Narrowing power vs efficiency in synchronous set agreement: Relationship, algorithms and lower bound

The k -set agreement problem is a generalization of the uniform consensus problem: each process proposes a value, and each non-faulty process has to decide a value such that a decided value is a proposed value, and at most k different values are decided. It has been shown that any algorithm that sol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science Jg. 411; H. 1; S. 58 - 69
Hauptverfasser: Mostéfaoui, Achour, Raynal, Michel, Travers, Corentin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Elsevier B.V 2010
Elsevier
Schlagworte:
ISSN:0304-3975, 1879-2294
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The k -set agreement problem is a generalization of the uniform consensus problem: each process proposes a value, and each non-faulty process has to decide a value such that a decided value is a proposed value, and at most k different values are decided. It has been shown that any algorithm that solves the k -set agreement problem in synchronous systems that can suffer up to t crash failures requires ⌊ t k ⌋ + 1 rounds in the worst case. It has also been shown that it is possible to design early deciding algorithms where no process decides and halts after min ( ⌊ f k ⌋ + 2 , ⌊ t k ⌋ + 1 ) rounds, where f is the number of actual crashes in a run ( 0 ≤ f ≤ t ). This paper explores a new direction to solve the k -set agreement problem in a synchronous system. It considers that the system is enriched with base objects (denoted has [ m , ℓ ] _SA objects) that allow solving the ℓ -set agreement problem in a set of m processes ( m < n ). The paper makes several contributions. It first proposes a synchronous k -set agreement algorithm that benefits from such underlying base objects. This algorithm requires O ( t ℓ m k ) rounds, more precisely, ⌊ t Δ ⌋ + 1 rounds, where Δ = m ⌊ k ℓ ⌋ + ( k  mod  ℓ ) . The paper then shows that this bound, that involves all the parameters that characterize both the problem ( k ) and its environment ( t , m and ℓ ), is a lower bound. The proof of this lower bound sheds additional light on the deep connection between synchronous efficiency and asynchronous computability. Finally, the paper extends its investigation to the early deciding case. It presents a k -set agreement algorithm that directs the processes to decide and stop by round min ( ⌊ f Δ ⌋ + 2 , ⌊ t Δ ⌋ + 1 ) . These bounds generalize the bounds previously established for solving the k -set agreement problem in pure synchronous systems.
AbstractList The k -set agreement problem is a generalization of the uniform consensus problem: each process proposes a value, and each non-faulty process has to decide a value such that a decided value is a proposed value, and at most k different values are decided. It has been shown that any algorithm that solves the k -set agreement problem in synchronous systems that can suffer up to t crash failures requires ⌊ t k ⌋ + 1 rounds in the worst case. It has also been shown that it is possible to design early deciding algorithms where no process decides and halts after min ( ⌊ f k ⌋ + 2 , ⌊ t k ⌋ + 1 ) rounds, where f is the number of actual crashes in a run ( 0 ≤ f ≤ t ). This paper explores a new direction to solve the k -set agreement problem in a synchronous system. It considers that the system is enriched with base objects (denoted has [ m , ℓ ] _SA objects) that allow solving the ℓ -set agreement problem in a set of m processes ( m < n ). The paper makes several contributions. It first proposes a synchronous k -set agreement algorithm that benefits from such underlying base objects. This algorithm requires O ( t ℓ m k ) rounds, more precisely, ⌊ t Δ ⌋ + 1 rounds, where Δ = m ⌊ k ℓ ⌋ + ( k  mod  ℓ ) . The paper then shows that this bound, that involves all the parameters that characterize both the problem ( k ) and its environment ( t , m and ℓ ), is a lower bound. The proof of this lower bound sheds additional light on the deep connection between synchronous efficiency and asynchronous computability. Finally, the paper extends its investigation to the early deciding case. It presents a k -set agreement algorithm that directs the processes to decide and stop by round min ( ⌊ f Δ ⌋ + 2 , ⌊ t Δ ⌋ + 1 ) . These bounds generalize the bounds previously established for solving the k -set agreement problem in pure synchronous systems.
The k-set agreement problem is a generalization of the uniform consensus problem: each process proposes a value, and each non-faulty process has to decide a value such that a decided value is a proposed value, and at most k different values are decided. It has been shown that any algorithm that solves the k-set agreement problem in synchronous systems that can suffer up to t crash failures requires ?tk?+1 rounds in the worst case. It has also been shown that it is possible to design early deciding algorithms where no process decides and halts after min(?fk?+2,?tk?+1) rounds, where f is the number of actual crashes in a run (0?f?t). This paper explores a new direction to solve the k-set agreement problem in a synchronous system. It considers that the system is enriched with base objects (denoted has [m,?]_SA objects) that allow solving the ?-set agreement problem in a set of m processes (m < n). The paper makes several contributions. It first proposes a synchronous k-set agreement algorithm that benefits from such underlying base objects. This algorithm requires O(t?mk) rounds, more precisely, ?t?+1 rounds, where m?k??+(k mod ?). The paper then shows that this bound, that involves all the parameters that characterize both the problem (k) and its environment (t, m and ?), is a lower bound. The proof of this lower bound sheds additional light on the deep connection between synchronous efficiency and asynchronous computability. Finally, the paper extends its investigation to the early deciding case. It presents a k-set agreement algorithm that directs the processes to decide and stop by round min(?f?+2,?t?+1). These bounds generalize the bounds previously established for solving the k-set agreement problem in pure synchronous systems.
The k-set agreement problem is a generalization of the uniform consensus problem: each process proposes a value, and each non-faulty process has to decide a value such that a decided value is a proposed value, and at most k different values are decided. It has been shown that any algorithm that solves the k-set agreement problem in synchronous systems that can suffer up to t crash failures requires t/k+1 rounds in the worst case. It has also been shown that it is possible to design early deciding algorithms where no process decides and halts after min(f/k+2, t/k+1) rounds, where f is the number of actual crashes in a run (f
Author Travers, Corentin
Mostéfaoui, Achour
Raynal, Michel
Author_xml – sequence: 1
  givenname: Achour
  surname: Mostéfaoui
  fullname: Mostéfaoui, Achour
  email: achour@irisa.fr
– sequence: 2
  givenname: Michel
  surname: Raynal
  fullname: Raynal, Michel
  email: raynal@irisa.fr
– sequence: 3
  givenname: Corentin
  surname: Travers
  fullname: Travers, Corentin
  email: ctravers@irisa.fr
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22464706$$DView record in Pascal Francis
https://hal.science/hal-00543282$$DView record in HAL
BookMark eNp9kVtrGzEQhUVJoU7aH9A3vbRQyDq67a19CqFtAqaF0j6LWWlky6wlV1o7-N9XG4c8dhgYGL5zYOZckosQAxLynrMlZ7y52S4nk5eCsX45NxOvyIJ3bV8J0asLsmCSqUr2bf2GXOa8ZaXqtlkQ-wNSio8-rOk-PmKix0zROW88BnOiPtB8CmaTYoiHTDNOFNYJcYdh-kx_4QiTjyFv_P6awriOyU-bXaYQLB2f7IZ4CPYtee1gzPjueV6RP9--_r67r1Y_vz_c3a4qI5WaqrbpHHbOyNp1th-6vhXNYGWHElCBlWDqnjMhpIVByF6hUWAGYQ2zg6mdlVfk09l3A6PeJ7-DdNIRvL6_Xel5V45WUnTiyAv78czuU_x7wDzpnc8GxxECllO1rJlgvFcF_PAMQjYwugTB-PxiL4RqVMuawvEzZ1LMOaF7QTjTc0Z6q0tGes5Iz81E0Xw5a7B85egx6fz0eLQ-oZm0jf4_6n_5bZ0i
CODEN TCSCDI
Cites_doi 10.1137/S0097539796307698
10.1016/0020-0190(82)90033-3
10.1006/inco.1993.1043
10.1016/j.ipl.2005.08.002
10.1145/96559.96565
10.1145/950620.950624
10.1007/s00446-005-0148-1
10.1145/3149.214121
10.1145/355483.355489
10.1145/4221.4227
10.1145/331524.331529
10.1007/s00446-005-0141-8
10.1016/S0020-0190(99)00100-3
10.1016/j.tcs.2008.10.002
10.1145/114005.102808
10.1016/j.jalgor.2003.11.001
10.1017/S0960129500003170
10.1016/S0020-0190(02)00333-2
10.1137/050645580
10.1145/382780.382784
ContentType Journal Article
Copyright 2009 Elsevier B.V.
2015 INIST-CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2009 Elsevier B.V.
– notice: 2015 INIST-CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
DOI 10.1016/j.tcs.2009.09.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
Applied Sciences
EISSN 1879-2294
EndPage 69
ExternalDocumentID oai:HAL:hal-00543282v1
22464706
10_1016_j_tcs_2009_09_002
S030439750900629X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSW
SSZ
T5K
TAE
TN5
WH7
WUQ
XJT
YNT
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
ID FETCH-LOGICAL-c344t-768fe8fc35f8d9b89726bd38e3ae4ad3ac5910223dab2394ec4acb2dc0dbc5fd3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000272123800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-3975
IngestDate Sat Nov 29 15:07:40 EST 2025
Sun Sep 28 02:46:08 EDT 2025
Mon Jul 21 09:13:04 EDT 2025
Sat Nov 29 05:15:01 EST 2025
Fri Feb 23 02:16:39 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Lower bound
t -resilience
Synchronous system
Efficiency
Round-based algorithm
Set agreement
Consensus
Asynchronous
Computer theory
Solving
Algorithm
Failures
Computability
t-resilience
Proof
Problem solving
Environment
Failure
Power
t-Resilience
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-768fe8fc35f8d9b89726bd38e3ae4ad3ac5910223dab2394ec4acb2dc0dbc5fd3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ORCID 0000-0001-7208-4635
OpenAccessLink https://dx.doi.org/10.1016/j.tcs.2009.09.002
PQID 35020194
PQPubID 23500
PageCount 12
ParticipantIDs hal_primary_oai_HAL_hal_00543282v1
proquest_miscellaneous_35020194
pascalfrancis_primary_22464706
crossref_primary_10_1016_j_tcs_2009_09_002
elsevier_sciencedirect_doi_10_1016_j_tcs_2009_09_002
PublicationCentury 2000
PublicationDate 2010
2010-01-00
20100101
2010-01
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – year: 2010
  text: 2010
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Theoretical computer science
PublicationYear 2010
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Fischer, Lynch (b11) 1982; 14
Herlihy, Shavit (b19) 1999; 46
Keidar, Rajsbaum (b20) 2003; 85
Attiya, Welch (b3) 2004
Raynal, Travers (b29) 2006
Saks, Zaharoglou (b30) 2000; 29
Dolev, Reischuk, Strong (b10) 1990; 37
Fischer, Lynch, Paterson (b12) 1985; 32
Herlihy, Rajsbaum (b18) 2000; 10
Awerbuch (b4) 1985; 32
Wang, Teo, Cao (b32) 2005; 96
Herlihy, Penso (b17) 2005; 18
Mostéfaoui, Raynal (b26) 2000
Santoro (b31) 2007
Mostéfaoui, Raynal (b27) 2001
Charron-Bost, Schiper (b7) 2004; 51
Aguilera, Toueg (b1) 1999; 71
Lynch (b22) 1996
Bazzi, Neiger (b5) 2001; 48
Gafni, Guerraoui, Pochon (b14) 2005
Chaudhuri, Herlihy, Lynch, Tuttle (b9) 2000; 47
Aguilera, Le Lann, Toueg (b2) 2002; vol. 2508
Mostéfaoui, Rajsbaum, Raynal, Travers (b24) 2008; 38
Mostéfaoui, Rajsbaum, Raynal (b25) 2006; 18
Borowsky, Gafni (b6) 1993
Mostéfaoui, Rajsbaum, Raynal (b23) 2003; 50
Herlihy (b16) 1991; 13
Gafni (b13) 1998
Raynal (b28) 2002
Guerraoui, Herlihy, Pochon (b15) 2009; 410
Chaudhuri (b8) 1993; 105
L. Lamport, M. Fischer, Byzantine generals and transaction commit protocols, Unpublished manuscript, 16 pages, April 1982
Aguilera (10.1016/j.tcs.2009.09.002_b1) 1999; 71
Charron-Bost (10.1016/j.tcs.2009.09.002_b7) 2004; 51
Awerbuch (10.1016/j.tcs.2009.09.002_b4) 1985; 32
Borowsky (10.1016/j.tcs.2009.09.002_b6) 1993
Herlihy (10.1016/j.tcs.2009.09.002_b16) 1991; 13
Attiya (10.1016/j.tcs.2009.09.002_b3) 2004
Mostéfaoui (10.1016/j.tcs.2009.09.002_b25) 2006; 18
Fischer (10.1016/j.tcs.2009.09.002_b11) 1982; 14
Herlihy (10.1016/j.tcs.2009.09.002_b17) 2005; 18
Mostéfaoui (10.1016/j.tcs.2009.09.002_b26) 2000
Herlihy (10.1016/j.tcs.2009.09.002_b19) 1999; 46
Mostéfaoui (10.1016/j.tcs.2009.09.002_b23) 2003; 50
Bazzi (10.1016/j.tcs.2009.09.002_b5) 2001; 48
Mostéfaoui (10.1016/j.tcs.2009.09.002_b24) 2008; 38
Gafni (10.1016/j.tcs.2009.09.002_b13) 1998
Guerraoui (10.1016/j.tcs.2009.09.002_b15) 2009; 410
Santoro (10.1016/j.tcs.2009.09.002_b31) 2007
Chaudhuri (10.1016/j.tcs.2009.09.002_b9) 2000; 47
Raynal (10.1016/j.tcs.2009.09.002_b28) 2002
Fischer (10.1016/j.tcs.2009.09.002_b12) 1985; 32
Keidar (10.1016/j.tcs.2009.09.002_b20) 2003; 85
Gafni (10.1016/j.tcs.2009.09.002_b14) 2005
Wang (10.1016/j.tcs.2009.09.002_b32) 2005; 96
Mostéfaoui (10.1016/j.tcs.2009.09.002_b27) 2001
Herlihy (10.1016/j.tcs.2009.09.002_b18) 2000; 10
Lynch (10.1016/j.tcs.2009.09.002_b22) 1996
Saks (10.1016/j.tcs.2009.09.002_b30) 2000; 29
Dolev (10.1016/j.tcs.2009.09.002_b10) 1990; 37
Chaudhuri (10.1016/j.tcs.2009.09.002_b8) 1993; 105
Raynal (10.1016/j.tcs.2009.09.002_b29) 2006
10.1016/j.tcs.2009.09.002_b21
Aguilera (10.1016/j.tcs.2009.09.002_b2) 2002; vol. 2508
References_xml – volume: vol. 2508
  start-page: 354
  year: 2002
  end-page: 369
  ident: b2
  article-title: On the impact of fast failure detectors on real-time fault-tolerant systems
  publication-title: Proc. 16th Symposium on Distributed Computing
– volume: 47
  start-page: 912
  year: 2000
  end-page: 943
  ident: b9
  article-title: Tight bounds for
  publication-title: Journal of the ACM
– volume: 51
  start-page: 15
  year: 2004
  end-page: 37
  ident: b7
  article-title: Uniform consensus is harder than consensus
  publication-title: Journal of Algorithms
– volume: 32
  start-page: 374
  year: 1985
  end-page: 382
  ident: b12
  article-title: Impossibility of distributed consensus with one faulty process
  publication-title: Journal of the ACM
– volume: 37
  start-page: 720
  year: 1990
  end-page: 741
  ident: b10
  article-title: Early stopping in byzantine agreement
  publication-title: Journal of the ACM
– volume: 96
  start-page: 167
  year: 2005
  end-page: 174
  ident: b32
  article-title: A bivalency proof of the lower bound for uniform consensus
  publication-title: Information Processing Letters
– volume: 71
  start-page: 155
  year: 1999
  end-page: 178
  ident: b1
  article-title: A simple bivalency proof that
  publication-title: Information Processing Letters
– start-page: 221
  year: 2002
  end-page: 228
  ident: b28
  article-title: Consensus in synchronous systems: A concise guided tour
  publication-title: Proc. 9th IEEE Pacific Rim Int’l Symposium on Dependable Computing
– volume: 50
  start-page: 922
  year: 2003
  end-page: 954
  ident: b23
  article-title: Conditions on input vectors for consensus solvability in asynchronous distributed systems
  publication-title: Journal of the ACM
– year: 1996
  ident: b22
  article-title: Distributed Algorithms
– volume: 13
  start-page: 124
  year: 1991
  end-page: 149
  ident: b16
  article-title: Wait-free synchronization
  publication-title: ACM Transactions on Programming Languages and Systems
– start-page: 143
  year: 2000
  end-page: 152
  ident: b26
  publication-title: Proc. 19th ACM Symposium on Principles of Distributed Computing
– start-page: 291
  year: 2001
  end-page: 297
  ident: b27
  article-title: Randomized set agreement
  publication-title: Proc. 13th ACM Symposium on Parallel Algorithms and Architectures
– start-page: 414
  year: 2004
  ident: b3
  publication-title: Distributed Computing, Fundamentals, Simulation and Advanced Topics
– volume: 18
  start-page: 325
  year: 2006
  end-page: 343
  ident: b25
  article-title: Synchronous condition-based consensus
  publication-title: Distributed Computing
– volume: 38
  start-page: 1574
  year: 2008
  end-page: 1601
  ident: b24
  article-title: The combined power of conditions and failure detectors to solve asynchronous set agreement
  publication-title: SIAM Journal of Computing
– start-page: 714
  year: 2005
  end-page: 722
  ident: b14
  article-title: From a static impossibility to an adaptive lower bound: The complexity of early deciding set agreement
  publication-title: Proc. 37th ACM Symposium on Theory of Computing
– start-page: 267
  year: 2006
  end-page: 274
  ident: b29
  article-title: Synchronous set agreement: A concise guided tour (with open problems)
  publication-title: Proc. 12th Int’l IEEE Pacific Rim Dependable Computing Symposium
– volume: 14
  start-page: 183
  year: 1982
  end-page: 186
  ident: b11
  article-title: A lower bound on the time to assure interactive consistency
  publication-title: Information Processing Letters
– volume: 410
  start-page: 570
  year: 2009
  end-page: 580
  ident: b15
  article-title: A topological trzatment of early-deciding set-agreement
  publication-title: Theoretical Computer Science
– volume: 18
  start-page: 157
  year: 2005
  end-page: 166
  ident: b17
  article-title: Tight bounds for
  publication-title: Distributed Computing
– start-page: 589
  year: 2007
  ident: b31
  publication-title: Design and Analysis of Distributed Algorithms
– volume: 48
  start-page: 499
  year: 2001
  end-page: 554
  ident: b5
  article-title: Simplifying fault-tolerance: Providing the abstraction of crash failures
  publication-title: Journal of the ACM
– volume: 10
  start-page: 549
  year: 2000
  end-page: 573
  ident: b18
  article-title: Algebraic spans
  publication-title: Mathematical Structures in Computer Science
– volume: 46
  start-page: 858
  year: 1999
  end-page: 923
  ident: b19
  article-title: The topological structure of asynchronous computability
  publication-title: Journal of the ACM
– start-page: 91
  year: 1993
  end-page: 100
  ident: b6
  article-title: Generalized FLP impossibility results for
  publication-title: Proc. 25th ACM Symposium on Theory of Distributed Computing
– start-page: 143
  year: 1998
  end-page: 152
  ident: b13
  article-title: Round-by-round fault detectors: Unifying synchrony and asynchrony
  publication-title: Proc. 17th ACM Symposium on Principles of Distributed Computing
– volume: 29
  start-page: 1449
  year: 2000
  end-page: 1483
  ident: b30
  article-title: Wait-free
  publication-title: SIAM Journal on Computing
– volume: 105
  start-page: 132
  year: 1993
  end-page: 158
  ident: b8
  article-title: More
  publication-title: Information and Computation
– reference: L. Lamport, M. Fischer, Byzantine generals and transaction commit protocols, Unpublished manuscript, 16 pages, April 1982
– volume: 32
  start-page: 804
  year: 1985
  end-page: 823
  ident: b4
  article-title: Complexity of network synchronization
  publication-title: Journal of the ACM
– volume: 85
  start-page: 47
  year: 2003
  end-page: 52
  ident: b20
  article-title: A simple proof of the uniform consensus synchronous lower bound
  publication-title: Information Processing Letters
– volume: 29
  start-page: 1449
  issue: 5
  year: 2000
  ident: 10.1016/j.tcs.2009.09.002_b30
  article-title: Wait-free k-set agreement is impossible: The topology of public knowledge
  publication-title: SIAM Journal on Computing
  doi: 10.1137/S0097539796307698
– start-page: 91
  year: 1993
  ident: 10.1016/j.tcs.2009.09.002_b6
  article-title: Generalized FLP impossibility results for t-resilient asynchronous computations
– year: 1996
  ident: 10.1016/j.tcs.2009.09.002_b22
– volume: 14
  start-page: 183
  issue: 4
  year: 1982
  ident: 10.1016/j.tcs.2009.09.002_b11
  article-title: A lower bound on the time to assure interactive consistency
  publication-title: Information Processing Letters
  doi: 10.1016/0020-0190(82)90033-3
– start-page: 714
  year: 2005
  ident: 10.1016/j.tcs.2009.09.002_b14
  article-title: From a static impossibility to an adaptive lower bound: The complexity of early deciding set agreement
– volume: 105
  start-page: 132
  year: 1993
  ident: 10.1016/j.tcs.2009.09.002_b8
  article-title: More choices allow more faults: Set consensus problems in totally asynchronous systems
  publication-title: Information and Computation
  doi: 10.1006/inco.1993.1043
– volume: 96
  start-page: 167
  year: 2005
  ident: 10.1016/j.tcs.2009.09.002_b32
  article-title: A bivalency proof of the lower bound for uniform consensus
  publication-title: Information Processing Letters
  doi: 10.1016/j.ipl.2005.08.002
– volume: 37
  start-page: 720
  issue: 4
  year: 1990
  ident: 10.1016/j.tcs.2009.09.002_b10
  article-title: Early stopping in byzantine agreement
  publication-title: Journal of the ACM
  doi: 10.1145/96559.96565
– volume: 50
  start-page: 922
  issue: 6
  year: 2003
  ident: 10.1016/j.tcs.2009.09.002_b23
  article-title: Conditions on input vectors for consensus solvability in asynchronous distributed systems
  publication-title: Journal of the ACM
  doi: 10.1145/950620.950624
– volume: 18
  start-page: 325
  issue: 5
  year: 2006
  ident: 10.1016/j.tcs.2009.09.002_b25
  article-title: Synchronous condition-based consensus
  publication-title: Distributed Computing
  doi: 10.1007/s00446-005-0148-1
– volume: 32
  start-page: 374
  issue: 2
  year: 1985
  ident: 10.1016/j.tcs.2009.09.002_b12
  article-title: Impossibility of distributed consensus with one faulty process
  publication-title: Journal of the ACM
  doi: 10.1145/3149.214121
– start-page: 589
  year: 2007
  ident: 10.1016/j.tcs.2009.09.002_b31
– start-page: 267
  year: 2006
  ident: 10.1016/j.tcs.2009.09.002_b29
  article-title: Synchronous set agreement: A concise guided tour (with open problems)
– volume: 47
  start-page: 912
  issue: 5
  year: 2000
  ident: 10.1016/j.tcs.2009.09.002_b9
  article-title: Tight bounds for k-set agreement
  publication-title: Journal of the ACM
  doi: 10.1145/355483.355489
– start-page: 143
  year: 1998
  ident: 10.1016/j.tcs.2009.09.002_b13
  article-title: Round-by-round fault detectors: Unifying synchrony and asynchrony
– volume: 32
  start-page: 804
  issue: 4
  year: 1985
  ident: 10.1016/j.tcs.2009.09.002_b4
  article-title: Complexity of network synchronization
  publication-title: Journal of the ACM
  doi: 10.1145/4221.4227
– volume: 46
  start-page: 858
  issue: 6
  year: 1999
  ident: 10.1016/j.tcs.2009.09.002_b19
  article-title: The topological structure of asynchronous computability
  publication-title: Journal of the ACM
  doi: 10.1145/331524.331529
– ident: 10.1016/j.tcs.2009.09.002_b21
– volume: 18
  start-page: 157
  issue: 2
  year: 2005
  ident: 10.1016/j.tcs.2009.09.002_b17
  article-title: Tight bounds for k-set agreement with limited scope accuracy failure detectors
  publication-title: Distributed Computing
  doi: 10.1007/s00446-005-0141-8
– volume: 71
  start-page: 155
  year: 1999
  ident: 10.1016/j.tcs.2009.09.002_b1
  article-title: A simple bivalency proof that t-resilient consensus requires t+1 rounds
  publication-title: Information Processing Letters
  doi: 10.1016/S0020-0190(99)00100-3
– volume: 410
  start-page: 570
  issue: 6–7
  year: 2009
  ident: 10.1016/j.tcs.2009.09.002_b15
  article-title: A topological trzatment of early-deciding set-agreement
  publication-title: Theoretical Computer Science
  doi: 10.1016/j.tcs.2008.10.002
– volume: 13
  start-page: 124
  issue: 1
  year: 1991
  ident: 10.1016/j.tcs.2009.09.002_b16
  article-title: Wait-free synchronization
  publication-title: ACM Transactions on Programming Languages and Systems
  doi: 10.1145/114005.102808
– volume: vol. 2508
  start-page: 354
  year: 2002
  ident: 10.1016/j.tcs.2009.09.002_b2
  article-title: On the impact of fast failure detectors on real-time fault-tolerant systems
– start-page: 143
  year: 2000
  ident: 10.1016/j.tcs.2009.09.002_b26
  article-title: k-set agreement with limited accuracy failure detectors
– volume: 51
  start-page: 15
  issue: 1
  year: 2004
  ident: 10.1016/j.tcs.2009.09.002_b7
  article-title: Uniform consensus is harder than consensus
  publication-title: Journal of Algorithms
  doi: 10.1016/j.jalgor.2003.11.001
– start-page: 291
  year: 2001
  ident: 10.1016/j.tcs.2009.09.002_b27
  article-title: Randomized set agreement
– volume: 10
  start-page: 549
  issue: 4
  year: 2000
  ident: 10.1016/j.tcs.2009.09.002_b18
  article-title: Algebraic spans
  publication-title: Mathematical Structures in Computer Science
  doi: 10.1017/S0960129500003170
– start-page: 221
  year: 2002
  ident: 10.1016/j.tcs.2009.09.002_b28
  article-title: Consensus in synchronous systems: A concise guided tour
– volume: 85
  start-page: 47
  year: 2003
  ident: 10.1016/j.tcs.2009.09.002_b20
  article-title: A simple proof of the uniform consensus synchronous lower bound
  publication-title: Information Processing Letters
  doi: 10.1016/S0020-0190(02)00333-2
– volume: 38
  start-page: 1574
  issue: 4
  year: 2008
  ident: 10.1016/j.tcs.2009.09.002_b24
  article-title: The combined power of conditions and failure detectors to solve asynchronous set agreement
  publication-title: SIAM Journal of Computing
  doi: 10.1137/050645580
– volume: 48
  start-page: 499
  issue: 3
  year: 2001
  ident: 10.1016/j.tcs.2009.09.002_b5
  article-title: Simplifying fault-tolerance: Providing the abstraction of crash failures
  publication-title: Journal of the ACM
  doi: 10.1145/382780.382784
– start-page: 414
  year: 2004
  ident: 10.1016/j.tcs.2009.09.002_b3
SSID ssj0000576
Score 1.9080662
Snippet The k -set agreement problem is a generalization of the uniform consensus problem: each process proposes a value, and each non-faulty process has to decide a...
The k-set agreement problem is a generalization of the uniform consensus problem: each process proposes a value, and each non-faulty process has to decide a...
SourceID hal
proquest
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 58
SubjectTerms [formula omitted]-resilience
Algorithmics. Computability. Computer arithmetics
Applied sciences
Artificial intelligence
Computer Science
Computer science; control theory; systems
Consensus
Distributed, Parallel, and Cluster Computing
Efficiency
Exact sciences and technology
Logic and foundations
Lower bound
Mathematical logic, foundations, set theory
Mathematics
Miscellaneous
Problem solving, game playing
Recursion theory
Round-based algorithm
Sciences and techniques of general use
Set agreement
Synchronous system
Theoretical computing
Title Narrowing power vs efficiency in synchronous set agreement: Relationship, algorithms and lower bound
URI https://dx.doi.org/10.1016/j.tcs.2009.09.002
https://www.proquest.com/docview/35020194
https://hal.science/hal-00543282
Volume 411
WOSCitedRecordID wos000272123800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: AIEXJ
  dateStart: 19950109
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLW6jgcQ4mMMUT6GhXiiZEptp7F5q6ahgUaFoKC-RY6T0E4lrZq02n4Jfxdf23ELFQiQkKqoslrXzT3xta_PvQeh57pZxELFem_SSwOmwjxIgZkTc8lZTntMGRWFz-fxcMjHY_G-1frW5MKsZ3FZ8stLsfivptZt2tiQOvsX5vad6gb9XhtdX7XZ9fWPDD80ZRVNkjkooHXXFZA2puYZNkl-1VWpoCQukF8rCPnqLbcPEnpy3GRqlOvk7Mt8Oa0nX20t55npMgUtpu1l7WgrHVI5nYiuc67epJBeYo7lCzlfGRLBQM-9K88O_iCvSiM_0LX8VB9UAIUkq-R2ModiUq5YuItVOL6qCZ3tpM_YlC04lhFWOuU4tzMwj0VAiFU-bqZo5ibkbSzaCdfWfXeu24q-7DgFG5-4OK5V5QqUQo1SsvGAnpf4EUYEAwoFJJeK8R7aJ3EkwjbaH7w5Hb_dOPkotsfg7h80B-aGOvjTD_1qybM3Ae7tzYWstHUKq6OysyQw65zRHXTLbVDwwALrLmrl5QG63Yh_YOcLDtCNd77gb3UPZR512KAOryu8QR2elngLdVijDnvUvcLbmHuJN4jDGnHYIA4bxB2iT69PRydngRPwCBRlrA70VrbIeaFoVPBMpFzEpJ9mlOdU5kxmVKpIQMSBZjIlVLBcMalSkqkwS1VUZPQ-apfzMn-AcEhZP6MEDgRTRlTEdVeRiIpQcpLSWHbQi-YeJwtbpyVpCIwXiTYI6K2KBF4h6SDWWCFxz4JdQCYaMr_72jNtMd89FGY_G5wn0AY7H0o4Wfc66OgHg_qPQ-VGFof9DnraWDjRUzmcz8ky1zc_oZHeu_UEe_hvw3uErltqC8QHH6N2vVzlT9A1ta6n1fLIAfg7zFrIVg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Narrowing+power+vs+efficiency+in+synchronous+set+agreement%3A+Relationship%2C+algorithms+and+lower+bound&rft.jtitle=Theoretical+computer+science&rft.au=Most%C3%A9faoui%2C+Achour&rft.au=Raynal%2C+Michel&rft.au=Travers%2C+Corentin&rft.date=2010&rft.pub=Elsevier+B.V&rft.issn=0304-3975&rft.eissn=1879-2294&rft.volume=411&rft.issue=1&rft.spage=58&rft.epage=69&rft_id=info:doi/10.1016%2Fj.tcs.2009.09.002&rft.externalDocID=S030439750900629X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon