On algebras of holomorphic functions of a given type
We show that several spaces of holomorphic functions on a Riemann domain over a Banach space, including the nuclear and Hilbert–Schmidt bounded type, are locally m-convex Fréchet algebras. We prove that the spectrum of these algebras has a natural analytic structure, which we use to characterize the...
Uložené v:
| Vydané v: | Journal of mathematical analysis and applications Ročník 389; číslo 2; s. 792 - 811 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
15.05.2012
|
| Predmet: | |
| ISSN: | 0022-247X, 1096-0813 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We show that several spaces of holomorphic functions on a Riemann domain over a Banach space, including the nuclear and Hilbert–Schmidt bounded type, are locally m-convex Fréchet algebras. We prove that the spectrum of these algebras has a natural analytic structure, which we use to characterize the envelope of holomorphy. We also show a Cartan–Thullen type theorem. |
|---|---|
| ISSN: | 0022-247X 1096-0813 |
| DOI: | 10.1016/j.jmaa.2011.12.022 |