Projections and uncertainty decomposition in CMIP6 models for extreme precipitation scaling rates
•Climate models are the main source of uncertainty in projecting future scaling rates.•Use at least nine models for reliable scaling rate projections.•Regional uncertainty varies between CMIP5 and CMIP6, with small global-scale variations. As temperatures rise, extreme precipitation is expected to i...
Saved in:
| Published in: | Journal of hydrology (Amsterdam) Vol. 660; p. 133260 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.10.2025
|
| Subjects: | |
| ISSN: | 0022-1694 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Climate models are the main source of uncertainty in projecting future scaling rates.•Use at least nine models for reliable scaling rate projections.•Regional uncertainty varies between CMIP5 and CMIP6, with small global-scale variations.
As temperatures rise, extreme precipitation is expected to intensify, following the Clausius–Clapeyron relation, which indicates a 7 % increase in extreme precipitation for every 1 °C rise in temperature. However, recent studies reveal considerable uncertainty in estimating the rate of change in extreme precipitation (scaling rate), especially in future projections. This study aims to quantify the contribution to scaling rate projections by focusing on three primary factors: Global Circulation Models (GCMs), future emission scenarios, and scaling methods. Additionally, we examine the minimum number of GCMs required for robust analysis and compare the uncertainty contributions between CMIP5 and CMIP6 to assess differences between the two CMIP generations. Our findings reveal substantial variations in the projected global and regional scaling rates, along with significant temporal changes. While GCMs are the primary source of uncertainty in scaling rates, using fewer GCMs tends to underestimate their influence on uncertainty and overestimate the impact of other sources. Furthermore, to ensure robust results, we recommend using at least nine GCMs in scaling rate projections, though some regional variations may still occur. Lastly, our evaluation reveals that while both CMIP5 and CMIP6 show comparable spatial distributions, CMIP5 exhibits greater uncertainty. Although global averages reveal only minor differences in uncertainty contributions from each source between the two generations, significant regional variations, particularly in the northeastern Eurasian region, have been identified. We believe that this comprehensive understanding of uncertainty in scaling rates will enhance future projections and support the development of effective strategies for managing extreme precipitation in future water policy planning. |
|---|---|
| AbstractList | •Climate models are the main source of uncertainty in projecting future scaling rates.•Use at least nine models for reliable scaling rate projections.•Regional uncertainty varies between CMIP5 and CMIP6, with small global-scale variations.
As temperatures rise, extreme precipitation is expected to intensify, following the Clausius–Clapeyron relation, which indicates a 7 % increase in extreme precipitation for every 1 °C rise in temperature. However, recent studies reveal considerable uncertainty in estimating the rate of change in extreme precipitation (scaling rate), especially in future projections. This study aims to quantify the contribution to scaling rate projections by focusing on three primary factors: Global Circulation Models (GCMs), future emission scenarios, and scaling methods. Additionally, we examine the minimum number of GCMs required for robust analysis and compare the uncertainty contributions between CMIP5 and CMIP6 to assess differences between the two CMIP generations. Our findings reveal substantial variations in the projected global and regional scaling rates, along with significant temporal changes. While GCMs are the primary source of uncertainty in scaling rates, using fewer GCMs tends to underestimate their influence on uncertainty and overestimate the impact of other sources. Furthermore, to ensure robust results, we recommend using at least nine GCMs in scaling rate projections, though some regional variations may still occur. Lastly, our evaluation reveals that while both CMIP5 and CMIP6 show comparable spatial distributions, CMIP5 exhibits greater uncertainty. Although global averages reveal only minor differences in uncertainty contributions from each source between the two generations, significant regional variations, particularly in the northeastern Eurasian region, have been identified. We believe that this comprehensive understanding of uncertainty in scaling rates will enhance future projections and support the development of effective strategies for managing extreme precipitation in future water policy planning. As temperatures rise, extreme precipitation is expected to intensify, following the Clausius–Clapeyron relation, which indicates a 7 % increase in extreme precipitation for every 1 °C rise in temperature. However, recent studies reveal considerable uncertainty in estimating the rate of change in extreme precipitation (scaling rate), especially in future projections. This study aims to quantify the contribution to scaling rate projections by focusing on three primary factors: Global Circulation Models (GCMs), future emission scenarios, and scaling methods. Additionally, we examine the minimum number of GCMs required for robust analysis and compare the uncertainty contributions between CMIP5 and CMIP6 to assess differences between the two CMIP generations. Our findings reveal substantial variations in the projected global and regional scaling rates, along with significant temporal changes. While GCMs are the primary source of uncertainty in scaling rates, using fewer GCMs tends to underestimate their influence on uncertainty and overestimate the impact of other sources. Furthermore, to ensure robust results, we recommend using at least nine GCMs in scaling rate projections, though some regional variations may still occur. Lastly, our evaluation reveals that while both CMIP5 and CMIP6 show comparable spatial distributions, CMIP5 exhibits greater uncertainty. Although global averages reveal only minor differences in uncertainty contributions from each source between the two generations, significant regional variations, particularly in the northeastern Eurasian region, have been identified. We believe that this comprehensive understanding of uncertainty in scaling rates will enhance future projections and support the development of effective strategies for managing extreme precipitation in future water policy planning. |
| ArticleNumber | 133260 |
| Author | Sothearith, Min Ahn, Kuk-Hyun |
| Author_xml | – sequence: 1 givenname: Min surname: Sothearith fullname: Sothearith, Min – sequence: 2 givenname: Kuk-Hyun surname: Ahn fullname: Ahn, Kuk-Hyun email: ahnkukhyun@kongju.ac.kr |
| BookMark | eNqFkD9PwzAQxT0UibbwEZA8sjTYTuIkYkCo4k-lIjrAbDn2BRwldrBdRL89Ke3E0ltOevfek-43QxPrLCB0RUlCCeU3bdJ-7rR3XcIIyxOapoyTCZoSwtiC8io7R7MQWjJOmmZTJDfetaCicTZgaTXeWgU-SmPjDmtQrh9cMPszNhYvX1YbjnunoQu4cR7DT_TQAx48KDOYKP-cQcnO2A_sZYRwgc4a2QW4PO45en98eFs-L9avT6vl_Xqh0iyLC64pqLLmFSOgNG9KVmVMNoQ1slC6aNK8pKNCayZpQZiuJamyLK9rPmp1kaVzdH3oHbz72kKIojdBQddJC24bRMoKWlaUj0jmKD9YlXcheGjE4E0v_U5QIvYYRSuOGMUeozhgHHO3_3Lq-HL00nQn03eH9AgPvg14EZSBEbc2I70otDMnGn4BBiGXjA |
| CitedBy_id | crossref_primary_10_1186_s12302_025_01162_1 |
| Cites_doi | 10.5194/hess-15-3033-2011 10.1175/BAMS-84-9-1205 10.28991/ESJ-2024-08-05-012 10.1016/j.accre.2024.08.007 10.1016/j.cpc.2009.09.018 10.1088/1748-9326/ad0afa 10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2 10.28991/CEJ-2024-010-05-01 10.1038/nature16542 10.1016/j.atmosres.2019.03.036 10.1002/2014RG000464 10.1038/ngeo262 10.5194/hess-19-1753-2015 10.1088/1748-9326/10/8/085001 10.1017/9781009157896 10.1029/2022GL099138 10.1038/s41612-023-00473-5 10.5194/esd-11-491-2020 10.5194/gmd-9-3461-2016 10.1007/s13351-021-1012-3 10.1038/nclimate3287 10.1038/ngeo2911 10.1007/s40641-015-0009-3 10.1029/2010GL045081 10.1175/BAMS-D-23-0104.1 10.1002/2013WR015194 10.1126/science.1160787 10.1175/JCLI-D-17-0075.1 10.1002/joc.5370 10.1038/nclimate3110 10.1002/andp.18501550306 10.1007/s10584-013-0705-8 10.1175/JCLI-D-19-1013.1 10.1007/s10584-019-02415-8 10.1029/2018GL080557 10.1029/2019EA000665 10.1016/j.jhydrol.2023.130497 10.1029/2022GL098364 10.1080/00949659708811825 10.1038/s43017-020-00128-6 10.1175/2011JCLI4085.1 10.1175/JCLI-D-23-0064.1 10.1175/2009BAMS2607.1 10.1175/2009JCLI2701.1 10.1029/2022MS003588 10.1038/s41598-017-01306-1 10.3354/cr00953 10.1029/2011GL048426 10.1029/2012GL052790 10.1038/s41467-023-39039-7 10.28991/CEJ-2024-010-10-010 10.1007/s00382-017-3857-9 10.1080/01621459.1979.10481038 10.1088/1748-9326/aad135 10.5194/gmd-9-1937-2016 10.1017/CBO9781139177245.006 10.1175/JCLI4066.1 10.3390/atmos11080786 10.1002/2015GL065854 10.1016/j.accre.2021.09.009 10.1016/j.gloenvcha.2016.05.009 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.jhydrol.2025.133260 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| ExternalDocumentID | 10_1016_j_jhydrol_2025_133260 S0022169425005980 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO AAYWO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACRPL ACSBN ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADQTV ADVLN AEBSH AEIPS AEKER AENEX AEQOU AEUPX AFFNX AFJKZ AFPUW AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~HD ~KM 9DU AAYXX ABUFD ACLOT CITATION 7S9 L.6 |
| ID | FETCH-LOGICAL-c344t-6d1ec8b6920ecd6f82942af02fa7cd7f35819421b2a1702dba09445bb621bb743 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001481292800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-1694 |
| IngestDate | Fri Nov 14 18:43:49 EST 2025 Tue Nov 18 22:04:47 EST 2025 Sat Nov 29 06:57:04 EST 2025 Sat Sep 20 17:14:32 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5) and phase 6 (CMIP6) Scaling rate Climate projection uncertainty Uncertainty contribution |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c344t-6d1ec8b6920ecd6f82942af02fa7cd7f35819421b2a1702dba09445bb621bb743 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 3271891613 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3271891613 crossref_primary_10_1016_j_jhydrol_2025_133260 crossref_citationtrail_10_1016_j_jhydrol_2025_133260 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2025_133260 |
| PublicationCentury | 2000 |
| PublicationDate | October 2025 2025-10-00 20251001 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: October 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of hydrology (Amsterdam) |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Pendergrass, Lehner, Sanderson, Xu (b0225) 2015; 42 Liang-Liang, Jian, Ru-Cong (b0165) 2022; 13 Lenderink, van Meijgaard (b0150) 2008; 1 Ngai, Raghavan, Chung, Ona, Kimbrell, Nguyen, Nguyen, Liu (b0195) 2024 Wasko, Sharma (b0310) 2014; 50 Lenderink, Attema (b0140) 2015; 10 O’Neill, Tebaldi, van Vuuren, Eyring, Friedlingstein, Hurtt, Knutti, Kriegler, Lamarque, Lowe, Meehl, Moss, Riahi, Sanderson (b0210) 2016; 9 Clapeyron, E., 1834. Mémoire sur la puissance motrice de la chaleur. de l’ Ecole Polytechnique XIV, 153–191. Wang, Sun (b0305) 2022; 49 Mishra, Wallace, Lettenmaier (b0185) 2012; 39 Deng, Nursetiawan, Riyadi, Zaki (b0065) 2024; 10 Hawkins, Sutton (b0095) 2009; 90 Saltelli, Annoni, Azzini, Campolongo, Ratto, Tarantola (b0250) 2010; 181 Knutti, Baumberger, Hirsch Hadorn (b0125) 2019 O’Gorman (b0200) 2015; 1 Utsumi, Seto, Kanae, Maeda, Oki (b0290) 2011; 38 Cleveland (b0060) 1979; 74 Archer, Saltelli, Sobol (b0030) 1997; 58 Sansom, Stephenson, Ferro, Zappa, Shaffrey (b0255) 2013 Lenderink, Mok, Lee, van Oldenborgh (b0145) 2011; 15 Ji, Fu, Liu, Huang, Tan (b0105) 2024; 628 Ali, Fowler, Mishra (b0010) 2018; 45 Seneviratne, S.I., Nicholls, N., Easterling, D., Goodess, C.M., Kanae, S., Kossin, J., Luo, Y., Marengo, J., McInnes, K., Rahimi, M., Reichstein, M., Sorteberg, A., Vera, C., Zhang, X., Rusticucci, M., Semenov, V., Alexander, L.V., Allen, S., Benito, G., Cavazos, T., Clague, J., Conway, D., Della-Marta, P.M., Gerber, M., Gong, S., Goswami, B.N., Hemer, M., Huggel, C., Van Den Hurk, B., Kharin, V.V., Kitoh, A., Tank, A.M.G.K., Li, G., Mason, S., McGuire, W., Van Oldenborgh, G.J., Orlowsky, B., Smith, S., Thiaw, W., Velegrakis, A., Yiou, P., Zhang, T., Zhou, T., Zwiers, F.W., 2012. Changes in Climate Extremes and their Impacts on the Natural Physical Environment, in: Field, C.B., Barros, V., Stocker, T.F., Dahe, Q. (Eds.), Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge University Press, pp. 109–230. Doi: 10.1017/CBO9781139177245.006. Li, Zwiers, Zhang, Li, Sun, Wehner (b0160) 2021; 34 Wu, Miao, Slater, Fan, Chai, Sorooshian (b0325) 2024; 105 Martinkova, Kysely (b0175) 2020; 11 Riahi, van Vuuren, Kriegler, Edmonds, O’Neill, Fujimori, Bauer, Calvin, Dellink, Fricko, Lutz, Popp, Cuaresma, Kc, Leimbach, Jiang, Kram, Rao, Emmerling, Ebi, Hasegawa, Havlik, Humpenöder, Da Silva, Smith, Stehfest, Bosetti, Eom, Gernaat, Masui, Rogelj, Strefler, Drouet, Krey, Luderer, Harmsen, Takahashi, Baumstark, Doelman, Kainuma, Klimont, Marangoni, Lotze-Campen, Obersteiner, Tabeau, Tavoni (b0240) 2017; 42 Gu, Yin, Gentine, Wang, Slater, Sullivan, Chen, Zscheischler, Guo (b0085) 2023; 14 IPCC, 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed. Cambridge University Press. Doi: 10.1017/9781009157896. Wang, Chen, Xu, Zhang, Chen (b0300) 2020; 8 Fischer, Knutti (b0075) 2016; 6 Li, Miao, Jiang, Wang, Gnyawali, Zhang, Zhang, Fang, He, Li (b0155) 2020; 11 Fowler, Lenderink, Prein, Westra, Allan, Ban, Barbero, Berg, Blenkinsop, Do, Guerreiro, Haerter, Kendon, Lewis, Schaer, Sharma, Villarini, Wasko, Zhang (b0080) 2021; 2 Clausius (b0055) 1850; 155 Kharin, Zwiers, Zhang, Hegerl (b0115) 2007; 20 Ali, Fowler, Pritchard, Lenderink, Blenkinsop, Lewis (b0015) 2022; 49 Westra, Fowler, Evans, Alexander, Berg, Johnson, Kendon, Lenderink, Roberts (b0320) 2014; 52 Hardwick Jones, Westra, Sharma (b0090) 2010; 37 Miao, Wu, Fan, Su (b0180) 2023; 11 Eyring, Bony, Meehl, Senior, Stevens, Stouffer, Taylor (b0070) 2016; 9 Martel, Brissette, Troin, Arsenault, Chen, Su, Lucas-Picher (b0170) 2022; 49 Molnar, Fatichi, Gaál, Szolgay, Burlando (b0190) 2015; 19 Zhang, Villarini, Wehner (b0350) 2019; 154 Zhang, Zhou, Peng, Xu (b0355) 2023; 37 Pfahl, O’Gorman, Fischer (b0230) 2017; 7 Barbero, Westra, Lenderink, Fowler (b0035) 2018; 38 Pumo, Carlino, Blenkinsop, Arnone, Fowler, Noto (b0235) 2019; 225 Seneviratne, Donat, Pitman, Knutti, Wilby (b0265) 2016; 529 Yip, Ferro, Stephenson, Hawkins (b0335) 2011; 24 Van de Vyver, Van Schaeybroeck, De Troch, Hamdi, Termonia (b0295) 2019; 6 Yoo, Ahn (b0340) 2023; 18 Trenberth (b0280) 2011; 47 Ali, Mishra (b0020) 2017; 7 Allan, Soden (b0025) 2008; 321 Kuma, Bender, Jönsson (b0130) 2023; 15 Park, Min (b0215) 2017; 30 Schroeer, Kirchengast (b0260) 2018; 50 Trenberth, Dai, Rasmussen, Parsons (b0285) 2003; 84 Chen, Hsu, Liang (b0045) 2021; 31 Pathak, Dasari, Ashok, Hoteit (b0220) 2023; 6 Sobol (b0275) 1990; 2 Kharin, Zwiers, Zhang, Wehner (b0120) 2013; 119 Yanfatriani, Marzuki, Vonnisa, Razi, Hapsoro, Ramadhan, Yusnaini (b0330) 2024; 8 Zhang, Zwiers, Li, Wan, Cannon (b0360) 2017; 10 Ritzhaupt, Maraun (b0245) 2024; 3 John, Douville, Ribes, Yiou (b0110) 2022; 36 O’Gorman, Schneider (b0205) 2009; 22 Zhang, Chen (b0345) 2021; 35 Lehner, Deser, Maher, Marotzke, Fischer, Brunner, Knutti, Hawkins (b0135) 2020; 11 Wasko, Lu, Mehrotra (b0315) 2018; 13 Alduchov, Eskridge (b0005) 1996; 35 Buathongkhue, Sureeya, Kaewthong (b0040) 2024; 10 Wasko (10.1016/j.jhydrol.2025.133260_b0315) 2018; 13 Hardwick Jones (10.1016/j.jhydrol.2025.133260_b0090) 2010; 37 Pumo (10.1016/j.jhydrol.2025.133260_b0235) 2019; 225 Archer (10.1016/j.jhydrol.2025.133260_b0030) 1997; 58 Lehner (10.1016/j.jhydrol.2025.133260_b0135) 2020; 11 10.1016/j.jhydrol.2025.133260_b0050 Pfahl (10.1016/j.jhydrol.2025.133260_b0230) 2017; 7 Utsumi (10.1016/j.jhydrol.2025.133260_b0290) 2011; 38 Miao (10.1016/j.jhydrol.2025.133260_b0180) 2023; 11 Pathak (10.1016/j.jhydrol.2025.133260_b0220) 2023; 6 Fischer (10.1016/j.jhydrol.2025.133260_b0075) 2016; 6 Ali (10.1016/j.jhydrol.2025.133260_b0010) 2018; 45 Trenberth (10.1016/j.jhydrol.2025.133260_b0285) 2003; 84 Eyring (10.1016/j.jhydrol.2025.133260_b0070) 2016; 9 Kharin (10.1016/j.jhydrol.2025.133260_b0120) 2013; 119 Liang-Liang (10.1016/j.jhydrol.2025.133260_b0165) 2022; 13 Ji (10.1016/j.jhydrol.2025.133260_b0105) 2024; 628 Sansom (10.1016/j.jhydrol.2025.133260_b0255) 2013 Deng (10.1016/j.jhydrol.2025.133260_b0065) 2024; 10 Saltelli (10.1016/j.jhydrol.2025.133260_b0250) 2010; 181 Wang (10.1016/j.jhydrol.2025.133260_b0300) 2020; 8 Pendergrass (10.1016/j.jhydrol.2025.133260_b0225) 2015; 42 Wu (10.1016/j.jhydrol.2025.133260_b0325) 2024; 105 Riahi (10.1016/j.jhydrol.2025.133260_b0240) 2017; 42 Kuma (10.1016/j.jhydrol.2025.133260_b0130) 2023; 15 Kharin (10.1016/j.jhydrol.2025.133260_b0115) 2007; 20 Seneviratne (10.1016/j.jhydrol.2025.133260_b0265) 2016; 529 John (10.1016/j.jhydrol.2025.133260_b0110) 2022; 36 Yanfatriani (10.1016/j.jhydrol.2025.133260_b0330) 2024; 8 Yip (10.1016/j.jhydrol.2025.133260_b0335) 2011; 24 Zhang (10.1016/j.jhydrol.2025.133260_b0345) 2021; 35 Clausius (10.1016/j.jhydrol.2025.133260_b0055) 1850; 155 Sobol (10.1016/j.jhydrol.2025.133260_b0275) 1990; 2 10.1016/j.jhydrol.2025.133260_b0270 Ali (10.1016/j.jhydrol.2025.133260_b0020) 2017; 7 Park (10.1016/j.jhydrol.2025.133260_b0215) 2017; 30 Martinkova (10.1016/j.jhydrol.2025.133260_b0175) 2020; 11 Zhang (10.1016/j.jhydrol.2025.133260_b0355) 2023; 37 Trenberth (10.1016/j.jhydrol.2025.133260_b0280) 2011; 47 Knutti (10.1016/j.jhydrol.2025.133260_b0125) 2019 Fowler (10.1016/j.jhydrol.2025.133260_b0080) 2021; 2 Cleveland (10.1016/j.jhydrol.2025.133260_b0060) 1979; 74 10.1016/j.jhydrol.2025.133260_b0100 Alduchov (10.1016/j.jhydrol.2025.133260_b0005) 1996; 35 Lenderink (10.1016/j.jhydrol.2025.133260_b0150) 2008; 1 Van de Vyver (10.1016/j.jhydrol.2025.133260_b0295) 2019; 6 Zhang (10.1016/j.jhydrol.2025.133260_b0360) 2017; 10 Chen (10.1016/j.jhydrol.2025.133260_b0045) 2021; 31 Martel (10.1016/j.jhydrol.2025.133260_b0170) 2022; 49 Molnar (10.1016/j.jhydrol.2025.133260_b0190) 2015; 19 Lenderink (10.1016/j.jhydrol.2025.133260_b0140) 2015; 10 Allan (10.1016/j.jhydrol.2025.133260_b0025) 2008; 321 Li (10.1016/j.jhydrol.2025.133260_b0155) 2020; 11 Mishra (10.1016/j.jhydrol.2025.133260_b0185) 2012; 39 Lenderink (10.1016/j.jhydrol.2025.133260_b0145) 2011; 15 O’Gorman (10.1016/j.jhydrol.2025.133260_b0205) 2009; 22 Li (10.1016/j.jhydrol.2025.133260_b0160) 2021; 34 Wasko (10.1016/j.jhydrol.2025.133260_b0310) 2014; 50 O’Neill (10.1016/j.jhydrol.2025.133260_b0210) 2016; 9 Ali (10.1016/j.jhydrol.2025.133260_b0015) 2022; 49 Hawkins (10.1016/j.jhydrol.2025.133260_b0095) 2009; 90 Wang (10.1016/j.jhydrol.2025.133260_b0305) 2022; 49 O’Gorman (10.1016/j.jhydrol.2025.133260_b0200) 2015; 1 Schroeer (10.1016/j.jhydrol.2025.133260_b0260) 2018; 50 Ngai (10.1016/j.jhydrol.2025.133260_b0195) 2024 Barbero (10.1016/j.jhydrol.2025.133260_b0035) 2018; 38 Ritzhaupt (10.1016/j.jhydrol.2025.133260_b0245) 2024; 3 Zhang (10.1016/j.jhydrol.2025.133260_b0350) 2019; 154 Buathongkhue (10.1016/j.jhydrol.2025.133260_b0040) 2024; 10 Westra (10.1016/j.jhydrol.2025.133260_b0320) 2014; 52 Gu (10.1016/j.jhydrol.2025.133260_b0085) 2023; 14 Yoo (10.1016/j.jhydrol.2025.133260_b0340) 2023; 18 |
| References_xml | – volume: 14 start-page: 3197 year: 2023 ident: b0085 article-title: Large anomalies in future extreme precipitation sensitivity driven by atmospheric dynamics publication-title: Nat Commun – volume: 181 start-page: 259 year: 2010 end-page: 270 ident: b0250 article-title: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index publication-title: Comput. Phys. Commun. – volume: 6 start-page: 2031 year: 2019 end-page: 2041 ident: b0295 article-title: Modeling the Scaling of Short-Duration Precipitation Extremes With Temperature publication-title: Earth Space Sci. – volume: 10 start-page: 255 year: 2017 end-page: 259 ident: b0360 article-title: Complexity in estimating past and future extreme short-duration rainfall publication-title: Nature Geosci – volume: 9 start-page: 1937 year: 2016 end-page: 1958 ident: b0070 article-title: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization publication-title: Geosci. Model Dev. – volume: 155 start-page: 368 year: 1850 end-page: 397 ident: b0055 article-title: Ueber die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen publication-title: Ann. Phys. – volume: 321 start-page: 1481 year: 2008 end-page: 1484 ident: b0025 article-title: Atmospheric Warming and the Amplification of Precipitation Extremes publication-title: Science – volume: 10 year: 2015 ident: b0140 article-title: A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands publication-title: Environ. Res. Lett. – volume: 49 year: 2022 ident: b0305 article-title: Monotonic Increase of Extreme Precipitation Intensity With Temperature When Controlled for Saturation Deficit publication-title: Geophys. Res. Lett. – volume: 11 start-page: 786 year: 2020 ident: b0175 article-title: Overview of Observed Clausius-Clapeyron Scaling of Extreme Precipitation in Midlatitudes publication-title: Atmos. – volume: 11 start-page: 491 year: 2020 end-page: 508 ident: b0135 article-title: Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6 publication-title: Earth Syst. Dyn. – volume: 3 year: 2024 ident: b0245 article-title: State-of-the-art climate models reduce dominant dynamical uncertainty in projections of extreme precipitation publication-title: Environ. Res.: Climate – volume: 225 start-page: 30 year: 2019 end-page: 44 ident: b0235 article-title: Sensitivity of extreme rainfall to temperature in semi-arid Mediterranean regions publication-title: Atmos. Res. – reference: Clapeyron, E., 1834. Mémoire sur la puissance motrice de la chaleur. de l’ Ecole Polytechnique XIV, 153–191. – year: 2013 ident: b0255 publication-title: Simple Uncertainty Frameworks for Selecting Weighting Schemes and Interpreting Multimodel Ensemble Climate Change Experiments. – volume: 11 year: 2023 ident: b0180 article-title: Projections of Global Land Runoff Changes and Their Uncertainty Characteristics During the 21st Century. Earth’s publication-title: Future – volume: 8 year: 2020 ident: b0300 article-title: A Framework to Quantify the Uncertainty Contribution of GCMs Over Multiple Sources in Hydrological Impacts of Climate Change. Earth’s publication-title: Future – volume: 628 year: 2024 ident: b0105 article-title: Uncertainty separation of drought projection in the 21st century using SMILEs and CMIP6 publication-title: J. Hydrol. – volume: 1 start-page: 49 year: 2015 end-page: 59 ident: b0200 article-title: Precipitation Extremes Under Climate Change publication-title: Curr Clim Change Rep – volume: 47 start-page: 123 year: 2011 end-page: 138 ident: b0280 article-title: Changes in precipitation with climate change publication-title: Climate Res. – volume: 52 start-page: 522 year: 2014 end-page: 555 ident: b0320 article-title: Future changes to the intensity and frequency of short-duration extreme rainfall publication-title: Rev. Geophys. – volume: 2 start-page: 107 year: 2021 end-page: 122 ident: b0080 article-title: Anthropogenic intensification of short-duration rainfall extremes publication-title: Nat Rev Earth Environ – volume: 36 year: 2022 ident: b0110 article-title: Quantifying CMIP6 model uncertainties in extreme precipitation projections publication-title: Weather Clim. Extremes – volume: 30 start-page: 9527 year: 2017 end-page: 9537 ident: b0215 article-title: Role of Convective Precipitation in the Relationship between Subdaily Extreme Precipitation and Temperature publication-title: J. Clim. – volume: 2 start-page: 112 year: 1990 end-page: 118 ident: b0275 article-title: On sensitivity estimation for nonlinear mathematical models publication-title: Matem. Mod. – volume: 18 year: 2023 ident: b0340 article-title: Understanding extreme precipitation scaling with temperature: insights from multi-spatiotemporal analysis in South Korea publication-title: Environ. Res. Lett. – volume: 49 year: 2022 ident: b0015 article-title: Towards Quantifying the Uncertainty in Estimating Observed Scaling Rates publication-title: Geophys. Res. Lett. – volume: 39 year: 2012 ident: b0185 article-title: Relationship between hourly extreme precipitation and local air temperature in the United States publication-title: Geophys. Res. Lett. – volume: 6 start-page: 986 year: 2016 end-page: 991 ident: b0075 article-title: Observed heavy precipitation increase confirms theory and early models publication-title: Nature Clim Change – volume: 7 start-page: 423 year: 2017 end-page: 427 ident: b0230 article-title: Understanding the regional pattern of projected future changes in extreme precipitation publication-title: Nature Clim Change – volume: 50 start-page: 3608 year: 2014 end-page: 3614 ident: b0310 article-title: Quantile regression for investigating scaling of extreme precipitation with temperature publication-title: Water Resour. Res. – volume: 105 start-page: E59 year: 2024 end-page: E74 ident: b0325 article-title: Hydrological Projections under CMIP5 and CMIP6: Sources and Magnitudes of Uncertainty publication-title: Bull. Am. Meteorol. Soc. – volume: 13 year: 2018 ident: b0315 article-title: Relationship of extreme precipitation, dry-bulb temperature, and dew point temperature across Australia publication-title: Environ. Res. Lett. – volume: 22 start-page: 5676 year: 2009 end-page: 5685 ident: b0205 article-title: Scaling of Precipitation Extremes over a Wide Range of Climates Simulated with an Idealized GCM publication-title: J. Clim. – volume: 7 start-page: 1228 year: 2017 ident: b0020 article-title: Contrasting response of rainfall extremes to increase in surface air and dewpoint temperatures at urban locations in India publication-title: Sci Rep – volume: 50 start-page: 3981 year: 2018 end-page: 3994 ident: b0260 article-title: Sensitivity of extreme precipitation to temperature: the variability of scaling factors from a regional to local perspective publication-title: Clim Dyn – volume: 38 start-page: e1274 year: 2018 end-page: e1279 ident: b0035 article-title: Temperature-extreme precipitation scaling: a two-way causality? publication-title: Int. J. Climatol. – volume: 20 start-page: 1419 year: 2007 end-page: 1444 ident: b0115 article-title: Changes in Temperature and Precipitation Extremes in the IPCC Ensemble of Global Coupled Model Simulations publication-title: J. Clim. – volume: 38 year: 2011 ident: b0290 article-title: Does higher surface temperature intensify extreme precipitation? publication-title: Geophys. Res. Lett. – volume: 74 start-page: 829 year: 1979 end-page: 836 ident: b0060 article-title: Robust Locally Weighted Regression and Smoothing Scatterplots publication-title: J. Am. Stat. Assoc. – volume: 19 start-page: 1753 year: 2015 end-page: 1766 ident: b0190 article-title: Storm type effects on super Clausius–Clapeyron scaling of intense rainstorm properties with air temperature publication-title: Hydrol. Earth Syst. Sci. – volume: 58 start-page: 99 year: 1997 end-page: 120 ident: b0030 article-title: Sensitivity measures,anova-like Techniques and the use of bootstrap publication-title: J. Stat. Comput. Simul. – volume: 10 start-page: 1354 year: 2024 end-page: 1369 ident: b0040 article-title: Analysis and Prediction of Rainfall with Oceanic Nino Index and Climate Variables Using Correlation Coefficient and Deep Learning publication-title: Civil Engineering Journal – volume: 90 start-page: 1095 year: 2009 end-page: 1108 ident: b0095 article-title: The Potential to Narrow Uncertainty in Regional Climate Predictions publication-title: Bull. Am. Meteorol. Soc. – volume: 42 start-page: 153 year: 2017 end-page: 168 ident: b0240 article-title: The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview publication-title: Glob. Environ. Chang. – start-page: 835 year: 2019 end-page: 855 ident: b0125 article-title: Uncertainty Quantification Using Multiple Models—Prospects and Challenges publication-title: Computer Simulation Validation: Fundamental Concepts, Methodological Frameworks, and Philosophical Perspectives – volume: 529 start-page: 477 year: 2016 end-page: 483 ident: b0265 article-title: Allowable CO2 emissions based on regional and impact-related climate targets publication-title: Nature – reference: IPCC, 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed. Cambridge University Press. Doi: 10.1017/9781009157896. – volume: 37 start-page: 365 year: 2023 end-page: 384 ident: b0355 article-title: A New Framework for Estimating and Decomposing the Uncertainty of Climate Projections publication-title: J. Clim. – volume: 119 start-page: 345 year: 2013 end-page: 357 ident: b0120 article-title: Changes in temperature and precipitation extremes in the CMIP5 ensemble publication-title: Clim. Change – year: 2024 ident: b0195 article-title: Relative contribution of dynamic and thermodynamic components on Southeast Asia future precipitation changes from different multi-GCM ensemble members publication-title: Adv. Clim. Chang. Res. – volume: 35 start-page: 646 year: 2021 end-page: 662 ident: b0345 article-title: Uncertainty in Projection of Climate Extremes: A Comparison of CMIP5 and CMIP6 publication-title: J Meteorol Res – volume: 154 start-page: 257 year: 2019 end-page: 271 ident: b0350 article-title: Contrasting the responses of extreme precipitation to changes in surface air and dew point temperatures publication-title: Clim. Change – volume: 34 start-page: 3441 year: 2021 end-page: 3460 ident: b0160 article-title: Changes in Annual Extremes of Daily Temperature and Precipitation in CMIP6 Models publication-title: J. Clim. – volume: 15 year: 2023 ident: b0130 article-title: Climate Model Code Genealogy and Its Relation to Climate Feedbacks and Sensitivity publication-title: J. Adv. Model. Earth Syst. – volume: 9 start-page: 3461 year: 2016 end-page: 3482 ident: b0210 article-title: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6 publication-title: Geosci. Model Dev. – volume: 6 start-page: 1 year: 2023 end-page: 12 ident: b0220 article-title: Effects of multi-observations uncertainty and models similarity on climate change projections publication-title: Npj Clim Atmos Sci – volume: 37 year: 2010 ident: b0090 article-title: Observed relationships between extreme sub-daily precipitation, surface temperature, and relative humidity publication-title: Geophys. Res. Lett. – volume: 42 start-page: 8767 year: 2015 end-page: 8774 ident: b0225 article-title: Does extreme precipitation intensity depend on the emissions scenario? publication-title: Geophys. Res. Lett. – volume: 31 year: 2021 ident: b0045 article-title: Evaluation and comparison of CMIP6 and CMIP5 model performance in simulating the seasonal extreme precipitation in the Western North Pacific and East Asia publication-title: Weather Clim. Extremes – volume: 15 start-page: 3033 year: 2011 end-page: 3041 ident: b0145 article-title: Scaling and trends of hourly precipitation extremes in two different climate zones – Hong Kong and the Netherlands publication-title: Hydrol. Earth Syst. Sci. – volume: 45 start-page: 12320 year: 2018 end-page: 12330 ident: b0010 article-title: Global Observational Evidence of Strong Linkage Between Dew Point Temperature and Precipitation Extremes publication-title: Geophys. Res. Lett. – volume: 11 start-page: 210 year: 2020 end-page: 217 ident: b0155 publication-title: Projected Drought Conditions in Northwest China with CMIP6 Models under Combined SSPs and RCPs for 2015–2099. Advances in Climate Change Research, including Special Topic on East Asian Climate Response to 1.5/2 °c Global Warming – volume: 35 start-page: 601 year: 1996 end-page: 609 ident: b0005 article-title: Improved Magnus Form Approximation of Saturation Vapor Pressure publication-title: J. Appl. Meteor. – volume: 8 start-page: 1860 year: 2024 end-page: 1874 ident: b0330 article-title: Extreme Rainfall Trends and Hydrometeorological Disasters in Tropical Regions: Implications for Climate Resilience publication-title: Emerg. Sci. J. – volume: 10 start-page: 3269 year: 2024 end-page: 3291 ident: b0065 article-title: Intelligent Forecasting of Flooding Intensity Using Machine Learning publication-title: Civil Eng. J. – volume: 84 start-page: 1205 year: 2003 end-page: 1218 ident: b0285 article-title: The Changing Character of Precipitation publication-title: Bull. Am. Meteorol. Soc. – volume: 13 start-page: 1 year: 2022 end-page: 13 ident: b0165 article-title: Evaluation of CMIP6 HighResMIP models in simulating precipitation over Central Asia publication-title: Adv. Clim. Chang. Res. – volume: 49 year: 2022 ident: b0170 article-title: CMIP5 and CMIP6 Model Projection Comparison for Hydrological Impacts Over North America publication-title: Geophys. Res. Lett. – volume: 24 start-page: 4634 year: 2011 end-page: 4643 ident: b0335 article-title: A Simple, Coherent Framework for Partitioning Uncertainty in Climate Predictions publication-title: J. Climate – reference: Seneviratne, S.I., Nicholls, N., Easterling, D., Goodess, C.M., Kanae, S., Kossin, J., Luo, Y., Marengo, J., McInnes, K., Rahimi, M., Reichstein, M., Sorteberg, A., Vera, C., Zhang, X., Rusticucci, M., Semenov, V., Alexander, L.V., Allen, S., Benito, G., Cavazos, T., Clague, J., Conway, D., Della-Marta, P.M., Gerber, M., Gong, S., Goswami, B.N., Hemer, M., Huggel, C., Van Den Hurk, B., Kharin, V.V., Kitoh, A., Tank, A.M.G.K., Li, G., Mason, S., McGuire, W., Van Oldenborgh, G.J., Orlowsky, B., Smith, S., Thiaw, W., Velegrakis, A., Yiou, P., Zhang, T., Zhou, T., Zwiers, F.W., 2012. Changes in Climate Extremes and their Impacts on the Natural Physical Environment, in: Field, C.B., Barros, V., Stocker, T.F., Dahe, Q. (Eds.), Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge University Press, pp. 109–230. Doi: 10.1017/CBO9781139177245.006. – volume: 1 start-page: 511 year: 2008 end-page: 514 ident: b0150 article-title: Increase in hourly precipitation extremes beyond expectations from temperature changes publication-title: Nature Geosci – volume: 15 start-page: 3033 year: 2011 ident: 10.1016/j.jhydrol.2025.133260_b0145 article-title: Scaling and trends of hourly precipitation extremes in two different climate zones – Hong Kong and the Netherlands publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-15-3033-2011 – volume: 84 start-page: 1205 year: 2003 ident: 10.1016/j.jhydrol.2025.133260_b0285 article-title: The Changing Character of Precipitation publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-84-9-1205 – volume: 8 start-page: 1860 year: 2024 ident: 10.1016/j.jhydrol.2025.133260_b0330 article-title: Extreme Rainfall Trends and Hydrometeorological Disasters in Tropical Regions: Implications for Climate Resilience publication-title: Emerg. Sci. J. doi: 10.28991/ESJ-2024-08-05-012 – year: 2024 ident: 10.1016/j.jhydrol.2025.133260_b0195 article-title: Relative contribution of dynamic and thermodynamic components on Southeast Asia future precipitation changes from different multi-GCM ensemble members publication-title: Adv. Clim. Chang. Res. doi: 10.1016/j.accre.2024.08.007 – ident: 10.1016/j.jhydrol.2025.133260_b0050 – volume: 181 start-page: 259 year: 2010 ident: 10.1016/j.jhydrol.2025.133260_b0250 article-title: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2009.09.018 – volume: 18 year: 2023 ident: 10.1016/j.jhydrol.2025.133260_b0340 article-title: Understanding extreme precipitation scaling with temperature: insights from multi-spatiotemporal analysis in South Korea publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ad0afa – volume: 35 start-page: 601 year: 1996 ident: 10.1016/j.jhydrol.2025.133260_b0005 article-title: Improved Magnus Form Approximation of Saturation Vapor Pressure publication-title: J. Appl. Meteor. doi: 10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2 – volume: 10 start-page: 1354 year: 2024 ident: 10.1016/j.jhydrol.2025.133260_b0040 article-title: Analysis and Prediction of Rainfall with Oceanic Nino Index and Climate Variables Using Correlation Coefficient and Deep Learning publication-title: Civil Engineering Journal doi: 10.28991/CEJ-2024-010-05-01 – volume: 36 year: 2022 ident: 10.1016/j.jhydrol.2025.133260_b0110 article-title: Quantifying CMIP6 model uncertainties in extreme precipitation projections publication-title: Weather Clim. Extremes – volume: 529 start-page: 477 year: 2016 ident: 10.1016/j.jhydrol.2025.133260_b0265 article-title: Allowable CO2 emissions based on regional and impact-related climate targets publication-title: Nature doi: 10.1038/nature16542 – volume: 225 start-page: 30 year: 2019 ident: 10.1016/j.jhydrol.2025.133260_b0235 article-title: Sensitivity of extreme rainfall to temperature in semi-arid Mediterranean regions publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2019.03.036 – volume: 49 year: 2022 ident: 10.1016/j.jhydrol.2025.133260_b0305 article-title: Monotonic Increase of Extreme Precipitation Intensity With Temperature When Controlled for Saturation Deficit publication-title: Geophys. Res. Lett. – volume: 52 start-page: 522 year: 2014 ident: 10.1016/j.jhydrol.2025.133260_b0320 article-title: Future changes to the intensity and frequency of short-duration extreme rainfall publication-title: Rev. Geophys. doi: 10.1002/2014RG000464 – volume: 1 start-page: 511 year: 2008 ident: 10.1016/j.jhydrol.2025.133260_b0150 article-title: Increase in hourly precipitation extremes beyond expectations from temperature changes publication-title: Nature Geosci doi: 10.1038/ngeo262 – volume: 19 start-page: 1753 year: 2015 ident: 10.1016/j.jhydrol.2025.133260_b0190 article-title: Storm type effects on super Clausius–Clapeyron scaling of intense rainstorm properties with air temperature publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-19-1753-2015 – volume: 10 year: 2015 ident: 10.1016/j.jhydrol.2025.133260_b0140 article-title: A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/10/8/085001 – ident: 10.1016/j.jhydrol.2025.133260_b0100 doi: 10.1017/9781009157896 – volume: 49 year: 2022 ident: 10.1016/j.jhydrol.2025.133260_b0015 article-title: Towards Quantifying the Uncertainty in Estimating Observed Scaling Rates publication-title: Geophys. Res. Lett. doi: 10.1029/2022GL099138 – volume: 6 start-page: 1 year: 2023 ident: 10.1016/j.jhydrol.2025.133260_b0220 article-title: Effects of multi-observations uncertainty and models similarity on climate change projections publication-title: Npj Clim Atmos Sci doi: 10.1038/s41612-023-00473-5 – volume: 11 start-page: 491 year: 2020 ident: 10.1016/j.jhydrol.2025.133260_b0135 article-title: Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6 publication-title: Earth Syst. Dyn. doi: 10.5194/esd-11-491-2020 – volume: 9 start-page: 3461 year: 2016 ident: 10.1016/j.jhydrol.2025.133260_b0210 article-title: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-9-3461-2016 – volume: 8 year: 2020 ident: 10.1016/j.jhydrol.2025.133260_b0300 article-title: A Framework to Quantify the Uncertainty Contribution of GCMs Over Multiple Sources in Hydrological Impacts of Climate Change. Earth’s publication-title: Future – volume: 35 start-page: 646 year: 2021 ident: 10.1016/j.jhydrol.2025.133260_b0345 article-title: Uncertainty in Projection of Climate Extremes: A Comparison of CMIP5 and CMIP6 publication-title: J Meteorol Res doi: 10.1007/s13351-021-1012-3 – volume: 7 start-page: 423 year: 2017 ident: 10.1016/j.jhydrol.2025.133260_b0230 article-title: Understanding the regional pattern of projected future changes in extreme precipitation publication-title: Nature Clim Change doi: 10.1038/nclimate3287 – volume: 10 start-page: 255 year: 2017 ident: 10.1016/j.jhydrol.2025.133260_b0360 article-title: Complexity in estimating past and future extreme short-duration rainfall publication-title: Nature Geosci doi: 10.1038/ngeo2911 – volume: 1 start-page: 49 year: 2015 ident: 10.1016/j.jhydrol.2025.133260_b0200 article-title: Precipitation Extremes Under Climate Change publication-title: Curr Clim Change Rep doi: 10.1007/s40641-015-0009-3 – volume: 37 year: 2010 ident: 10.1016/j.jhydrol.2025.133260_b0090 article-title: Observed relationships between extreme sub-daily precipitation, surface temperature, and relative humidity publication-title: Geophys. Res. Lett. doi: 10.1029/2010GL045081 – volume: 2 start-page: 112 year: 1990 ident: 10.1016/j.jhydrol.2025.133260_b0275 article-title: On sensitivity estimation for nonlinear mathematical models publication-title: Matem. Mod. – volume: 105 start-page: E59 year: 2024 ident: 10.1016/j.jhydrol.2025.133260_b0325 article-title: Hydrological Projections under CMIP5 and CMIP6: Sources and Magnitudes of Uncertainty publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-23-0104.1 – volume: 50 start-page: 3608 year: 2014 ident: 10.1016/j.jhydrol.2025.133260_b0310 article-title: Quantile regression for investigating scaling of extreme precipitation with temperature publication-title: Water Resour. Res. doi: 10.1002/2013WR015194 – volume: 321 start-page: 1481 year: 2008 ident: 10.1016/j.jhydrol.2025.133260_b0025 article-title: Atmospheric Warming and the Amplification of Precipitation Extremes publication-title: Science doi: 10.1126/science.1160787 – volume: 30 start-page: 9527 year: 2017 ident: 10.1016/j.jhydrol.2025.133260_b0215 article-title: Role of Convective Precipitation in the Relationship between Subdaily Extreme Precipitation and Temperature publication-title: J. Clim. doi: 10.1175/JCLI-D-17-0075.1 – volume: 38 start-page: e1274 year: 2018 ident: 10.1016/j.jhydrol.2025.133260_b0035 article-title: Temperature-extreme precipitation scaling: a two-way causality? publication-title: Int. J. Climatol. doi: 10.1002/joc.5370 – volume: 6 start-page: 986 year: 2016 ident: 10.1016/j.jhydrol.2025.133260_b0075 article-title: Observed heavy precipitation increase confirms theory and early models publication-title: Nature Clim Change doi: 10.1038/nclimate3110 – volume: 155 start-page: 368 year: 1850 ident: 10.1016/j.jhydrol.2025.133260_b0055 article-title: Ueber die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen publication-title: Ann. Phys. doi: 10.1002/andp.18501550306 – volume: 119 start-page: 345 year: 2013 ident: 10.1016/j.jhydrol.2025.133260_b0120 article-title: Changes in temperature and precipitation extremes in the CMIP5 ensemble publication-title: Clim. Change doi: 10.1007/s10584-013-0705-8 – volume: 34 start-page: 3441 year: 2021 ident: 10.1016/j.jhydrol.2025.133260_b0160 article-title: Changes in Annual Extremes of Daily Temperature and Precipitation in CMIP6 Models publication-title: J. Clim. doi: 10.1175/JCLI-D-19-1013.1 – volume: 154 start-page: 257 year: 2019 ident: 10.1016/j.jhydrol.2025.133260_b0350 article-title: Contrasting the responses of extreme precipitation to changes in surface air and dew point temperatures publication-title: Clim. Change doi: 10.1007/s10584-019-02415-8 – volume: 45 start-page: 12320 year: 2018 ident: 10.1016/j.jhydrol.2025.133260_b0010 article-title: Global Observational Evidence of Strong Linkage Between Dew Point Temperature and Precipitation Extremes publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL080557 – volume: 3 year: 2024 ident: 10.1016/j.jhydrol.2025.133260_b0245 article-title: State-of-the-art climate models reduce dominant dynamical uncertainty in projections of extreme precipitation publication-title: Environ. Res.: Climate – volume: 6 start-page: 2031 year: 2019 ident: 10.1016/j.jhydrol.2025.133260_b0295 article-title: Modeling the Scaling of Short-Duration Precipitation Extremes With Temperature publication-title: Earth Space Sci. doi: 10.1029/2019EA000665 – volume: 628 year: 2024 ident: 10.1016/j.jhydrol.2025.133260_b0105 article-title: Uncertainty separation of drought projection in the 21st century using SMILEs and CMIP6 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2023.130497 – volume: 49 year: 2022 ident: 10.1016/j.jhydrol.2025.133260_b0170 article-title: CMIP5 and CMIP6 Model Projection Comparison for Hydrological Impacts Over North America publication-title: Geophys. Res. Lett. doi: 10.1029/2022GL098364 – volume: 58 start-page: 99 year: 1997 ident: 10.1016/j.jhydrol.2025.133260_b0030 article-title: Sensitivity measures,anova-like Techniques and the use of bootstrap publication-title: J. Stat. Comput. Simul. doi: 10.1080/00949659708811825 – volume: 2 start-page: 107 year: 2021 ident: 10.1016/j.jhydrol.2025.133260_b0080 article-title: Anthropogenic intensification of short-duration rainfall extremes publication-title: Nat Rev Earth Environ doi: 10.1038/s43017-020-00128-6 – volume: 11 start-page: 210 year: 2020 ident: 10.1016/j.jhydrol.2025.133260_b0155 publication-title: Projected Drought Conditions in Northwest China with CMIP6 Models under Combined SSPs and RCPs for 2015–2099. Advances in Climate Change Research, including Special Topic on East Asian Climate Response to 1.5/2 °c Global Warming – volume: 24 start-page: 4634 year: 2011 ident: 10.1016/j.jhydrol.2025.133260_b0335 article-title: A Simple, Coherent Framework for Partitioning Uncertainty in Climate Predictions publication-title: J. Climate doi: 10.1175/2011JCLI4085.1 – volume: 37 start-page: 365 year: 2023 ident: 10.1016/j.jhydrol.2025.133260_b0355 article-title: A New Framework for Estimating and Decomposing the Uncertainty of Climate Projections publication-title: J. Clim. doi: 10.1175/JCLI-D-23-0064.1 – volume: 90 start-page: 1095 year: 2009 ident: 10.1016/j.jhydrol.2025.133260_b0095 article-title: The Potential to Narrow Uncertainty in Regional Climate Predictions publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/2009BAMS2607.1 – volume: 22 start-page: 5676 year: 2009 ident: 10.1016/j.jhydrol.2025.133260_b0205 article-title: Scaling of Precipitation Extremes over a Wide Range of Climates Simulated with an Idealized GCM publication-title: J. Clim. doi: 10.1175/2009JCLI2701.1 – volume: 15 year: 2023 ident: 10.1016/j.jhydrol.2025.133260_b0130 article-title: Climate Model Code Genealogy and Its Relation to Climate Feedbacks and Sensitivity publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2022MS003588 – volume: 7 start-page: 1228 year: 2017 ident: 10.1016/j.jhydrol.2025.133260_b0020 article-title: Contrasting response of rainfall extremes to increase in surface air and dewpoint temperatures at urban locations in India publication-title: Sci Rep doi: 10.1038/s41598-017-01306-1 – year: 2013 ident: 10.1016/j.jhydrol.2025.133260_b0255 publication-title: Simple Uncertainty Frameworks for Selecting Weighting Schemes and Interpreting Multimodel Ensemble Climate Change Experiments. – volume: 47 start-page: 123 year: 2011 ident: 10.1016/j.jhydrol.2025.133260_b0280 article-title: Changes in precipitation with climate change publication-title: Climate Res. doi: 10.3354/cr00953 – volume: 11 year: 2023 ident: 10.1016/j.jhydrol.2025.133260_b0180 article-title: Projections of Global Land Runoff Changes and Their Uncertainty Characteristics During the 21st Century. Earth’s publication-title: Future – volume: 38 year: 2011 ident: 10.1016/j.jhydrol.2025.133260_b0290 article-title: Does higher surface temperature intensify extreme precipitation? publication-title: Geophys. Res. Lett. doi: 10.1029/2011GL048426 – volume: 39 year: 2012 ident: 10.1016/j.jhydrol.2025.133260_b0185 article-title: Relationship between hourly extreme precipitation and local air temperature in the United States publication-title: Geophys. Res. Lett. doi: 10.1029/2012GL052790 – start-page: 835 year: 2019 ident: 10.1016/j.jhydrol.2025.133260_b0125 article-title: Uncertainty Quantification Using Multiple Models—Prospects and Challenges – volume: 14 start-page: 3197 year: 2023 ident: 10.1016/j.jhydrol.2025.133260_b0085 article-title: Large anomalies in future extreme precipitation sensitivity driven by atmospheric dynamics publication-title: Nat Commun doi: 10.1038/s41467-023-39039-7 – volume: 31 year: 2021 ident: 10.1016/j.jhydrol.2025.133260_b0045 article-title: Evaluation and comparison of CMIP6 and CMIP5 model performance in simulating the seasonal extreme precipitation in the Western North Pacific and East Asia publication-title: Weather Clim. Extremes – volume: 10 start-page: 3269 year: 2024 ident: 10.1016/j.jhydrol.2025.133260_b0065 article-title: Intelligent Forecasting of Flooding Intensity Using Machine Learning publication-title: Civil Eng. J. doi: 10.28991/CEJ-2024-010-10-010 – volume: 50 start-page: 3981 year: 2018 ident: 10.1016/j.jhydrol.2025.133260_b0260 article-title: Sensitivity of extreme precipitation to temperature: the variability of scaling factors from a regional to local perspective publication-title: Clim Dyn doi: 10.1007/s00382-017-3857-9 – volume: 74 start-page: 829 year: 1979 ident: 10.1016/j.jhydrol.2025.133260_b0060 article-title: Robust Locally Weighted Regression and Smoothing Scatterplots publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1979.10481038 – volume: 13 year: 2018 ident: 10.1016/j.jhydrol.2025.133260_b0315 article-title: Relationship of extreme precipitation, dry-bulb temperature, and dew point temperature across Australia publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aad135 – volume: 9 start-page: 1937 year: 2016 ident: 10.1016/j.jhydrol.2025.133260_b0070 article-title: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization publication-title: Geosci. Model Dev. doi: 10.5194/gmd-9-1937-2016 – ident: 10.1016/j.jhydrol.2025.133260_b0270 doi: 10.1017/CBO9781139177245.006 – volume: 20 start-page: 1419 year: 2007 ident: 10.1016/j.jhydrol.2025.133260_b0115 article-title: Changes in Temperature and Precipitation Extremes in the IPCC Ensemble of Global Coupled Model Simulations publication-title: J. Clim. doi: 10.1175/JCLI4066.1 – volume: 11 start-page: 786 year: 2020 ident: 10.1016/j.jhydrol.2025.133260_b0175 article-title: Overview of Observed Clausius-Clapeyron Scaling of Extreme Precipitation in Midlatitudes publication-title: Atmos. doi: 10.3390/atmos11080786 – volume: 42 start-page: 8767 year: 2015 ident: 10.1016/j.jhydrol.2025.133260_b0225 article-title: Does extreme precipitation intensity depend on the emissions scenario? publication-title: Geophys. Res. Lett. doi: 10.1002/2015GL065854 – volume: 13 start-page: 1 year: 2022 ident: 10.1016/j.jhydrol.2025.133260_b0165 article-title: Evaluation of CMIP6 HighResMIP models in simulating precipitation over Central Asia publication-title: Adv. Clim. Chang. Res. doi: 10.1016/j.accre.2021.09.009 – volume: 42 start-page: 153 year: 2017 ident: 10.1016/j.jhydrol.2025.133260_b0240 article-title: The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview publication-title: Glob. Environ. Chang. doi: 10.1016/j.gloenvcha.2016.05.009 |
| SSID | ssj0000334 |
| Score | 2.49408 |
| Snippet | •Climate models are the main source of uncertainty in projecting future scaling rates.•Use at least nine models for reliable scaling rate projections.•Regional... As temperatures rise, extreme precipitation is expected to intensify, following the Clausius–Clapeyron relation, which indicates a 7 % increase in extreme... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 133260 |
| SubjectTerms | Climate projection uncertainty Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5) and phase 6 (CMIP6) hydrology Scaling rate temperature uncertainty Uncertainty contribution water policy |
| Title | Projections and uncertainty decomposition in CMIP6 models for extreme precipitation scaling rates |
| URI | https://dx.doi.org/10.1016/j.jhydrol.2025.133260 https://www.proquest.com/docview/3271891613 |
| Volume | 660 |
| WOSCitedRecordID | wos001481292800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0022-1694 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0000334 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZgQ4IXxFWMm4zEG0pJHNexHys0tAGbKjFQ3yLfoqZAVjUpav89x7GTthsw9sBLVFm1a_X7cvz5-PgchF4rymVitY0MERI2KKaIlI55ZO1QC2qYUG26pq-fstNTPpmIcThor9tyAllV8dVKzP8r1NAGYLurs9eAux8UGuAzgA5PgB2e_wT82PtW2gA35xWHhcsf-4PcNtaFkIc4rfbC38nxmPlyOLXP_r1qnMfQ5Q7Q5Twk8H5TA5JlW5SoCTGHl_XsdG0WPqETiNbRD5eAwTi29Z6Gz-6yF2zNvSfnpOxpOZq2pu_j8lt0tF5W244IMuxD2rYvBiTM1yzujCvz1QKCeYQNMfENlyy3dyLMBjM_24H7hcHm-7uZsi-sYH1cYReyNsvDMLkbJvfD3ET7JBsKMH37o-PDyYfNgp2mtEsq7-a_uej19rfz-ZOEubCYtwrl7B66G6DAI0-J--iGrR6g26HK_XT9EMktamCgBt6iBt6hBi4r3FIDe2pgoAYO1MA71MCBGrilxiP05f3h2bujKJTYiHRKaRMxAy8qV0yQ2GrDCk4EJbKISSEzbbLCZceDlkQRmWQxMUrGgtKhUgzaFKjPx2ivOq_sE4QzYUG8J1xIUOVJaqRhnDEleawZ5zo5QLT713Id5ujKoHzP_4raARr03eY-ActVHXgHSR5UpFeHOVDtqq6vOghzsLLu6ExW9nxZ5ykBDQc7qSR9et35PEN3Nm_Lc7TXLJb2BbqlfzZlvXgZuPgLj8Sk-A |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Projections+and+uncertainty+decomposition+in+CMIP6+models+for+extreme+precipitation+scaling+rates&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Sothearith%2C+Min&rft.au=Ahn%2C+Kuk-Hyun&rft.date=2025-10-01&rft.issn=0022-1694&rft.volume=660&rft.spage=133260&rft_id=info:doi/10.1016%2Fj.jhydrol.2025.133260&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhydrol_2025_133260 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |