senik (10.1016/j.jmaa.2024.129099_br0260) 2023; 55 Butuzov (10.1016/j.jmaa.2024.129099_br0070) 2017; vol. 205 Nefedov (10.1016/j.jmaa.2024.129099_br0210) 2023; 375 Bunoiu (10.1016/j.jmaa.2024.129099_br0040) 2020; 9 Meyers (10.1016/j.jmaa.2024.129099_br0190) 1963; 17 Breden (10.1016/j.jmaa.2024.129099_br0030) 2018; 264 Tewary (10.1016/j.jmaa.2024.129099_br0280) 2021; 16 de Cristoforis (10.1016/j.jmaa.2024.129099_br0180) 2019; 62 de Cristoforis (10.1016/j.jmaa.2024.129099_br0170) 2018; 31 He (10.1016/j.jmaa.2024.129099_br0200) 2010; 53 Xu (10.1016/j.jmaa.2024.129099_br0300) 2016; 48 Recke (10.1016/j.jmaa.2024.129099_br0250) 2008; 245 Cioranescu (10.1016/j.jmaa.2024.129099_br0100) 1999; vol. 17 Gröger (10.1016/j.jmaa.2024.129099_br0130) 1989; 283 Gröger (10.1016/j.jmaa.2024.129099_br0140) 2006; 13 Xu (10.1016/j.jmaa.2024.129099_br0310) 2016; 438 Butuzov (10.1016/j.jmaa.2024.129099_br0050) 2017; 262 Bensoussan (10.1016/j.jmaa.2024.129099_br0020) 1978; vol. 3 Wang (10.1016/j.jmaa.2024.129099_br0290) 2023; 22 |
| References_xml | – volume: 264 start-page: 6418 year: 2018 end-page: 6458 ident: br0030 article-title: Existence and instability of steady states for a triangular cross-diffusion system: a computer-assisted proof publication-title: J. Differ. Equ. – volume: 53 start-page: 1231 year: 2010 end-page: 1252 ident: br0200 article-title: Error estimate of the homogenization solution for elliptic problems with small periodic coefficients on publication-title: Sci. China Math. – volume: vol. 269 year: 2018 ident: br0270 article-title: Periodic Homogenization of Elliptic Systems publication-title: Operator Theory: Advances and Applications – volume: 13 start-page: 263 year: 2006 end-page: 285 ident: br0140 article-title: Applications of differential calculus to quasilinear elliptic boundary value problems with non-smooth data publication-title: NoDEA, Nonlinear Differ. Equ. Appl. – volume: 48 start-page: 3742 year: 2016 end-page: 3788 ident: br0300 article-title: Convergence rates for general elliptic homogenization problems in Lipschitz domains publication-title: SIAM J. Math. Anal. – volume: 9 start-page: 292 year: 2020 end-page: 304 ident: br0040 article-title: Localization and multiplicity in the homogenization of nonlinear problems publication-title: Adv. Nonlinear Anal. – volume: 225 start-page: 39 year: 2001 end-page: 74 ident: br0110 article-title: Linear elliptic boundary value problems with non-smooth data: normal solvability in Sobolev-Campanato spaces publication-title: Math. Nachr. – volume: vol. 205 start-page: 111 year: 2017 end-page: 127 ident: br0070 article-title: An implicit function theorem and applications to nonsmooth boundary layers publication-title: Patterns of Dynamics – volume: 62 start-page: 985 year: 2019 end-page: 1016 ident: br0180 article-title: Asymptotic behaviour of the energy integral of a two-parameter homogenization problem with nonlinear periodic Robin boundary conditions publication-title: Proc. Edinb. Math. Soc. (2) – volume: 245 start-page: 3806 year: 2008 end-page: 3822 ident: br0250 article-title: Boundary layer solutions to problems with infinite dimensional singular and regular perturbations publication-title: J. Differ. Equ. – volume: 67 start-page: 1219 year: 2014 end-page: 1262 ident: br0160 article-title: Periodic homogenization of Green and Neumann functions publication-title: Commun. Pure Appl. Math. – volume: 16 start-page: 427 year: 2021 end-page: 458 ident: br0280 article-title: Combined effects of homogenization and singular perturbation: a Bloch wave approach publication-title: Netw. Heterog. Media – volume: 262 start-page: 4823 year: 2017 end-page: 4862 ident: br0050 article-title: Time-periodic boundary layer solutions to singularly perturbed parabolic problems publication-title: J. Differ. Equ. – ident: br0220 article-title: A common approach to singular perturbation and homogenization I: quasilinear ODE systems – volume: 51 start-page: 1 year: 1998 end-page: 21 ident: br0080 article-title: On publication-title: Commun. Pure Appl. Math. – volume: 27 start-page: 4255 year: 2022 end-page: 4283 ident: br0060 article-title: Boundary layer solutions to singularly perturbed quasilinear systems publication-title: Discrete Contin. Dyn. Syst., Ser. B – volume: 55 start-page: 849 year: 2023 end-page: 881 ident: br0260 article-title: Homogenization for locally periodic elliptic problems in a domain publication-title: SIAM J. Math. Anal. – volume: 31 start-page: 63 year: 2018 end-page: 110 ident: br0170 article-title: Two-parameter homogenization for a nonlinear periodic Robin problem for a Poisson equation: a functional analytic approach publication-title: Rev. Mat. Complut. – volume: 506 year: 2022 ident: br0240 article-title: Use of very weak approximate boundary layer solutions to spatially nonsmooth singularly perturbed problems publication-title: J. Math. Anal. Appl. – volume: vol. 234 year: 2007 ident: br0090 article-title: Homogenization. Methods and Applications publication-title: Translations of Mathematical Monographs – volume: vol. 17 year: 1999 ident: br0100 article-title: An Introduction to Homogenization publication-title: Oxford Lecture Series in Mathematics and its Applications – volume: 45 start-page: 35 year: 2015 end-page: 89 ident: br0230 article-title: Existence, local uniqueness and asymptotic approximation of spike solutions to singularly perturbed elliptic problems publication-title: Hiroshima Math. J. – year: 2002 ident: br0150 article-title: The Implicit Function Theorem. History, Theory, and Applications – volume: 17 start-page: 189 year: 1963 end-page: 206 ident: br0190 article-title: An publication-title: Ann. Sc. Norm. Super. Pisa – volume: vol. 3 year: 1978 ident: br0020 article-title: Asymptotic Analysis for Periodic Structures publication-title: Studies in Mathematics and its Applications – volume: 375 start-page: 206 year: 2023 end-page: 236 ident: br0210 article-title: Nonsmooth regular perturbations of singularly perturbed problems publication-title: J. Differ. Equ. – volume: 283 start-page: 679 year: 1989 end-page: 687 ident: br0130 article-title: A publication-title: Math. Ann. – volume: vol. 441 year: 1998 ident: br0010 article-title: Partial Differential Equations and Boundary Value Problems publication-title: Mathematics and its Applications – volume: 438 start-page: 1066 year: 2016 end-page: 1107 ident: br0310 article-title: Uniform regularity estimates in homogenization theory of elliptic systems with lower order terms publication-title: J. Math. Anal. Appl. – reference: J.A. Griepentrog, L. Recke, A common approach to singular perturbation and homogenization III: quasilinear elliptic problems with arbitrary space dimension, in preparation. – volume: 22 start-page: 787 year: 2023 end-page: 824 ident: br0290 article-title: Homogenization theory of elliptic systems with lower order terms for dimension two publication-title: Commun. Pure Appl. Anal. – volume: 48 start-page: 3742 year: 2016 ident: 10.1016/j.jmaa.2024.129099_br0300 article-title: Convergence rates for general elliptic homogenization problems in Lipschitz domains publication-title: SIAM J. Math. Anal. doi: 10.1137/15M1053335 – volume: 27 start-page: 4255 year: 2022 ident: 10.1016/j.jmaa.2024.129099_br0060 article-title: Boundary layer solutions to singularly perturbed quasilinear systems publication-title: Discrete Contin. Dyn. Syst., Ser. B doi: 10.3934/dcdsb.2021226 – volume: 62 start-page: 985 year: 2019 ident: 10.1016/j.jmaa.2024.129099_br0180 article-title: Asymptotic behaviour of the energy integral of a two-parameter homogenization problem with nonlinear periodic Robin boundary conditions publication-title: Proc. Edinb. Math. Soc. (2) doi: 10.1017/S0013091518000858 – volume: 225 start-page: 39 year: 2001 ident: 10.1016/j.jmaa.2024.129099_br0110 article-title: Linear elliptic boundary value problems with non-smooth data: normal solvability in Sobolev-Campanato spaces publication-title: Math. Nachr. doi: 10.1002/1522-2616(200105)225:1<39::AID-MANA39>3.0.CO;2-5 – volume: vol. 234 year: 2007 ident: 10.1016/j.jmaa.2024.129099_br0090 article-title: Homogenization. Methods and Applications – year: 2002 ident: 10.1016/j.jmaa.2024.129099_br0150 – volume: 16 start-page: 427 year: 2021 ident: 10.1016/j.jmaa.2024.129099_br0280 article-title: Combined effects of homogenization and singular perturbation: a Bloch wave approach publication-title: Netw. Heterog. Media doi: 10.3934/nhm.2021012 – volume: 262 start-page: 4823 year: 2017 ident: 10.1016/j.jmaa.2024.129099_br0050 article-title: Time-periodic boundary layer solutions to singularly perturbed parabolic problems publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2016.12.020 – volume: 375 start-page: 206 year: 2023 ident: 10.1016/j.jmaa.2024.129099_br0210 article-title: Nonsmooth regular perturbations of singularly perturbed problems publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2023.08.006 – volume: 438 start-page: 1066 year: 2016 ident: 10.1016/j.jmaa.2024.129099_br0310 article-title: Uniform regularity estimates in homogenization theory of elliptic systems with lower order terms publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2016.02.011 – volume: 283 start-page: 679 year: 1989 ident: 10.1016/j.jmaa.2024.129099_br0130 article-title: A W1,p-estimate for solutions to mixed boundary value problems for second-order elliptic differential equations publication-title: Math. Ann. doi: 10.1007/BF01442860 – volume: 13 start-page: 263 year: 2006 ident: 10.1016/j.jmaa.2024.129099_br0140 article-title: Applications of differential calculus to quasilinear elliptic boundary value problems with non-smooth data publication-title: NoDEA, Nonlinear Differ. Equ. Appl. doi: 10.1007/s00030-006-3017-0 – volume: 9 start-page: 292 year: 2020 ident: 10.1016/j.jmaa.2024.129099_br0040 article-title: Localization and multiplicity in the homogenization of nonlinear problems publication-title: Adv. Nonlinear Anal. doi: 10.1515/anona-2020-0001 – volume: vol. 3 year: 1978 ident: 10.1016/j.jmaa.2024.129099_br0020 article-title: Asymptotic Analysis for Periodic Structures – volume: vol. 205 start-page: 111 year: 2017 ident: 10.1016/j.jmaa.2024.129099_br0070 article-title: An implicit function theorem and applications to nonsmooth boundary layers – volume: 264 start-page: 6418 year: 2018 ident: 10.1016/j.jmaa.2024.129099_br0030 article-title: Existence and instability of steady states for a triangular cross-diffusion system: a computer-assisted proof publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2018.01.033 – volume: 245 start-page: 3806 year: 2008 ident: 10.1016/j.jmaa.2024.129099_br0250 article-title: Boundary layer solutions to problems with infinite dimensional singular and regular perturbations publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2008.01.017 – volume: vol. 269 year: 2018 ident: 10.1016/j.jmaa.2024.129099_br0270 article-title: Periodic Homogenization of Elliptic Systems – volume: vol. 17 year: 1999 ident: 10.1016/j.jmaa.2024.129099_br0100 article-title: An Introduction to Homogenization – volume: 55 start-page: 849 year: 2023 ident: 10.1016/j.jmaa.2024.129099_br0260 article-title: Homogenization for locally periodic elliptic problems in a domain publication-title: SIAM J. Math. Anal. doi: 10.1137/21M1419337 – volume: 53 start-page: 1231 year: 2010 ident: 10.1016/j.jmaa.2024.129099_br0200 article-title: Error estimate of the homogenization solution for elliptic problems with small periodic coefficients on L∞(Ω) publication-title: Sci. China Math. doi: 10.1007/s11425-010-0078-7 – volume: 17 start-page: 189 year: 1963 ident: 10.1016/j.jmaa.2024.129099_br0190 article-title: An Lp-estimate for the gradient of solutions of second-order elliptic divergence equations publication-title: Ann. Sc. Norm. Super. Pisa – ident: 10.1016/j.jmaa.2024.129099_br0220 – volume: 45 start-page: 35 year: 2015 ident: 10.1016/j.jmaa.2024.129099_br0230 article-title: Existence, local uniqueness and asymptotic approximation of spike solutions to singularly perturbed elliptic problems publication-title: Hiroshima Math. J. doi: 10.32917/hmj/1428365053 – volume: 22 start-page: 787 year: 2023 ident: 10.1016/j.jmaa.2024.129099_br0290 article-title: Homogenization theory of elliptic systems with lower order terms for dimension two publication-title: Commun. Pure Appl. Anal. doi: 10.3934/cpaa.2023010 – volume: 31 start-page: 63 year: 2018 ident: 10.1016/j.jmaa.2024.129099_br0170 article-title: Two-parameter homogenization for a nonlinear periodic Robin problem for a Poisson equation: a functional analytic approach publication-title: Rev. Mat. Complut. doi: 10.1007/s13163-017-0242-5 – volume: 506 year: 2022 ident: 10.1016/j.jmaa.2024.129099_br0240 article-title: Use of very weak approximate boundary layer solutions to spatially nonsmooth singularly perturbed problems publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2021.125552 – volume: vol. 441 year: 1998 ident: 10.1016/j.jmaa.2024.129099_br0010 article-title: Partial Differential Equations and Boundary Value Problems – ident: 10.1016/j.jmaa.2024.129099_br0120 – volume: 51 start-page: 1 year: 1998 ident: 10.1016/j.jmaa.2024.129099_br0080 article-title: On W1,p estimates for elliptic equations in divergence form publication-title: Commun. Pure Appl. Math. doi: 10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.0.CO;2-G – volume: 67 start-page: 1219 year: 2014 ident: 10.1016/j.jmaa.2024.129099_br0160 article-title: Periodic homogenization of Green and Neumann functions publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.21482 |
| SSID | ssj0011571 |
| Score | 2.4584508 |
| Snippet | We consider periodic homogenization of boundary value problems for second-order semilinear elliptic systems in 2D of the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 129099 |
| SubjectTerms | [formula omitted]-estimate of the homogenization error Existence and local uniqueness Implicit function theorem Nonsmooth data Periodic homogenization Semilinear elliptic systems |
| Title | A common approach to singular perturbation and homogenization II: Semilinear elliptic systems |
| URI | https://dx.doi.org/10.1016/j.jmaa.2024.129099 |
| Volume | 545 |
| WOSCitedRecordID | wos001374767600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0022-247X databaseCode: AIEXJ dateStart: 20211213 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0011571 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF7apIf2ENIXTV_soTcjY620Wik3E1Kq0JpCUvClCGl3Re1UD2wlhPz6zmhXjyQltIVehFk8Esz3eT2anfmGkA8MSJDnMnNgfwwdP3WZEymROZ6OeKgCHcxk2g6bEItFuFxGX20LwbYdJyDKMry6iur_CjWsAdjYOvsXcPc3hQX4DKDDFWCH6x8BP8cy8QKLjOuhXQozAm3Baa038CeTGdgxaf6jKiq4l23HnMQx5ghOdbHC-BMMULCzRlXX7Ujb_G40W_Tyr634gFU6aZVgR0fkQ-o516q6NFQ8h7fr1WQx7c9-tDQVQ58vmutxVoLxoQbQpMq6dpkb1Zxt6wDzxXK8_XIjJznm2Z1t3WQY1tN1kaJWFPOnmD4zk5VuyWWftu298AwIVXBsuXhIdpngEWzau_P4eHnSnzG5XLidljwa2JYqU_13-0m_D1tGocjZPtmzXqdzg_1T8kCXz8iTLz0C2-fk-5waFtCOBbSpaMcCOmYBBZDoTRbQOD6kAwdoxwFqOfCCfPt4fHb0ybGTNBzp-X4DP79cazxgk6nnsRkE5TLIUznTzNWRr2YqUDJTqN2fMV_xUHKWhkxFuQiyCCy8l2SnrEr9ilAs7ORh5ocs9-HlWqSu1LAiMwnBrRukB8TtHJVIKzOP005-Jl094TpB5ybo3MQ494BMepvaiKzc-23e-T-xYaIJ_xKgyz12r__R7g15PDD8LdlpNhf6HXkkL5vVdvPesuoXAMqQ2Q |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+common+approach+to+singular+perturbation+and+homogenization+II%3A+Semilinear+elliptic+systems&rft.jtitle=Journal+of+mathematical+analysis+and+applications&rft.au=Nefedov%2C+Nikolai+N.&rft.au=Recke%2C+Lutz&rft.date=2025-05-01&rft.pub=Elsevier+Inc&rft.issn=0022-247X&rft.volume=545&rft.issue=1&rft_id=info:doi/10.1016%2Fj.jmaa.2024.129099&rft.externalDocID=S0022247X24010217 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-247X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-247X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-247X&client=summon |