Query-by-example surgical activity detection

Purpose Easy acquisition of surgical data opens many opportunities to automate skill evaluation and teaching. Current technology to search tool motion data for surgical activity segments of interest is limited by the need for manual pre-processing, which can be prohibitive at scale. We developed a c...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal for computer assisted radiology and surgery Ročník 11; číslo 6; s. 987 - 996
Hlavní autori: Gao, Yixin, Vedula, S. Swaroop, Lee, Gyusung I., Lee, Mija R., Khudanpur, Sanjeev, Hager, Gregory D.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2016
Predmet:
ISSN:1861-6410, 1861-6429
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Purpose Easy acquisition of surgical data opens many opportunities to automate skill evaluation and teaching. Current technology to search tool motion data for surgical activity segments of interest is limited by the need for manual pre-processing, which can be prohibitive at scale. We developed a content-based information retrieval method, query-by-example (QBE), to automatically detect activity segments within surgical data recordings of long duration that match a query. Methods The example segment of interest (query) and the surgical data recording (target trial) are time series of kinematics. Our approach includes an unsupervised feature learning module using a stacked denoising autoencoder (SDAE), two scoring modules based on asymmetric subsequence dynamic time warping (AS-DTW) and template matching, respectively, and a detection module. A distance matrix of the query against the trial is computed using the SDAE features, followed by AS-DTW combined with template scoring, to generate a ranked list of candidate subsequences (substrings). To evaluate the quality of the ranked list against the ground-truth, thresholding conventional DTW distances and bipartite matching are applied. We computed the recall, precision, F1-score, and a Jaccard index-based score on three experimental setups. We evaluated our QBE method using a suture throw maneuver as the query, on two tool motion datasets (JIGSAWS and MISTIC-SL) captured in a training laboratory. Results We observed a recall of 93, 90 and 87 % and a precision of 93, 91, and 88 % with same surgeon same trial (SSST), same surgeon different trial (SSDT) and different surgeon (DS) experiment setups on JIGSAWS, and a recall of 87, 81 and 75 % and a precision of 72, 61, and 53 % with SSST, SSDT and DS experiment setups on MISTIC-SL, respectively. Conclusion We developed a novel, content-based information retrieval method to automatically detect multiple instances of an activity within long surgical recordings. Our method demonstrated adequate recall across different complexity datasets and experimental conditions.
AbstractList Purpose Easy acquisition of surgical data opens many opportunities to automate skill evaluation and teaching. Current technology to search tool motion data for surgical activity segments of interest is limited by the need for manual pre-processing, which can be prohibitive at scale. We developed a content-based information retrieval method, query-by-example (QBE), to automatically detect activity segments within surgical data recordings of long duration that match a query. Methods The example segment of interest (query) and the surgical data recording (target trial) are time series of kinematics. Our approach includes an unsupervised feature learning module using a stacked denoising autoencoder (SDAE), two scoring modules based on asymmetric subsequence dynamic time warping (AS-DTW) and template matching, respectively, and a detection module. A distance matrix of the query against the trial is computed using the SDAE features, followed by AS-DTW combined with template scoring, to generate a ranked list of candidate subsequences (substrings). To evaluate the quality of the ranked list against the ground-truth, thresholding conventional DTW distances and bipartite matching are applied. We computed the recall, precision, F1-score, and a Jaccard index-based score on three experimental setups. We evaluated our QBE method using a suture throw maneuver as the query, on two tool motion datasets (JIGSAWS and MISTIC-SL) captured in a training laboratory. Results We observed a recall of 93, 90 and 87 % and a precision of 93, 91, and 88 % with same surgeon same trial (SSST), same surgeon different trial (SSDT) and different surgeon (DS) experiment setups on JIGSAWS, and a recall of 87, 81 and 75 % and a precision of 72, 61, and 53 % with SSST, SSDT and DS experiment setups on MISTIC-SL, respectively. Conclusion We developed a novel, content-based information retrieval method to automatically detect multiple instances of an activity within long surgical recordings. Our method demonstrated adequate recall across different complexity datasets and experimental conditions.
Easy acquisition of surgical data opens many opportunities to automate skill evaluation and teaching. Current technology to search tool motion data for surgical activity segments of interest is limited by the need for manual pre-processing, which can be prohibitive at scale. We developed a content-based information retrieval method, query-by-example (QBE), to automatically detect activity segments within surgical data recordings of long duration that match a query. The example segment of interest (query) and the surgical data recording (target trial) are time series of kinematics. Our approach includes an unsupervised feature learning module using a stacked denoising autoencoder (SDAE), two scoring modules based on asymmetric subsequence dynamic time warping (AS-DTW) and template matching, respectively, and a detection module. A distance matrix of the query against the trial is computed using the SDAE features, followed by AS-DTW combined with template scoring, to generate a ranked list of candidate subsequences (substrings). To evaluate the quality of the ranked list against the ground-truth, thresholding conventional DTW distances and bipartite matching are applied. We computed the recall, precision, F1-score, and a Jaccard index-based score on three experimental setups. We evaluated our QBE method using a suture throw maneuver as the query, on two tool motion datasets (JIGSAWS and MISTIC-SL) captured in a training laboratory. We observed a recall of 93, 90 and 87 % and a precision of 93, 91, and 88 % with same surgeon same trial (SSST), same surgeon different trial (SSDT) and different surgeon (DS) experiment setups on JIGSAWS, and a recall of 87, 81 and 75 % and a precision of 72, 61, and 53 % with SSST, SSDT and DS experiment setups on MISTIC-SL, respectively. We developed a novel, content-based information retrieval method to automatically detect multiple instances of an activity within long surgical recordings. Our method demonstrated adequate recall across different complexity datasets and experimental conditions.
PURPOSEEasy acquisition of surgical data opens many opportunities to automate skill evaluation and teaching. Current technology to search tool motion data for surgical activity segments of interest is limited by the need for manual pre-processing, which can be prohibitive at scale. We developed a content-based information retrieval method, query-by-example (QBE), to automatically detect activity segments within surgical data recordings of long duration that match a query.METHODSThe example segment of interest (query) and the surgical data recording (target trial) are time series of kinematics. Our approach includes an unsupervised feature learning module using a stacked denoising autoencoder (SDAE), two scoring modules based on asymmetric subsequence dynamic time warping (AS-DTW) and template matching, respectively, and a detection module. A distance matrix of the query against the trial is computed using the SDAE features, followed by AS-DTW combined with template scoring, to generate a ranked list of candidate subsequences (substrings). To evaluate the quality of the ranked list against the ground-truth, thresholding conventional DTW distances and bipartite matching are applied. We computed the recall, precision, F1-score, and a Jaccard index-based score on three experimental setups. We evaluated our QBE method using a suture throw maneuver as the query, on two tool motion datasets (JIGSAWS and MISTIC-SL) captured in a training laboratory.RESULTSWe observed a recall of 93, 90 and 87 % and a precision of 93, 91, and 88 % with same surgeon same trial (SSST), same surgeon different trial (SSDT) and different surgeon (DS) experiment setups on JIGSAWS, and a recall of 87, 81 and 75 % and a precision of 72, 61, and 53 % with SSST, SSDT and DS experiment setups on MISTIC-SL, respectively.CONCLUSIONWe developed a novel, content-based information retrieval method to automatically detect multiple instances of an activity within long surgical recordings. Our method demonstrated adequate recall across different complexity datasets and experimental conditions.
Author Lee, Mija R.
Lee, Gyusung I.
Hager, Gregory D.
Vedula, S. Swaroop
Gao, Yixin
Khudanpur, Sanjeev
Author_xml – sequence: 1
  givenname: Yixin
  orcidid: 0000-0001-8854-8959
  surname: Gao
  fullname: Gao, Yixin
  email: yxgao@jhu.edu
  organization: Department of Computer Science, Whiting School of Engineering, The Johns Hopkins University
– sequence: 2
  givenname: S. Swaroop
  surname: Vedula
  fullname: Vedula, S. Swaroop
  organization: Department of Computer Science, Whiting School of Engineering, The Johns Hopkins University
– sequence: 3
  givenname: Gyusung I.
  surname: Lee
  fullname: Lee, Gyusung I.
  organization: Department of Surgery, Johns Hopkins University School of Medicine
– sequence: 4
  givenname: Mija R.
  surname: Lee
  fullname: Lee, Mija R.
  organization: Department of Surgery, Johns Hopkins University School of Medicine
– sequence: 5
  givenname: Sanjeev
  surname: Khudanpur
  fullname: Khudanpur, Sanjeev
  organization: Department of Electrical and Computer Engineering, Whiting School of Engineering, The Johns Hopkins University
– sequence: 6
  givenname: Gregory D.
  surname: Hager
  fullname: Hager, Gregory D.
  organization: Department of Computer Science, Whiting School of Engineering, The Johns Hopkins University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27072835$$D View this record in MEDLINE/PubMed
BookMark eNp9kDtPwzAUhS1URB_wA1hQRwYM99pO7I6o4iVVQkgwW47jVKnyKHaCyL8nUQoDQ6d7hu8c6X5zMqnqyhFyiXCLAPIuIEZCUcCYIlcx5SdkhipGGgu2mvxlhCmZh7ADEJHk0RmZMgmSKR7NyM1b63xHk466b1PuC7cMrd_m1hRLY5v8K2-6Zeoa1-e6OienmSmCuzjcBfl4fHhfP9PN69PL-n5DLReioRKlZAyYscagTJRQGcckWaWZTIVVnBtrIZWZUrFkHHgaAZooEQwi6yA2fEGux929rz9bFxpd5sG6ojCVq9ugUa6EkL0B3qNXB7RNSpfqvc9L4zv9-2EPyBGwvg7Bu0zbvDHDN403eaER9OBSjy5171IPLvUwjf-av-PHOmzshJ6tts7rXd36qpd1pPQDA_qEIA
CitedBy_id crossref_primary_10_1146_annurev_bioeng_071516_044435
crossref_primary_10_1001_jamanetworkopen_2020_1664
crossref_primary_10_1109_TBME_2016_2647680
crossref_primary_10_1001_jamanetworkopen_2021_20786
Cites_doi 10.1109/ICRA.2016.7487608
10.1007/978-3-642-40760-4_43
10.21437/Interspeech.2011-304
10.1007/978-3-540-74048-3_4
10.1016/j.media.2013.04.007
10.1007/978-3-642-40811-3_4
10.1016/j.jsurg.2015.11.009
10.1145/1390156.1390294
10.1109/TASSP.1978.1163055
10.1007/978-3-642-30618-1_17
10.1109/ICRA.2016.7487305
10.1007/s11548-015-1238-6
10.1007/978-3-642-04268-3_53
10.1109/ASRU.2009.5372889
10.1007/978-3-319-10443-0_52
10.1007/978-3-642-33415-3_5
10.1109/WACV.2015.154
ContentType Journal Article
Copyright CARS 2016
Copyright_xml – notice: CARS 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1007/s11548-016-1386-3
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1861-6429
EndPage 996
ExternalDocumentID 27072835
10_1007_s11548_016_1386_3
Genre Journal Article
GrantInformation_xml – fundername: Department of Computer Science, The Johns Hopkins University
– fundername: The Johns Hopkins Science of Learning Institute
GroupedDBID ---
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABOCM
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ARMRJ
ASPBG
AVWKF
AVXWI
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LLZTM
M4Y
MA-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
P2P
P9S
PF0
PT4
QOR
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S37
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7R
Z7V
Z7X
Z82
Z83
Z87
Z88
ZMTXR
ZOVNA
~A9
7X7
88E
8FI
8FJ
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABUWG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
FYUFA
HCIFZ
HMCUK
M1P
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PSQYO
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c344t-71772202acaa17b848f31bb9df7d4c833acc0d7f88672303d501a5b4205ce06a3
IEDL.DBID RSV
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000377449000016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1861-6410
IngestDate Sun Nov 09 12:01:44 EST 2025
Mon Jul 21 05:18:21 EDT 2025
Sat Nov 29 01:30:12 EST 2025
Tue Nov 18 21:05:10 EST 2025
Fri Feb 21 02:42:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Surgical activity detection
Query-by-example
Surgical data indexing
Stacked denoising autoencoder
Asymmetric subsequence dynamic time warping
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-71772202acaa17b848f31bb9df7d4c833acc0d7f88672303d501a5b4205ce06a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8854-8959
PMID 27072835
PQID 1794470073
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1794470073
pubmed_primary_27072835
crossref_citationtrail_10_1007_s11548_016_1386_3
crossref_primary_10_1007_s11548_016_1386_3
springer_journals_10_1007_s11548_016_1386_3
PublicationCentury 2000
PublicationDate 20160600
2016-6-00
2016-Jun
20160601
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 6
  year: 2016
  text: 20160600
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
PublicationSubtitle A journal for interdisciplinary research, development and applications of image guided diagnosis and therapy
PublicationTitle International journal for computer assisted radiology and surgery
PublicationTitleAbbrev Int J CARS
PublicationTitleAlternate Int J Comput Assist Radiol Surg
PublicationYear 2016
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Béjar B, Zappella L, Vidal R (2012) Surgical gesture classification from video data. In: Medical image computing and computer-assisted intervention—MICCAI 2012. Springer, Nice, France, pp 34–41
Carlin M, Thomas S, Jansen A, Hermansky H (2011) Rapid evaluation of speech representations for spoken term discovery. In: Proceedings of the annual conference of the international speech communication association, INTERSPEECH, pp 821–824
Gao Y, Vedula SS, Reiley CE, Ahmidi N, Varadarajan B, Lin HC, Tao L, Zappella L, Bejar B, Yuh DD, Chen CCG, Vidal R, Khudanpur S, Hager GD (2014) The JHU-ISI gesture and skill assessment dataset (JIGSAWS): a surgical activity working set for human motion modeling. In: Medical image computing and computer-assisted intervention M2CAI—MICCAI workshop
Ahmidi N, Gao Y, Béjar B, Vedula SS, Khudanpur S, Vidal R, Hager GD (2013) String motif-based description of tool motion for detecting skill and gestures in robotic surgery. In: Medical image computing and computer-assisted intervention–MICCAI 2013. Springer, Nagoya, Japan
Tao L, Zappella L, Hager GD, Vidal R (2013) Surgical gesture segmentation and recognition. In: Medical image computing and computer-assisted intervention—MICCAI 2013, Nagoya, Japan
Lea C, Hager GD, Vidal R (2015) An improved model for segmentation and recognition of fine-grained activities with application to surgical training tasks. In: 2015 IEEE Winter Conference on applications of computer vision (WACV), pp 1123–1129
Vincent P, Larochelle H, Bengio Y, Manzagol PA (2008) Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th international conference on machine learning—ICML ’08, pp 1096–1103
Hazen T, Shen W, White C (2009) Query-by-example spoken term detection using phonetic posteriorgram templates. In: IEEE workshop on automatic speech recognition understanding, 2009. ASRU 2009, pp 421–426
Lea C, Vidal R, Hager GD (2016) Learning convolutional action primitives from multimodal timeseries data. In: Proceedings of the IEEE international conference on robotics and automation—ICRA 2016 (Accepted)
Gao Y, Vedula SS, Lee GI, Lee MR, Khudanpur S, Hager GD (2016) Unsupervised surgical data alignment with application to automatic activity annotation. In: Proceedings of the IEEE international conference on robotics and automation—ICRA 2016 (Accepted)
BengioYLamblinPPopoviciDLarochelleHGreedy layer-wise training of deep networksAdv Neural Inf Process Syst200719153160
Sefati S, Cowan NJ, Vidal R (2015) Learning shared, discriminative dictionaries for surgical gesture segmentation and classification. In: Modeling and monitoring of computer assisted interventions (M2CAI)—MICCAI workshop
Vedula SS, Malpani A, Ahmidi N, Khudanpur S, Hager G, Chen CCG (2016) Task-level vs. segment-level quantitative metrics for surgical skill assessment. J Surg Educ 73(2). doi:10.1016/j.jsurg.2015.11.009
Muller M (2007) Dynamic time warping. In: Information retrieval for music and motion. Springer, New York
Twinanda AP, de Mathelin M, Padoy N (2014) Fisher kernel based task boundary retrieval in laparoscopic database with single video query. In: Medical image computing and computer-assisted intervention—MICCAI 2014, Boston, MA
SakoeHChibaSDynamic programming algorithm optimization for spoken word recognitionIEEE Trans Acoust Speech Signal Process1978261434910.1109/TASSP.1978.1163055
ZappellaLBéjarBHagerGDVidalRSurgical gesture classification from video and kinematic dataMed Image Anal20131773274510.1016/j.media.2013.04.00723706754
Tao L, Elhamifar E, Khudanpur S, Hager GD, Vidal R (2012) Sparsehidden markov models for surgical gesture classification and skill evaluation. In: Information processing in computer-assisted interventions. Springer, Berlin, vol 7330, pp 167–177
Varadarajan B, Reiley CE, Lin HC, Khudanpur S, Hager GD (2009) Data-derived models for segmentation with application to surgical assessment and training. In: Medical image computing and computer-assisted intervention—MICCAI 2009, Springer, pp 426–434
MalpaniAVedulaSSChenCCGHagerGDA study of crowdsourced segment-level surgical skill assessment using pairwise rankingsInt J Comput Assis Radiol Surg20151091435144710.1007/s11548-015-1238-6
Palm RB (2012) Prediction as a candidate for learning deep hierarchical models of data. Master’s thesis
1386_CR9
1386_CR15
1386_CR8
1386_CR16
1386_CR7
1386_CR6
H Sakoe (1386_CR13) 1978; 26
1386_CR14
1386_CR19
1386_CR17
1386_CR18
1386_CR1
1386_CR5
1386_CR4
1386_CR2
L Zappella (1386_CR21) 2013; 17
Y Bengio (1386_CR3) 2007; 19
A Malpani (1386_CR10) 2015; 10
1386_CR11
1386_CR12
1386_CR20
24505779 - Med Image Comput Comput Assist Interv. 2013;16(Pt 3):339-46
23706754 - Med Image Anal. 2013 Oct;17(7):732-45
26896147 - J Surg Educ. 2016 May-Jun;73(3):482-9
26133652 - Int J Comput Assist Radiol Surg. 2015 Sep;10(9):1435-47
20426016 - Med Image Comput Comput Assist Interv. 2009;12(Pt 1):426-34
24505645 - Med Image Comput Comput Assist Interv. 2013;16(Pt 1):26-33
25320826 - Med Image Comput Comput Assist Interv. 2014;17(Pt 3):409-16
23285532 - Med Image Comput Comput Assist Interv. 2012;15(Pt 1):34-41
References_xml – reference: Tao L, Zappella L, Hager GD, Vidal R (2013) Surgical gesture segmentation and recognition. In: Medical image computing and computer-assisted intervention—MICCAI 2013, Nagoya, Japan
– reference: Gao Y, Vedula SS, Reiley CE, Ahmidi N, Varadarajan B, Lin HC, Tao L, Zappella L, Bejar B, Yuh DD, Chen CCG, Vidal R, Khudanpur S, Hager GD (2014) The JHU-ISI gesture and skill assessment dataset (JIGSAWS): a surgical activity working set for human motion modeling. In: Medical image computing and computer-assisted intervention M2CAI—MICCAI workshop
– reference: Vincent P, Larochelle H, Bengio Y, Manzagol PA (2008) Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th international conference on machine learning—ICML ’08, pp 1096–1103
– reference: Lea C, Hager GD, Vidal R (2015) An improved model for segmentation and recognition of fine-grained activities with application to surgical training tasks. In: 2015 IEEE Winter Conference on applications of computer vision (WACV), pp 1123–1129
– reference: Lea C, Vidal R, Hager GD (2016) Learning convolutional action primitives from multimodal timeseries data. In: Proceedings of the IEEE international conference on robotics and automation—ICRA 2016 (Accepted)
– reference: Ahmidi N, Gao Y, Béjar B, Vedula SS, Khudanpur S, Vidal R, Hager GD (2013) String motif-based description of tool motion for detecting skill and gestures in robotic surgery. In: Medical image computing and computer-assisted intervention–MICCAI 2013. Springer, Nagoya, Japan
– reference: BengioYLamblinPPopoviciDLarochelleHGreedy layer-wise training of deep networksAdv Neural Inf Process Syst200719153160
– reference: Twinanda AP, de Mathelin M, Padoy N (2014) Fisher kernel based task boundary retrieval in laparoscopic database with single video query. In: Medical image computing and computer-assisted intervention—MICCAI 2014, Boston, MA
– reference: Varadarajan B, Reiley CE, Lin HC, Khudanpur S, Hager GD (2009) Data-derived models for segmentation with application to surgical assessment and training. In: Medical image computing and computer-assisted intervention—MICCAI 2009, Springer, pp 426–434
– reference: Vedula SS, Malpani A, Ahmidi N, Khudanpur S, Hager G, Chen CCG (2016) Task-level vs. segment-level quantitative metrics for surgical skill assessment. J Surg Educ 73(2). doi:10.1016/j.jsurg.2015.11.009
– reference: MalpaniAVedulaSSChenCCGHagerGDA study of crowdsourced segment-level surgical skill assessment using pairwise rankingsInt J Comput Assis Radiol Surg20151091435144710.1007/s11548-015-1238-6
– reference: Sefati S, Cowan NJ, Vidal R (2015) Learning shared, discriminative dictionaries for surgical gesture segmentation and classification. In: Modeling and monitoring of computer assisted interventions (M2CAI)—MICCAI workshop
– reference: Béjar B, Zappella L, Vidal R (2012) Surgical gesture classification from video data. In: Medical image computing and computer-assisted intervention—MICCAI 2012. Springer, Nice, France, pp 34–41
– reference: Muller M (2007) Dynamic time warping. In: Information retrieval for music and motion. Springer, New York
– reference: Hazen T, Shen W, White C (2009) Query-by-example spoken term detection using phonetic posteriorgram templates. In: IEEE workshop on automatic speech recognition understanding, 2009. ASRU 2009, pp 421–426
– reference: Carlin M, Thomas S, Jansen A, Hermansky H (2011) Rapid evaluation of speech representations for spoken term discovery. In: Proceedings of the annual conference of the international speech communication association, INTERSPEECH, pp 821–824
– reference: ZappellaLBéjarBHagerGDVidalRSurgical gesture classification from video and kinematic dataMed Image Anal20131773274510.1016/j.media.2013.04.00723706754
– reference: SakoeHChibaSDynamic programming algorithm optimization for spoken word recognitionIEEE Trans Acoust Speech Signal Process1978261434910.1109/TASSP.1978.1163055
– reference: Palm RB (2012) Prediction as a candidate for learning deep hierarchical models of data. Master’s thesis
– reference: Gao Y, Vedula SS, Lee GI, Lee MR, Khudanpur S, Hager GD (2016) Unsupervised surgical data alignment with application to automatic activity annotation. In: Proceedings of the IEEE international conference on robotics and automation—ICRA 2016 (Accepted)
– reference: Tao L, Elhamifar E, Khudanpur S, Hager GD, Vidal R (2012) Sparsehidden markov models for surgical gesture classification and skill evaluation. In: Information processing in computer-assisted interventions. Springer, Berlin, vol 7330, pp 167–177
– ident: 1386_CR6
  doi: 10.1109/ICRA.2016.7487608
– ident: 1386_CR16
  doi: 10.1007/978-3-642-40760-4_43
– ident: 1386_CR4
  doi: 10.21437/Interspeech.2011-304
– ident: 1386_CR11
  doi: 10.1007/978-3-540-74048-3_4
– volume: 17
  start-page: 732
  year: 2013
  ident: 1386_CR21
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2013.04.007
– ident: 1386_CR5
– ident: 1386_CR1
  doi: 10.1007/978-3-642-40811-3_4
– volume: 19
  start-page: 153
  year: 2007
  ident: 1386_CR3
  publication-title: Adv Neural Inf Process Syst
– ident: 1386_CR19
  doi: 10.1016/j.jsurg.2015.11.009
– ident: 1386_CR20
  doi: 10.1145/1390156.1390294
– volume: 26
  start-page: 43
  issue: 1
  year: 1978
  ident: 1386_CR13
  publication-title: IEEE Trans Acoust Speech Signal Process
  doi: 10.1109/TASSP.1978.1163055
– ident: 1386_CR15
  doi: 10.1007/978-3-642-30618-1_17
– ident: 1386_CR9
  doi: 10.1109/ICRA.2016.7487305
– volume: 10
  start-page: 1435
  issue: 9
  year: 2015
  ident: 1386_CR10
  publication-title: Int J Comput Assis Radiol Surg
  doi: 10.1007/s11548-015-1238-6
– ident: 1386_CR14
– ident: 1386_CR18
  doi: 10.1007/978-3-642-04268-3_53
– ident: 1386_CR12
– ident: 1386_CR7
  doi: 10.1109/ASRU.2009.5372889
– ident: 1386_CR17
  doi: 10.1007/978-3-319-10443-0_52
– ident: 1386_CR2
  doi: 10.1007/978-3-642-33415-3_5
– ident: 1386_CR8
  doi: 10.1109/WACV.2015.154
– reference: 23706754 - Med Image Anal. 2013 Oct;17(7):732-45
– reference: 20426016 - Med Image Comput Comput Assist Interv. 2009;12(Pt 1):426-34
– reference: 24505645 - Med Image Comput Comput Assist Interv. 2013;16(Pt 1):26-33
– reference: 25320826 - Med Image Comput Comput Assist Interv. 2014;17(Pt 3):409-16
– reference: 26896147 - J Surg Educ. 2016 May-Jun;73(3):482-9
– reference: 24505779 - Med Image Comput Comput Assist Interv. 2013;16(Pt 3):339-46
– reference: 26133652 - Int J Comput Assist Radiol Surg. 2015 Sep;10(9):1435-47
– reference: 23285532 - Med Image Comput Comput Assist Interv. 2012;15(Pt 1):34-41
SSID ssj0045735
Score 2.09947
Snippet Purpose Easy acquisition of surgical data opens many opportunities to automate skill evaluation and teaching. Current technology to search tool motion data for...
Easy acquisition of surgical data opens many opportunities to automate skill evaluation and teaching. Current technology to search tool motion data for...
PURPOSEEasy acquisition of surgical data opens many opportunities to automate skill evaluation and teaching. Current technology to search tool motion data for...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 987
SubjectTerms Algorithms
Computer Imaging
Computer Science
Health Informatics
Humans
Imaging
Information Storage and Retrieval - methods
Medicine
Medicine & Public Health
Original Article
Pattern Recognition and Graphics
Radiology
Surgery
Surgical Procedures, Operative
Vision
Title Query-by-example surgical activity detection
URI https://link.springer.com/article/10.1007/s11548-016-1386-3
https://www.ncbi.nlm.nih.gov/pubmed/27072835
https://www.proquest.com/docview/1794470073
Volume 11
WOSCitedRecordID wos000377449000016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1861-6429
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045735
  issn: 1861-6410
  databaseCode: RSV
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_cFPHF6fyaH6OCT2qgTbIkfRRx-OLwm72VNElBkE7WTdx_b69rN2Qq6Ht6LXe5r97d7wBOHLeOM00JRhuEU2tInISaMKVl7CO6ipkum5C9nur3w9tyjjurut2rkmRhqefDbhhd56lvgZsnCKvBcu7tFGrj_cNzZX55RxZbNQMlAiJ4MCtlfkfiqzNaiDAXqqOF0-k2_vW5G7BexpjexfRSbMKSS5vQqPY3eKU6N2H1piysb8H53dgNJySeEPehETDYy8bDwih6OPmACyY860ZF31a6DU_dq8fLa1IuUiCGcT4iecomKfWpNloHMlZcJSyI49Am0nKjGNPG-FYmSgmZpyTMdvxAd2JO_Y5xvtBsB-rpIHV74DmW5GSspUYI7qiMOROhQlR8YUKpXQv8iqORKVHGcdnFazTHR0bGRNhZhoyJWAtOZ4-8TSE2fjt8XIkpyhUBqxs6dYNxFqFl4RIrjy3YncpvRo5KXyKwXAvOKmFFpa5mP79r_0-nD2CNorSLPzSHUB8Nx-4IVsz76CUbtqEm-6pd3NRPSLjePA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB68UF-st_WM4JO6kOxudzePIhbFWjyq9C1sdjcgSJSmFfvvzaRJRTxA3zeTMLNzZWa-AThw3DrONCUYbRBOrSFxEmrClJaxj-gqZrRsQrbbqtsNr8s57qzqdq9KkoWl_hh2w-g6T30L3DxB2CRM89xhYR_f7d1DZX55QxZbNQMlAiJ4MC5lfkfiszP6EmF-qY4WTqdZ-9fnLsJCGWN6J6NLsQQTLl2GWrW_wSvVeRlmr8rC-goc3wxcb0jiIXFvGgGDvWzQK4yih5MPuGDCs65f9G2lq3DfPOucnpNykQIxjPM-yVM2SalPtdE6kLHiKmFBHIc2kZYbxZg2xrcyUUrIPCVhtuEHuhFz6jeM84VmazCVPqduAzzHkpyMtdQIwR2VMWciVIiKL0wotauDX3E0MiXKOC67eIo-8JGRMRF2liFjIlaHw_EjLyOIjd8O71diinJFwOqGTt3zIIvQsnCJlcc6rI_kNyZHpS8RWK4OR5WwolJXs5_ftfmn03swd965akWti_blFsxTlHzxt2Ybpvq9gduBGfPaf8x6u8V9fQd_w-A4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB68EF9cb9ezgk9qsE2ySfoo6qKoi-KBbyVNUhCkyrYr7r-300MRDxDfp9OSyTHTL_N9ANuOW8eZpgSzDcKpNSROQk2Y0jL2kV3FVGITstdT9_fhZa1zmjW33RtIsuppQJamNN9_tsn-R-MbZtpFGVxy6AnCRmGco2YQluvXd81WzDuyVNgMlAiIKAwaWPM7F58Ppi_Z5hektDyAuq1_f_oMTNe5p3dQTZZZGHHpHLQaXQevXuZzMHlRA-7zsHc1cP0hiYfEvWokEvayQb_cLD3siEDhCc-6vLzPlS7Abff45vCE1AILxDDOc1KUcpJSn2qjdSBjxVXCgjgObSItN4oxbYxvZaKUkEWpwmzHD3Qn5tTvGOcLzRZhLH1K3TJ4jiWFG2upEYI7KmPORKiQLV-YUGrXBr8Z3cjU7OMogvEYffAm48BEeOMMByZibdh5f-S5ot74zXirCVlULBBEPXTqngZZhDsOl4hItmGpiuW7Oyp9iYRzbdhtAhfVazj7-V0rf7LehMnLo250fto7W4UpioEvf-KswVjeH7h1mDAv-UPW3yin7hsshukc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Query-by-example+surgical+activity+detection&rft.jtitle=International+journal+for+computer+assisted+radiology+and+surgery&rft.au=Gao%2C+Yixin&rft.au=Vedula%2C+S+Swaroop&rft.au=Lee%2C+Gyusung+I&rft.au=Lee%2C+Mija+R&rft.date=2016-06-01&rft.eissn=1861-6429&rft.volume=11&rft.issue=6&rft.spage=987&rft.epage=996&rft_id=info:doi/10.1007%2Fs11548-016-1386-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-6410&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-6410&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-6410&client=summon