Continuity and inversion of the wavelet transform
Using a converse form of the Schwarz inequality L 2 -continuity results for the wavelet transform and its adjoint are obtained. A relation between the wavelet transform and the Fourier transform is established. The self-adjoint case is investigated and a complex inversion formula for the wavelet tra...
Uloženo v:
| Vydáno v: | Integral transforms and special functions Ročník 6; číslo 1-4; s. 85 - 93 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Gordon and Breach Science Publishers
01.03.1998
|
| Témata: | |
| ISSN: | 1065-2469, 1476-8291 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Using a converse form of the Schwarz inequality L
2
-continuity results for the wavelet transform and its adjoint are obtained. A relation between the wavelet transform and the Fourier transform is established. The self-adjoint case is investigated and a complex inversion formula for the wavelet transform is derived. Wavelet transform of generalised functions is investigated. |
|---|---|
| ISSN: | 1065-2469 1476-8291 |
| DOI: | 10.1080/10652469808819153 |