Thermodynamic analysis of general heat engine cycle with finite heat capacity rates for power maximization

In this study, the ideal cycles with finite heat capacity rates is investigated theoretically to maximize power generation using a sequential Carnot cycle model. Although the Carnot efficiency is important, it is limited to evaluating only in terms of heat source/sink temperatures. For the actual he...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Case studies in thermal engineering Ročník 35; s. 102067
Hlavní autori: Kim, Soyeon, Baik, Young-Jin, Kim, Minsung
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.07.2022
Elsevier
Predmet:
ISSN:2214-157X, 2214-157X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this study, the ideal cycles with finite heat capacity rates is investigated theoretically to maximize power generation using a sequential Carnot cycle model. Although the Carnot efficiency is important, it is limited to evaluating only in terms of heat source/sink temperatures. For the actual heat engine, maximization of power generation is more important than cycle thermal efficiency when utilizing low-grade heat sources such as a waste heat. In this study, power generation optimization is numerically simulated under the fixed conditions of heat source temperatures, heat source flow rate and heat sink temperature. Effect by two design variables, compressor exit temperature and evaporator size ratio, were evaluated during cycle optimization. The optimization was performed using the pattern search algorithm (PSA) under a given thermal capacitance rate ratios and size of heat exchanger (UA) conditions. As a result, designing compressor exit temperature for maximizing the heat received from heat sources does not always maximize the power, but the higher the UA makes the optimum temperature lower, and the power output higher. These idealistic approaches can be useful in designing of cycle where the power maximization is crucial.
AbstractList In this study, the ideal cycles with finite heat capacity rates is investigated theoretically to maximize power generation using a sequential Carnot cycle model. Although the Carnot efficiency is important, it is limited to evaluating only in terms of heat source/sink temperatures. For the actual heat engine, maximization of power generation is more important than cycle thermal efficiency when utilizing low-grade heat sources such as a waste heat. In this study, power generation optimization is numerically simulated under the fixed conditions of heat source temperatures, heat source flow rate and heat sink temperature. Effect by two design variables, compressor exit temperature and evaporator size ratio, were evaluated during cycle optimization. The optimization was performed using the pattern search algorithm (PSA) under a given thermal capacitance rate ratios and size of heat exchanger (UA) conditions. As a result, designing compressor exit temperature for maximizing the heat received from heat sources does not always maximize the power, but the higher the UA makes the optimum temperature lower, and the power output higher. These idealistic approaches can be useful in designing of cycle where the power maximization is crucial.
ArticleNumber 102067
Author Baik, Young-Jin
Kim, Minsung
Kim, Soyeon
Author_xml – sequence: 1
  givenname: Soyeon
  surname: Kim
  fullname: Kim, Soyeon
  organization: Department of Intelligent Energy and Industry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
– sequence: 2
  givenname: Young-Jin
  surname: Baik
  fullname: Baik, Young-Jin
  organization: Thermal Energy Conversion Systems Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Dajeon, 34129, Republic of Korea
– sequence: 3
  givenname: Minsung
  orcidid: 0000-0003-2416-1311
  surname: Kim
  fullname: Kim, Minsung
  email: minsungk@cau.ac.kr
  organization: Department of Intelligent Energy and Industry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
BookMark eNqFkE1r3DAQhkVJoWmaX9CL_sBu9WVbPvRQQj8CgVxS6E2MpdGujC0tkmjq_vo661JKD81phhmed5jnNbmIKSIhbznbc8bbd-PellBxL5gQ60SwtntBLoXgaseb7tvFX_0rcl3KyBjjndRcqUsyPhwxz8ktEeZgKUSYlhIKTZ4eMGKGiR4RKsV4CBGpXeyE9DHUI_Uhrle3rYUT2FAXmqFioT5lekqPmOkMP8IcfkINKb4hLz1MBa9_1yvy9dPHh5svu7v7z7c3H-52VipVd7pzzA2DY565Xjet81IMnqOUjfTWads7NuieYwsNyI5LwZRqrJbaCiedk1fkdst1CUZzymGGvJgEwZwHKR8M5BrWR0wjGUjGeYeWKW8RQNpOt0M_CKV7169ZcsuyOZWS0f_J48w82TejOds3T_bNZn-l-n-oVc7ZQc0QpmfY9xuLq6LvAbMpNmC06EJGW9cfwn_5X8JtpYM
CitedBy_id crossref_primary_10_1016_j_energy_2023_126856
crossref_primary_10_1080_17455030_2023_2200429
crossref_primary_10_1016_j_pnucene_2025_105708
crossref_primary_10_1016_j_pnucene_2025_105925
crossref_primary_10_36306_konjes_1120243
crossref_primary_10_1119_5_0220126
crossref_primary_10_1016_j_energy_2022_125956
Cites_doi 10.1119/1.12426
10.1016/j.geothermics.2015.11.003
10.1016/j.desal.2006.08.015
10.1016/S0360-5442(99)00076-6
10.1016/j.geothermics.2013.11.001
10.1016/j.applthermaleng.2011.02.028
10.1016/j.energy.2020.117353
10.1016/j.energy.2016.01.019
10.1016/j.enconman.2016.12.085
10.1243/PIME_PROC_1992_206_042_02
10.1016/j.applthermaleng.2015.04.034
10.1137/S1052623400378742
10.1016/j.energy.2014.02.073
10.1137/S1052623498339727
10.1016/j.enconman.2019.112002
10.1016/j.jcou.2017.11.001
10.1016/j.energy.2011.07.041
10.1016/j.apenergy.2017.08.081
10.1016/j.applthermaleng.2015.10.039
10.1016/0360-5442(95)00083-6
10.1115/1.2906271
10.3390/app9245382
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.csite.2022.102067
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-157X
ExternalDocumentID oai_doaj_org_article_530a30117ec04fceaa3c786b9b2489d9
10_1016_j_csite_2022_102067
S2214157X22003136
GroupedDBID 0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M~E
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c344t-87d0dbbd0f0d9856df32bf1e3353fcd8c9d0b891e6a5a371320445c838c2d3dd3
IEDL.DBID DOA
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000803033500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2214-157X
IngestDate Fri Oct 03 12:44:19 EDT 2025
Wed Nov 05 20:58:07 EST 2025
Tue Nov 18 21:56:35 EST 2025
Tue Jul 25 20:57:46 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Pattern search algorithm
Sequential carnot cycle
Power maximization
Waste heat recovery
Trilateral cycle
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-87d0dbbd0f0d9856df32bf1e3353fcd8c9d0b891e6a5a371320445c838c2d3dd3
ORCID 0000-0003-2416-1311
OpenAccessLink https://doaj.org/article/530a30117ec04fceaa3c786b9b2489d9
ParticipantIDs doaj_primary_oai_doaj_org_article_530a30117ec04fceaa3c786b9b2489d9
crossref_primary_10_1016_j_csite_2022_102067
crossref_citationtrail_10_1016_j_csite_2022_102067
elsevier_sciencedirect_doi_10_1016_j_csite_2022_102067
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationTitle Case studies in thermal engineering
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Park, Kim (bib12) 2014; 68
Kim, Jung, Ro (bib22) 1984; 8
Odum (bib3) 2000; 25
Heo, Kim, Baik, Bae, Lee (bib16) 2017; 206
Wang, He (bib5) 2017; 135
Osorio, Hovsapian, Ordonez (bib6) 2016; 93
Ibrahim, Klein, Mitchell (bib10) 1991; 113
Kim, Kim, Kim (bib23) 2020; 198
Amicabile, Lee, Kum (bib19) 2015; 87
Levy, Wang, Pan, Romero, Maya (bib7) 2018; 23
Aneke, Agnew, Underwood (bib26) 2011; 31
Lewis, Torczon (bib14) 2002; 12
Na, Kim, Baik, Kim (bib8) 2019; 199
Park, Kim (bib13) 2016; 99
Baik (bib21) 2011
Smith (bib24) 1992; 206
Milcak, Mirolli, Hjartarson, Húsavíkur, Ralph (bib27) 2002; 26
Bertani (bib1) 2016; 60
Ham, Kim, Oh, Son, Lee, Lee (bib17) 2019; 9
Ibrahim, Klein (bib11) 1996; 21
Fischer (bib25) 2011; 36
Baik, Kim, Chang, Lee, Ra (bib4) 2011; 23
Zarrouk, Moon (bib18) 2014; 51
Audet, Dennis, Jr (bib28) 2002; 13
Garcia-Rodrigues, Blanco-Galvez (bib2) 2007; 212
Ondrechen, Anderson, Mozurkewich, Berry (bib9) 1981; 49
Cengel, Boles (bib20) 2015
(bib15) 2020
Ham (10.1016/j.csite.2022.102067_bib17) 2019; 9
Aneke (10.1016/j.csite.2022.102067_bib26) 2011; 31
Lewis (10.1016/j.csite.2022.102067_bib14) 2002; 12
Odum (10.1016/j.csite.2022.102067_bib3) 2000; 25
Park (10.1016/j.csite.2022.102067_bib13) 2016; 99
Amicabile (10.1016/j.csite.2022.102067_bib19) 2015; 87
Garcia-Rodrigues (10.1016/j.csite.2022.102067_bib2) 2007; 212
Heo (10.1016/j.csite.2022.102067_bib16) 2017; 206
Kim (10.1016/j.csite.2022.102067_bib22) 1984; 8
Smith (10.1016/j.csite.2022.102067_bib24) 1992; 206
Wang (10.1016/j.csite.2022.102067_bib5) 2017; 135
Baik (10.1016/j.csite.2022.102067_bib4) 2011; 23
Ondrechen (10.1016/j.csite.2022.102067_bib9) 1981; 49
Fischer (10.1016/j.csite.2022.102067_bib25) 2011; 36
Na (10.1016/j.csite.2022.102067_bib8) 2019; 199
Kim (10.1016/j.csite.2022.102067_bib23) 2020; 198
Milcak (10.1016/j.csite.2022.102067_bib27) 2002; 26
Zarrouk (10.1016/j.csite.2022.102067_bib18) 2014; 51
Ibrahim (10.1016/j.csite.2022.102067_bib11) 1996; 21
Ibrahim (10.1016/j.csite.2022.102067_bib10) 1991; 113
Park (10.1016/j.csite.2022.102067_bib12) 2014; 68
Audet (10.1016/j.csite.2022.102067_bib28) 2002; 13
Baik (10.1016/j.csite.2022.102067_bib21) 2011
Osorio (10.1016/j.csite.2022.102067_bib6) 2016; 93
Levy (10.1016/j.csite.2022.102067_bib7) 2018; 23
Cengel (10.1016/j.csite.2022.102067_bib20) 2015
Bertani (10.1016/j.csite.2022.102067_bib1) 2016; 60
(10.1016/j.csite.2022.102067_bib15) 2020
References_xml – volume: 60
  start-page: 31
  year: 2016
  end-page: 43
  ident: bib1
  article-title: Geothermal power generation in the world 2010-2014 update report
  publication-title: Geothermics
– volume: 51
  start-page: 142
  year: 2014
  end-page: 153
  ident: bib18
  article-title: Efficiency of geothermal power plants: a worldwide review
  publication-title: Geothermics
– volume: 13
  start-page: 889
  year: 2002
  end-page: 903
  ident: bib28
  article-title: Analysis of generalized pattern searches
  publication-title: SIAM J. Optim.
– volume: 8
  start-page: 564
  year: 1984
  end-page: 568
  ident: bib22
  article-title: Analysis of a heat engine with the irreversibility by the heat transfer
  publication-title: Trans. Korean Soc. Mech.
– volume: 12
  start-page: 1075
  year: 2002
  end-page: 1089
  ident: bib14
  article-title: A globally convergent augmented Lagrangian pattern search algorithm for optimization with general constraints and simple bounds
  publication-title: SIAM J. Optim.
– volume: 135
  start-page: 336
  year: 2017
  end-page: 350
  ident: bib5
  article-title: Thermodynamic analysis and optimization of a molten salt solar power tower integrated with a recompression supercritical CO2 Brayton cycle based on integrated modeling
  publication-title: Energy Convers. Manag.
– volume: 93
  start-page: 920
  year: 2016
  end-page: 934
  ident: bib6
  article-title: Dynamic analysis of concentrated solar supercritical CO2-based power generation closed-loop cycle
  publication-title: Appl. Therm. Eng.
– volume: 68
  start-page: 592
  year: 2014
  end-page: 598
  ident: bib12
  article-title: Thermodynamics performance analysis of sequential Carnot cycles using heat source with finite heat capacity
  publication-title: Energy
– volume: 212
  start-page: 311
  year: 2007
  end-page: 318
  ident: bib2
  article-title: Solar-heated Rankine cycles for water and electricity production; POWERSOL project
  publication-title: Desalination
– volume: 198
  start-page: 117353
  year: 2020
  ident: bib23
  article-title: Parametric study and optimization of closed Brayton power cycle considering the charge amount of working fluid
  publication-title: Energy
– volume: 9
  start-page: 5382
  year: 2019
  ident: bib17
  article-title: A supercritical CO2 waste heat recovery system design for a diesel generator for nuclear power plant application
  publication-title: Appl. Sci.
– volume: 26
  start-page: 22
  year: 2002
  end-page: 25
  ident: bib27
  article-title: Notes from the North : a report on the debut year of the 2 MW Kalina cycle geothermal power plant in Húsavik, Iceland
  publication-title: Trans. Geoth. Resour. Counc.
– volume: 36
  start-page: 6208
  year: 2011
  end-page: 6219
  ident: bib25
  article-title: Comparison of trilateral cycles and organic Rankine cycles
  publication-title: Energy
– volume: 31
  start-page: 1825
  year: 2011
  end-page: 1832
  ident: bib26
  article-title: Performance analysis of the China binary geothermal power plant
  publication-title: Appl. Therm. Eng.
– volume: 206
  start-page: 1118
  year: 2017
  end-page: 1130
  ident: bib16
  article-title: Thermodynamic study of supercritical CO2 Brayton cycle using an isothermal compressor
  publication-title: Appl. Energy
– volume: 21
  start-page: 1
  year: 1996
  end-page: 7
  ident: bib11
  article-title: Absorption power cycles
  publication-title: Energy
– volume: 49
  start-page: 681
  year: 1981
  end-page: 685
  ident: bib9
  article-title: Maximum work from a finite reservoir by seqential Carnot cycles
  publication-title: Am. J. Phys.
– year: 2011
  ident: bib21
  article-title: Study on the Power Optimization of Transcritical and Subcritical Rankine Power Cycles for a Low-Grade Heat Source
– year: 2020
  ident: bib15
– volume: 206
  start-page: 257
  year: 1992
  end-page: 262
  ident: bib24
  article-title: Matching and work ratio in elementary thermal power plant theory
  publication-title: Proc. IME J. Power Energy
– volume: 23
  start-page: 556
  year: 2011
  end-page: 561
  ident: bib4
  article-title: Power maximization of a heat engine between the heat source and sink with finite heat capacity rates
  publication-title: Korean J. Air-Cond. Refrig. Eng.
– volume: 113
  start-page: 514
  year: 1991
  end-page: 521
  ident: bib10
  article-title: Optimum heat power cycles for specified boundary conditions
  publication-title: J. Eng. Gas Turbines Power
– volume: 25
  start-page: 389
  year: 2000
  end-page: 393
  ident: bib3
  article-title: Emergy evaluation of an OTEC electrical power system
  publication-title: Energy
– volume: 199
  start-page: 112002
  year: 2019
  ident: bib8
  article-title: Optimal allocation of heat exchangers in a Supercritical carbon dioxide power cycle for waste cycle for waste heat recovery
  publication-title: Energy Convers. Manag.
– volume: 23
  start-page: 20
  year: 2018
  end-page: 28
  ident: bib7
  article-title: Use of hot supercritical CO2 produced from a geothermal reservoir to generate electric power in a gas turbine power generation system
  publication-title: J. CO2 Util.
– volume: 99
  start-page: 1
  year: 2016
  end-page: 9
  ident: bib13
  article-title: Performance analysis of sequential Carnot cycles with finite heat sources and heat sinks and its application in organic Rankine cycles
  publication-title: Energy
– volume: 87
  start-page: 574
  year: 2015
  end-page: 585
  ident: bib19
  article-title: A comprehensive design methodology of organic Rankine cycles for the waste heat recovery of automotive heavy-duty diesel engines
  publication-title: Appl. Therm. Eng.
– year: 2015
  ident: bib20
  article-title: Thermodynamics: an Engineering Approach
– volume: 49
  start-page: 681
  issue: 7
  year: 1981
  ident: 10.1016/j.csite.2022.102067_bib9
  article-title: Maximum work from a finite reservoir by seqential Carnot cycles
  publication-title: Am. J. Phys.
  doi: 10.1119/1.12426
– volume: 60
  start-page: 31
  year: 2016
  ident: 10.1016/j.csite.2022.102067_bib1
  article-title: Geothermal power generation in the world 2010-2014 update report
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2015.11.003
– volume: 212
  start-page: 311
  issue: 1–3
  year: 2007
  ident: 10.1016/j.csite.2022.102067_bib2
  article-title: Solar-heated Rankine cycles for water and electricity production; POWERSOL project
  publication-title: Desalination
  doi: 10.1016/j.desal.2006.08.015
– year: 2015
  ident: 10.1016/j.csite.2022.102067_bib20
– volume: 25
  start-page: 389
  issue: 4
  year: 2000
  ident: 10.1016/j.csite.2022.102067_bib3
  article-title: Emergy evaluation of an OTEC electrical power system
  publication-title: Energy
  doi: 10.1016/S0360-5442(99)00076-6
– volume: 51
  start-page: 142
  year: 2014
  ident: 10.1016/j.csite.2022.102067_bib18
  article-title: Efficiency of geothermal power plants: a worldwide review
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2013.11.001
– volume: 31
  start-page: 1825
  issue: 10
  year: 2011
  ident: 10.1016/j.csite.2022.102067_bib26
  article-title: Performance analysis of the China binary geothermal power plant
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2011.02.028
– volume: 198
  start-page: 117353
  year: 2020
  ident: 10.1016/j.csite.2022.102067_bib23
  article-title: Parametric study and optimization of closed Brayton power cycle considering the charge amount of working fluid
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117353
– volume: 99
  start-page: 1
  year: 2016
  ident: 10.1016/j.csite.2022.102067_bib13
  article-title: Performance analysis of sequential Carnot cycles with finite heat sources and heat sinks and its application in organic Rankine cycles
  publication-title: Energy
  doi: 10.1016/j.energy.2016.01.019
– volume: 135
  start-page: 336
  year: 2017
  ident: 10.1016/j.csite.2022.102067_bib5
  article-title: Thermodynamic analysis and optimization of a molten salt solar power tower integrated with a recompression supercritical CO2 Brayton cycle based on integrated modeling
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.12.085
– volume: 23
  start-page: 556
  issue: 8
  year: 2011
  ident: 10.1016/j.csite.2022.102067_bib4
  article-title: Power maximization of a heat engine between the heat source and sink with finite heat capacity rates
  publication-title: Korean J. Air-Cond. Refrig. Eng.
– volume: 206
  start-page: 257
  issue: 4
  year: 1992
  ident: 10.1016/j.csite.2022.102067_bib24
  article-title: Matching and work ratio in elementary thermal power plant theory
  publication-title: Proc. IME J. Power Energy
  doi: 10.1243/PIME_PROC_1992_206_042_02
– volume: 87
  start-page: 574
  year: 2015
  ident: 10.1016/j.csite.2022.102067_bib19
  article-title: A comprehensive design methodology of organic Rankine cycles for the waste heat recovery of automotive heavy-duty diesel engines
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.04.034
– volume: 13
  start-page: 889
  issue: 3
  year: 2002
  ident: 10.1016/j.csite.2022.102067_bib28
  article-title: Analysis of generalized pattern searches
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623400378742
– volume: 68
  start-page: 592
  year: 2014
  ident: 10.1016/j.csite.2022.102067_bib12
  article-title: Thermodynamics performance analysis of sequential Carnot cycles using heat source with finite heat capacity
  publication-title: Energy
  doi: 10.1016/j.energy.2014.02.073
– volume: 12
  start-page: 1075
  issue: 4
  year: 2002
  ident: 10.1016/j.csite.2022.102067_bib14
  article-title: A globally convergent augmented Lagrangian pattern search algorithm for optimization with general constraints and simple bounds
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623498339727
– volume: 199
  start-page: 112002
  year: 2019
  ident: 10.1016/j.csite.2022.102067_bib8
  article-title: Optimal allocation of heat exchangers in a Supercritical carbon dioxide power cycle for waste cycle for waste heat recovery
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.112002
– volume: 8
  start-page: 564
  issue: 6
  year: 1984
  ident: 10.1016/j.csite.2022.102067_bib22
  article-title: Analysis of a heat engine with the irreversibility by the heat transfer
  publication-title: Trans. Korean Soc. Mech.
– year: 2020
  ident: 10.1016/j.csite.2022.102067_bib15
– volume: 23
  start-page: 20
  year: 2018
  ident: 10.1016/j.csite.2022.102067_bib7
  article-title: Use of hot supercritical CO2 produced from a geothermal reservoir to generate electric power in a gas turbine power generation system
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2017.11.001
– volume: 36
  start-page: 6208
  issue: 10
  year: 2011
  ident: 10.1016/j.csite.2022.102067_bib25
  article-title: Comparison of trilateral cycles and organic Rankine cycles
  publication-title: Energy
  doi: 10.1016/j.energy.2011.07.041
– volume: 206
  start-page: 1118
  year: 2017
  ident: 10.1016/j.csite.2022.102067_bib16
  article-title: Thermodynamic study of supercritical CO2 Brayton cycle using an isothermal compressor
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.08.081
– volume: 93
  start-page: 920
  year: 2016
  ident: 10.1016/j.csite.2022.102067_bib6
  article-title: Dynamic analysis of concentrated solar supercritical CO2-based power generation closed-loop cycle
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.10.039
– volume: 21
  start-page: 1
  issue: 1
  year: 1996
  ident: 10.1016/j.csite.2022.102067_bib11
  article-title: Absorption power cycles
  publication-title: Energy
  doi: 10.1016/0360-5442(95)00083-6
– volume: 113
  start-page: 514
  issue: 4
  year: 1991
  ident: 10.1016/j.csite.2022.102067_bib10
  article-title: Optimum heat power cycles for specified boundary conditions
  publication-title: J. Eng. Gas Turbines Power
  doi: 10.1115/1.2906271
– volume: 9
  start-page: 5382
  issue: 24
  year: 2019
  ident: 10.1016/j.csite.2022.102067_bib17
  article-title: A supercritical CO2 waste heat recovery system design for a diesel generator for nuclear power plant application
  publication-title: Appl. Sci.
  doi: 10.3390/app9245382
– year: 2011
  ident: 10.1016/j.csite.2022.102067_bib21
– volume: 26
  start-page: 22
  year: 2002
  ident: 10.1016/j.csite.2022.102067_bib27
  article-title: Notes from the North : a report on the debut year of the 2 MW Kalina cycle geothermal power plant in Húsavik, Iceland
  publication-title: Trans. Geoth. Resour. Counc.
SSID ssj0001738144
Score 2.2958522
Snippet In this study, the ideal cycles with finite heat capacity rates is investigated theoretically to maximize power generation using a sequential Carnot cycle...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 102067
SubjectTerms Pattern search algorithm
Power maximization
Sequential carnot cycle
Trilateral cycle
Waste heat recovery
Title Thermodynamic analysis of general heat engine cycle with finite heat capacity rates for power maximization
URI https://dx.doi.org/10.1016/j.csite.2022.102067
https://doaj.org/article/530a30117ec04fceaa3c786b9b2489d9
Volume 35
WOSCitedRecordID wos000803033500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ (Directory of Open Access Journals)
  customDbUrl:
  eissn: 2214-157X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001738144
  issn: 2214-157X
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2214-157X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001738144
  issn: 2214-157X
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07b9swECaKoEMzBH0FcZMWHDpWKMWHSI5NkaBLjQ4t4E3g6wIHsR04TpEs_e3hkbKrKVmyaJD4EI4n3kfq-H2EfEYIa2wHjefKN9JL2-SvSDXQAkgjDQjmi9iEnk7NbGZ_jaS-MCes0gNXw31Vgjl0Qp0CkxCScyJo03nruTQ2lqN7TNvRYqrsrugciYqSK-etbFqlZ1vKoZLcFcqv2bzw58hdwIrK_P-wVNj7R9FpFHHOX5ODASrSb_UV35AXafmW7I8IBN-RyzzK68UqVll56gaGEboCelH5pClOtjSVSjTc54Yobr1SmCPYrE9DDpgho3GKtBE3NMNYeo3iaXTh7uaL4aDme_Ln_Oz39x_NoJ7QBCHlJk9zkUXvIwMWrVFdBME9tEkIJQAZAWxk3tg2dU45ofEotZQqGGECjyJGcUj2lqtlOiIUVHCdB6Vx-QUdmA64DY5bcNqr1E4I3xqvDwO1OCpcXPXbHLLLvli8R4v31eIT8mVX6boyazxe_BRHZVcUabHLjews_eAs_VPOMiHddkz7AWFU5JCbmj_W-4fn6P2YvMIma7LvCdnbrG_TR_Iy_N3Mb9afigPn689_Zw_3P_bI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermodynamic+analysis+of+general+heat+engine+cycle+with+finite+heat+capacity+rates+for+power+maximization&rft.jtitle=Case+studies+in+thermal+engineering&rft.au=Kim%2C+Soyeon&rft.au=Baik%2C+Young-Jin&rft.au=Kim%2C+Minsung&rft.date=2022-07-01&rft.issn=2214-157X&rft.eissn=2214-157X&rft.volume=35&rft.spage=102067&rft_id=info:doi/10.1016%2Fj.csite.2022.102067&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_csite_2022_102067
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-157X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-157X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-157X&client=summon