Projections and uncertainty decomposition in CMIP6 models for extreme precipitation scaling rates

•Climate models are the main source of uncertainty in projecting future scaling rates.•Use at least nine models for reliable scaling rate projections.•Regional uncertainty varies between CMIP5 and CMIP6, with small global-scale variations. As temperatures rise, extreme precipitation is expected to i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrology (Amsterdam) Jg. 660; S. 133260
Hauptverfasser: Sothearith, Min, Ahn, Kuk-Hyun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.10.2025
Schlagworte:
ISSN:0022-1694
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Climate models are the main source of uncertainty in projecting future scaling rates.•Use at least nine models for reliable scaling rate projections.•Regional uncertainty varies between CMIP5 and CMIP6, with small global-scale variations. As temperatures rise, extreme precipitation is expected to intensify, following the Clausius–Clapeyron relation, which indicates a 7 % increase in extreme precipitation for every 1 °C rise in temperature. However, recent studies reveal considerable uncertainty in estimating the rate of change in extreme precipitation (scaling rate), especially in future projections. This study aims to quantify the contribution to scaling rate projections by focusing on three primary factors: Global Circulation Models (GCMs), future emission scenarios, and scaling methods. Additionally, we examine the minimum number of GCMs required for robust analysis and compare the uncertainty contributions between CMIP5 and CMIP6 to assess differences between the two CMIP generations. Our findings reveal substantial variations in the projected global and regional scaling rates, along with significant temporal changes. While GCMs are the primary source of uncertainty in scaling rates, using fewer GCMs tends to underestimate their influence on uncertainty and overestimate the impact of other sources. Furthermore, to ensure robust results, we recommend using at least nine GCMs in scaling rate projections, though some regional variations may still occur. Lastly, our evaluation reveals that while both CMIP5 and CMIP6 show comparable spatial distributions, CMIP5 exhibits greater uncertainty. Although global averages reveal only minor differences in uncertainty contributions from each source between the two generations, significant regional variations, particularly in the northeastern Eurasian region, have been identified. We believe that this comprehensive understanding of uncertainty in scaling rates will enhance future projections and support the development of effective strategies for managing extreme precipitation in future water policy planning.
AbstractList •Climate models are the main source of uncertainty in projecting future scaling rates.•Use at least nine models for reliable scaling rate projections.•Regional uncertainty varies between CMIP5 and CMIP6, with small global-scale variations. As temperatures rise, extreme precipitation is expected to intensify, following the Clausius–Clapeyron relation, which indicates a 7 % increase in extreme precipitation for every 1 °C rise in temperature. However, recent studies reveal considerable uncertainty in estimating the rate of change in extreme precipitation (scaling rate), especially in future projections. This study aims to quantify the contribution to scaling rate projections by focusing on three primary factors: Global Circulation Models (GCMs), future emission scenarios, and scaling methods. Additionally, we examine the minimum number of GCMs required for robust analysis and compare the uncertainty contributions between CMIP5 and CMIP6 to assess differences between the two CMIP generations. Our findings reveal substantial variations in the projected global and regional scaling rates, along with significant temporal changes. While GCMs are the primary source of uncertainty in scaling rates, using fewer GCMs tends to underestimate their influence on uncertainty and overestimate the impact of other sources. Furthermore, to ensure robust results, we recommend using at least nine GCMs in scaling rate projections, though some regional variations may still occur. Lastly, our evaluation reveals that while both CMIP5 and CMIP6 show comparable spatial distributions, CMIP5 exhibits greater uncertainty. Although global averages reveal only minor differences in uncertainty contributions from each source between the two generations, significant regional variations, particularly in the northeastern Eurasian region, have been identified. We believe that this comprehensive understanding of uncertainty in scaling rates will enhance future projections and support the development of effective strategies for managing extreme precipitation in future water policy planning.
As temperatures rise, extreme precipitation is expected to intensify, following the Clausius–Clapeyron relation, which indicates a 7 % increase in extreme precipitation for every 1 °C rise in temperature. However, recent studies reveal considerable uncertainty in estimating the rate of change in extreme precipitation (scaling rate), especially in future projections. This study aims to quantify the contribution to scaling rate projections by focusing on three primary factors: Global Circulation Models (GCMs), future emission scenarios, and scaling methods. Additionally, we examine the minimum number of GCMs required for robust analysis and compare the uncertainty contributions between CMIP5 and CMIP6 to assess differences between the two CMIP generations. Our findings reveal substantial variations in the projected global and regional scaling rates, along with significant temporal changes. While GCMs are the primary source of uncertainty in scaling rates, using fewer GCMs tends to underestimate their influence on uncertainty and overestimate the impact of other sources. Furthermore, to ensure robust results, we recommend using at least nine GCMs in scaling rate projections, though some regional variations may still occur. Lastly, our evaluation reveals that while both CMIP5 and CMIP6 show comparable spatial distributions, CMIP5 exhibits greater uncertainty. Although global averages reveal only minor differences in uncertainty contributions from each source between the two generations, significant regional variations, particularly in the northeastern Eurasian region, have been identified. We believe that this comprehensive understanding of uncertainty in scaling rates will enhance future projections and support the development of effective strategies for managing extreme precipitation in future water policy planning.
ArticleNumber 133260
Author Sothearith, Min
Ahn, Kuk-Hyun
Author_xml – sequence: 1
  givenname: Min
  surname: Sothearith
  fullname: Sothearith, Min
– sequence: 2
  givenname: Kuk-Hyun
  surname: Ahn
  fullname: Ahn, Kuk-Hyun
  email: ahnkukhyun@kongju.ac.kr
BookMark eNqFkD9PwzAQxT0UibbwEZA8sjTYTuIkYkCo4k-lIjrAbDn2BRwldrBdRL89Ke3E0ltOevfek-43QxPrLCB0RUlCCeU3bdJ-7rR3XcIIyxOapoyTCZoSwtiC8io7R7MQWjJOmmZTJDfetaCicTZgaTXeWgU-SmPjDmtQrh9cMPszNhYvX1YbjnunoQu4cR7DT_TQAx48KDOYKP-cQcnO2A_sZYRwgc4a2QW4PO45en98eFs-L9avT6vl_Xqh0iyLC64pqLLmFSOgNG9KVmVMNoQ1slC6aNK8pKNCayZpQZiuJamyLK9rPmp1kaVzdH3oHbz72kKIojdBQddJC24bRMoKWlaUj0jmKD9YlXcheGjE4E0v_U5QIvYYRSuOGMUeozhgHHO3_3Lq-HL00nQn03eH9AgPvg14EZSBEbc2I70otDMnGn4BBiGXjA
CitedBy_id crossref_primary_10_1186_s12302_025_01162_1
Cites_doi 10.5194/hess-15-3033-2011
10.1175/BAMS-84-9-1205
10.28991/ESJ-2024-08-05-012
10.1016/j.accre.2024.08.007
10.1016/j.cpc.2009.09.018
10.1088/1748-9326/ad0afa
10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2
10.28991/CEJ-2024-010-05-01
10.1038/nature16542
10.1016/j.atmosres.2019.03.036
10.1002/2014RG000464
10.1038/ngeo262
10.5194/hess-19-1753-2015
10.1088/1748-9326/10/8/085001
10.1017/9781009157896
10.1029/2022GL099138
10.1038/s41612-023-00473-5
10.5194/esd-11-491-2020
10.5194/gmd-9-3461-2016
10.1007/s13351-021-1012-3
10.1038/nclimate3287
10.1038/ngeo2911
10.1007/s40641-015-0009-3
10.1029/2010GL045081
10.1175/BAMS-D-23-0104.1
10.1002/2013WR015194
10.1126/science.1160787
10.1175/JCLI-D-17-0075.1
10.1002/joc.5370
10.1038/nclimate3110
10.1002/andp.18501550306
10.1007/s10584-013-0705-8
10.1175/JCLI-D-19-1013.1
10.1007/s10584-019-02415-8
10.1029/2018GL080557
10.1029/2019EA000665
10.1016/j.jhydrol.2023.130497
10.1029/2022GL098364
10.1080/00949659708811825
10.1038/s43017-020-00128-6
10.1175/2011JCLI4085.1
10.1175/JCLI-D-23-0064.1
10.1175/2009BAMS2607.1
10.1175/2009JCLI2701.1
10.1029/2022MS003588
10.1038/s41598-017-01306-1
10.3354/cr00953
10.1029/2011GL048426
10.1029/2012GL052790
10.1038/s41467-023-39039-7
10.28991/CEJ-2024-010-10-010
10.1007/s00382-017-3857-9
10.1080/01621459.1979.10481038
10.1088/1748-9326/aad135
10.5194/gmd-9-1937-2016
10.1017/CBO9781139177245.006
10.1175/JCLI4066.1
10.3390/atmos11080786
10.1002/2015GL065854
10.1016/j.accre.2021.09.009
10.1016/j.gloenvcha.2016.05.009
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2025.133260
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
ExternalDocumentID 10_1016_j_jhydrol_2025_133260
S0022169425005980
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
AAYWO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACRPL
ACSBN
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADQTV
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~HD
~KM
9DU
AAYXX
ABUFD
ACLOT
CITATION
7S9
L.6
ID FETCH-LOGICAL-c344t-6d1ec8b6920ecd6f82942af02fa7cd7f35819421b2a1702dba09445bb621bb743
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001481292800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1694
IngestDate Fri Nov 14 18:43:49 EST 2025
Tue Nov 18 22:04:47 EST 2025
Sat Nov 29 06:57:04 EST 2025
Sat Sep 20 17:14:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5) and phase 6 (CMIP6)
Scaling rate
Climate projection uncertainty
Uncertainty contribution
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-6d1ec8b6920ecd6f82942af02fa7cd7f35819421b2a1702dba09445bb621bb743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3271891613
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3271891613
crossref_primary_10_1016_j_jhydrol_2025_133260
crossref_citationtrail_10_1016_j_jhydrol_2025_133260
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2025_133260
PublicationCentury 2000
PublicationDate October 2025
2025-10-00
20251001
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: October 2025
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Pendergrass, Lehner, Sanderson, Xu (b0225) 2015; 42
Liang-Liang, Jian, Ru-Cong (b0165) 2022; 13
Lenderink, van Meijgaard (b0150) 2008; 1
Ngai, Raghavan, Chung, Ona, Kimbrell, Nguyen, Nguyen, Liu (b0195) 2024
Wasko, Sharma (b0310) 2014; 50
Lenderink, Attema (b0140) 2015; 10
O’Neill, Tebaldi, van Vuuren, Eyring, Friedlingstein, Hurtt, Knutti, Kriegler, Lamarque, Lowe, Meehl, Moss, Riahi, Sanderson (b0210) 2016; 9
Clapeyron, E., 1834. Mémoire sur la puissance motrice de la chaleur. de l’ Ecole Polytechnique XIV, 153–191.
Wang, Sun (b0305) 2022; 49
Mishra, Wallace, Lettenmaier (b0185) 2012; 39
Deng, Nursetiawan, Riyadi, Zaki (b0065) 2024; 10
Hawkins, Sutton (b0095) 2009; 90
Saltelli, Annoni, Azzini, Campolongo, Ratto, Tarantola (b0250) 2010; 181
Knutti, Baumberger, Hirsch Hadorn (b0125) 2019
O’Gorman (b0200) 2015; 1
Utsumi, Seto, Kanae, Maeda, Oki (b0290) 2011; 38
Cleveland (b0060) 1979; 74
Archer, Saltelli, Sobol (b0030) 1997; 58
Sansom, Stephenson, Ferro, Zappa, Shaffrey (b0255) 2013
Lenderink, Mok, Lee, van Oldenborgh (b0145) 2011; 15
Ji, Fu, Liu, Huang, Tan (b0105) 2024; 628
Ali, Fowler, Mishra (b0010) 2018; 45
Seneviratne, S.I., Nicholls, N., Easterling, D., Goodess, C.M., Kanae, S., Kossin, J., Luo, Y., Marengo, J., McInnes, K., Rahimi, M., Reichstein, M., Sorteberg, A., Vera, C., Zhang, X., Rusticucci, M., Semenov, V., Alexander, L.V., Allen, S., Benito, G., Cavazos, T., Clague, J., Conway, D., Della-Marta, P.M., Gerber, M., Gong, S., Goswami, B.N., Hemer, M., Huggel, C., Van Den Hurk, B., Kharin, V.V., Kitoh, A., Tank, A.M.G.K., Li, G., Mason, S., McGuire, W., Van Oldenborgh, G.J., Orlowsky, B., Smith, S., Thiaw, W., Velegrakis, A., Yiou, P., Zhang, T., Zhou, T., Zwiers, F.W., 2012. Changes in Climate Extremes and their Impacts on the Natural Physical Environment, in: Field, C.B., Barros, V., Stocker, T.F., Dahe, Q. (Eds.), Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge University Press, pp. 109–230. Doi: 10.1017/CBO9781139177245.006.
Li, Zwiers, Zhang, Li, Sun, Wehner (b0160) 2021; 34
Wu, Miao, Slater, Fan, Chai, Sorooshian (b0325) 2024; 105
Martinkova, Kysely (b0175) 2020; 11
Riahi, van Vuuren, Kriegler, Edmonds, O’Neill, Fujimori, Bauer, Calvin, Dellink, Fricko, Lutz, Popp, Cuaresma, Kc, Leimbach, Jiang, Kram, Rao, Emmerling, Ebi, Hasegawa, Havlik, Humpenöder, Da Silva, Smith, Stehfest, Bosetti, Eom, Gernaat, Masui, Rogelj, Strefler, Drouet, Krey, Luderer, Harmsen, Takahashi, Baumstark, Doelman, Kainuma, Klimont, Marangoni, Lotze-Campen, Obersteiner, Tabeau, Tavoni (b0240) 2017; 42
Gu, Yin, Gentine, Wang, Slater, Sullivan, Chen, Zscheischler, Guo (b0085) 2023; 14
IPCC, 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed. Cambridge University Press. Doi: 10.1017/9781009157896.
Wang, Chen, Xu, Zhang, Chen (b0300) 2020; 8
Fischer, Knutti (b0075) 2016; 6
Li, Miao, Jiang, Wang, Gnyawali, Zhang, Zhang, Fang, He, Li (b0155) 2020; 11
Fowler, Lenderink, Prein, Westra, Allan, Ban, Barbero, Berg, Blenkinsop, Do, Guerreiro, Haerter, Kendon, Lewis, Schaer, Sharma, Villarini, Wasko, Zhang (b0080) 2021; 2
Clausius (b0055) 1850; 155
Kharin, Zwiers, Zhang, Hegerl (b0115) 2007; 20
Ali, Fowler, Pritchard, Lenderink, Blenkinsop, Lewis (b0015) 2022; 49
Westra, Fowler, Evans, Alexander, Berg, Johnson, Kendon, Lenderink, Roberts (b0320) 2014; 52
Hardwick Jones, Westra, Sharma (b0090) 2010; 37
Miao, Wu, Fan, Su (b0180) 2023; 11
Eyring, Bony, Meehl, Senior, Stevens, Stouffer, Taylor (b0070) 2016; 9
Martel, Brissette, Troin, Arsenault, Chen, Su, Lucas-Picher (b0170) 2022; 49
Molnar, Fatichi, Gaál, Szolgay, Burlando (b0190) 2015; 19
Zhang, Villarini, Wehner (b0350) 2019; 154
Zhang, Zhou, Peng, Xu (b0355) 2023; 37
Pfahl, O’Gorman, Fischer (b0230) 2017; 7
Barbero, Westra, Lenderink, Fowler (b0035) 2018; 38
Pumo, Carlino, Blenkinsop, Arnone, Fowler, Noto (b0235) 2019; 225
Seneviratne, Donat, Pitman, Knutti, Wilby (b0265) 2016; 529
Yip, Ferro, Stephenson, Hawkins (b0335) 2011; 24
Van de Vyver, Van Schaeybroeck, De Troch, Hamdi, Termonia (b0295) 2019; 6
Yoo, Ahn (b0340) 2023; 18
Trenberth (b0280) 2011; 47
Ali, Mishra (b0020) 2017; 7
Allan, Soden (b0025) 2008; 321
Kuma, Bender, Jönsson (b0130) 2023; 15
Park, Min (b0215) 2017; 30
Schroeer, Kirchengast (b0260) 2018; 50
Trenberth, Dai, Rasmussen, Parsons (b0285) 2003; 84
Chen, Hsu, Liang (b0045) 2021; 31
Pathak, Dasari, Ashok, Hoteit (b0220) 2023; 6
Sobol (b0275) 1990; 2
Kharin, Zwiers, Zhang, Wehner (b0120) 2013; 119
Yanfatriani, Marzuki, Vonnisa, Razi, Hapsoro, Ramadhan, Yusnaini (b0330) 2024; 8
Zhang, Zwiers, Li, Wan, Cannon (b0360) 2017; 10
Ritzhaupt, Maraun (b0245) 2024; 3
John, Douville, Ribes, Yiou (b0110) 2022; 36
O’Gorman, Schneider (b0205) 2009; 22
Zhang, Chen (b0345) 2021; 35
Lehner, Deser, Maher, Marotzke, Fischer, Brunner, Knutti, Hawkins (b0135) 2020; 11
Wasko, Lu, Mehrotra (b0315) 2018; 13
Alduchov, Eskridge (b0005) 1996; 35
Buathongkhue, Sureeya, Kaewthong (b0040) 2024; 10
Wasko (10.1016/j.jhydrol.2025.133260_b0315) 2018; 13
Hardwick Jones (10.1016/j.jhydrol.2025.133260_b0090) 2010; 37
Pumo (10.1016/j.jhydrol.2025.133260_b0235) 2019; 225
Archer (10.1016/j.jhydrol.2025.133260_b0030) 1997; 58
Lehner (10.1016/j.jhydrol.2025.133260_b0135) 2020; 11
10.1016/j.jhydrol.2025.133260_b0050
Pfahl (10.1016/j.jhydrol.2025.133260_b0230) 2017; 7
Utsumi (10.1016/j.jhydrol.2025.133260_b0290) 2011; 38
Miao (10.1016/j.jhydrol.2025.133260_b0180) 2023; 11
Pathak (10.1016/j.jhydrol.2025.133260_b0220) 2023; 6
Fischer (10.1016/j.jhydrol.2025.133260_b0075) 2016; 6
Ali (10.1016/j.jhydrol.2025.133260_b0010) 2018; 45
Trenberth (10.1016/j.jhydrol.2025.133260_b0285) 2003; 84
Eyring (10.1016/j.jhydrol.2025.133260_b0070) 2016; 9
Kharin (10.1016/j.jhydrol.2025.133260_b0120) 2013; 119
Liang-Liang (10.1016/j.jhydrol.2025.133260_b0165) 2022; 13
Ji (10.1016/j.jhydrol.2025.133260_b0105) 2024; 628
Sansom (10.1016/j.jhydrol.2025.133260_b0255) 2013
Deng (10.1016/j.jhydrol.2025.133260_b0065) 2024; 10
Saltelli (10.1016/j.jhydrol.2025.133260_b0250) 2010; 181
Wang (10.1016/j.jhydrol.2025.133260_b0300) 2020; 8
Pendergrass (10.1016/j.jhydrol.2025.133260_b0225) 2015; 42
Wu (10.1016/j.jhydrol.2025.133260_b0325) 2024; 105
Riahi (10.1016/j.jhydrol.2025.133260_b0240) 2017; 42
Kuma (10.1016/j.jhydrol.2025.133260_b0130) 2023; 15
Kharin (10.1016/j.jhydrol.2025.133260_b0115) 2007; 20
Seneviratne (10.1016/j.jhydrol.2025.133260_b0265) 2016; 529
John (10.1016/j.jhydrol.2025.133260_b0110) 2022; 36
Yanfatriani (10.1016/j.jhydrol.2025.133260_b0330) 2024; 8
Yip (10.1016/j.jhydrol.2025.133260_b0335) 2011; 24
Zhang (10.1016/j.jhydrol.2025.133260_b0345) 2021; 35
Clausius (10.1016/j.jhydrol.2025.133260_b0055) 1850; 155
Sobol (10.1016/j.jhydrol.2025.133260_b0275) 1990; 2
10.1016/j.jhydrol.2025.133260_b0270
Ali (10.1016/j.jhydrol.2025.133260_b0020) 2017; 7
Park (10.1016/j.jhydrol.2025.133260_b0215) 2017; 30
Martinkova (10.1016/j.jhydrol.2025.133260_b0175) 2020; 11
Zhang (10.1016/j.jhydrol.2025.133260_b0355) 2023; 37
Trenberth (10.1016/j.jhydrol.2025.133260_b0280) 2011; 47
Knutti (10.1016/j.jhydrol.2025.133260_b0125) 2019
Fowler (10.1016/j.jhydrol.2025.133260_b0080) 2021; 2
Cleveland (10.1016/j.jhydrol.2025.133260_b0060) 1979; 74
10.1016/j.jhydrol.2025.133260_b0100
Alduchov (10.1016/j.jhydrol.2025.133260_b0005) 1996; 35
Lenderink (10.1016/j.jhydrol.2025.133260_b0150) 2008; 1
Van de Vyver (10.1016/j.jhydrol.2025.133260_b0295) 2019; 6
Zhang (10.1016/j.jhydrol.2025.133260_b0360) 2017; 10
Chen (10.1016/j.jhydrol.2025.133260_b0045) 2021; 31
Martel (10.1016/j.jhydrol.2025.133260_b0170) 2022; 49
Molnar (10.1016/j.jhydrol.2025.133260_b0190) 2015; 19
Lenderink (10.1016/j.jhydrol.2025.133260_b0140) 2015; 10
Allan (10.1016/j.jhydrol.2025.133260_b0025) 2008; 321
Li (10.1016/j.jhydrol.2025.133260_b0155) 2020; 11
Mishra (10.1016/j.jhydrol.2025.133260_b0185) 2012; 39
Lenderink (10.1016/j.jhydrol.2025.133260_b0145) 2011; 15
O’Gorman (10.1016/j.jhydrol.2025.133260_b0205) 2009; 22
Li (10.1016/j.jhydrol.2025.133260_b0160) 2021; 34
Wasko (10.1016/j.jhydrol.2025.133260_b0310) 2014; 50
O’Neill (10.1016/j.jhydrol.2025.133260_b0210) 2016; 9
Ali (10.1016/j.jhydrol.2025.133260_b0015) 2022; 49
Hawkins (10.1016/j.jhydrol.2025.133260_b0095) 2009; 90
Wang (10.1016/j.jhydrol.2025.133260_b0305) 2022; 49
O’Gorman (10.1016/j.jhydrol.2025.133260_b0200) 2015; 1
Schroeer (10.1016/j.jhydrol.2025.133260_b0260) 2018; 50
Ngai (10.1016/j.jhydrol.2025.133260_b0195) 2024
Barbero (10.1016/j.jhydrol.2025.133260_b0035) 2018; 38
Ritzhaupt (10.1016/j.jhydrol.2025.133260_b0245) 2024; 3
Zhang (10.1016/j.jhydrol.2025.133260_b0350) 2019; 154
Buathongkhue (10.1016/j.jhydrol.2025.133260_b0040) 2024; 10
Westra (10.1016/j.jhydrol.2025.133260_b0320) 2014; 52
Gu (10.1016/j.jhydrol.2025.133260_b0085) 2023; 14
Yoo (10.1016/j.jhydrol.2025.133260_b0340) 2023; 18
References_xml – volume: 14
  start-page: 3197
  year: 2023
  ident: b0085
  article-title: Large anomalies in future extreme precipitation sensitivity driven by atmospheric dynamics
  publication-title: Nat Commun
– volume: 181
  start-page: 259
  year: 2010
  end-page: 270
  ident: b0250
  article-title: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index
  publication-title: Comput. Phys. Commun.
– volume: 6
  start-page: 2031
  year: 2019
  end-page: 2041
  ident: b0295
  article-title: Modeling the Scaling of Short-Duration Precipitation Extremes With Temperature
  publication-title: Earth Space Sci.
– volume: 10
  start-page: 255
  year: 2017
  end-page: 259
  ident: b0360
  article-title: Complexity in estimating past and future extreme short-duration rainfall
  publication-title: Nature Geosci
– volume: 9
  start-page: 1937
  year: 2016
  end-page: 1958
  ident: b0070
  article-title: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization
  publication-title: Geosci. Model Dev.
– volume: 155
  start-page: 368
  year: 1850
  end-page: 397
  ident: b0055
  article-title: Ueber die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen
  publication-title: Ann. Phys.
– volume: 321
  start-page: 1481
  year: 2008
  end-page: 1484
  ident: b0025
  article-title: Atmospheric Warming and the Amplification of Precipitation Extremes
  publication-title: Science
– volume: 10
  year: 2015
  ident: b0140
  article-title: A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands
  publication-title: Environ. Res. Lett.
– volume: 49
  year: 2022
  ident: b0305
  article-title: Monotonic Increase of Extreme Precipitation Intensity With Temperature When Controlled for Saturation Deficit
  publication-title: Geophys. Res. Lett.
– volume: 11
  start-page: 786
  year: 2020
  ident: b0175
  article-title: Overview of Observed Clausius-Clapeyron Scaling of Extreme Precipitation in Midlatitudes
  publication-title: Atmos.
– volume: 11
  start-page: 491
  year: 2020
  end-page: 508
  ident: b0135
  article-title: Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6
  publication-title: Earth Syst. Dyn.
– volume: 3
  year: 2024
  ident: b0245
  article-title: State-of-the-art climate models reduce dominant dynamical uncertainty in projections of extreme precipitation
  publication-title: Environ. Res.: Climate
– volume: 225
  start-page: 30
  year: 2019
  end-page: 44
  ident: b0235
  article-title: Sensitivity of extreme rainfall to temperature in semi-arid Mediterranean regions
  publication-title: Atmos. Res.
– reference: Clapeyron, E., 1834. Mémoire sur la puissance motrice de la chaleur. de l’ Ecole Polytechnique XIV, 153–191.
– year: 2013
  ident: b0255
  publication-title: Simple Uncertainty Frameworks for Selecting Weighting Schemes and Interpreting Multimodel Ensemble Climate Change Experiments.
– volume: 11
  year: 2023
  ident: b0180
  article-title: Projections of Global Land Runoff Changes and Their Uncertainty Characteristics During the 21st Century. Earth’s
  publication-title: Future
– volume: 8
  year: 2020
  ident: b0300
  article-title: A Framework to Quantify the Uncertainty Contribution of GCMs Over Multiple Sources in Hydrological Impacts of Climate Change. Earth’s
  publication-title: Future
– volume: 628
  year: 2024
  ident: b0105
  article-title: Uncertainty separation of drought projection in the 21st century using SMILEs and CMIP6
  publication-title: J. Hydrol.
– volume: 1
  start-page: 49
  year: 2015
  end-page: 59
  ident: b0200
  article-title: Precipitation Extremes Under Climate Change
  publication-title: Curr Clim Change Rep
– volume: 47
  start-page: 123
  year: 2011
  end-page: 138
  ident: b0280
  article-title: Changes in precipitation with climate change
  publication-title: Climate Res.
– volume: 52
  start-page: 522
  year: 2014
  end-page: 555
  ident: b0320
  article-title: Future changes to the intensity and frequency of short-duration extreme rainfall
  publication-title: Rev. Geophys.
– volume: 2
  start-page: 107
  year: 2021
  end-page: 122
  ident: b0080
  article-title: Anthropogenic intensification of short-duration rainfall extremes
  publication-title: Nat Rev Earth Environ
– volume: 36
  year: 2022
  ident: b0110
  article-title: Quantifying CMIP6 model uncertainties in extreme precipitation projections
  publication-title: Weather Clim. Extremes
– volume: 30
  start-page: 9527
  year: 2017
  end-page: 9537
  ident: b0215
  article-title: Role of Convective Precipitation in the Relationship between Subdaily Extreme Precipitation and Temperature
  publication-title: J. Clim.
– volume: 2
  start-page: 112
  year: 1990
  end-page: 118
  ident: b0275
  article-title: On sensitivity estimation for nonlinear mathematical models
  publication-title: Matem. Mod.
– volume: 18
  year: 2023
  ident: b0340
  article-title: Understanding extreme precipitation scaling with temperature: insights from multi-spatiotemporal analysis in South Korea
  publication-title: Environ. Res. Lett.
– volume: 49
  year: 2022
  ident: b0015
  article-title: Towards Quantifying the Uncertainty in Estimating Observed Scaling Rates
  publication-title: Geophys. Res. Lett.
– volume: 39
  year: 2012
  ident: b0185
  article-title: Relationship between hourly extreme precipitation and local air temperature in the United States
  publication-title: Geophys. Res. Lett.
– volume: 6
  start-page: 986
  year: 2016
  end-page: 991
  ident: b0075
  article-title: Observed heavy precipitation increase confirms theory and early models
  publication-title: Nature Clim Change
– volume: 7
  start-page: 423
  year: 2017
  end-page: 427
  ident: b0230
  article-title: Understanding the regional pattern of projected future changes in extreme precipitation
  publication-title: Nature Clim Change
– volume: 50
  start-page: 3608
  year: 2014
  end-page: 3614
  ident: b0310
  article-title: Quantile regression for investigating scaling of extreme precipitation with temperature
  publication-title: Water Resour. Res.
– volume: 105
  start-page: E59
  year: 2024
  end-page: E74
  ident: b0325
  article-title: Hydrological Projections under CMIP5 and CMIP6: Sources and Magnitudes of Uncertainty
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 13
  year: 2018
  ident: b0315
  article-title: Relationship of extreme precipitation, dry-bulb temperature, and dew point temperature across Australia
  publication-title: Environ. Res. Lett.
– volume: 22
  start-page: 5676
  year: 2009
  end-page: 5685
  ident: b0205
  article-title: Scaling of Precipitation Extremes over a Wide Range of Climates Simulated with an Idealized GCM
  publication-title: J. Clim.
– volume: 7
  start-page: 1228
  year: 2017
  ident: b0020
  article-title: Contrasting response of rainfall extremes to increase in surface air and dewpoint temperatures at urban locations in India
  publication-title: Sci Rep
– volume: 50
  start-page: 3981
  year: 2018
  end-page: 3994
  ident: b0260
  article-title: Sensitivity of extreme precipitation to temperature: the variability of scaling factors from a regional to local perspective
  publication-title: Clim Dyn
– volume: 38
  start-page: e1274
  year: 2018
  end-page: e1279
  ident: b0035
  article-title: Temperature-extreme precipitation scaling: a two-way causality?
  publication-title: Int. J. Climatol.
– volume: 20
  start-page: 1419
  year: 2007
  end-page: 1444
  ident: b0115
  article-title: Changes in Temperature and Precipitation Extremes in the IPCC Ensemble of Global Coupled Model Simulations
  publication-title: J. Clim.
– volume: 38
  year: 2011
  ident: b0290
  article-title: Does higher surface temperature intensify extreme precipitation?
  publication-title: Geophys. Res. Lett.
– volume: 74
  start-page: 829
  year: 1979
  end-page: 836
  ident: b0060
  article-title: Robust Locally Weighted Regression and Smoothing Scatterplots
  publication-title: J. Am. Stat. Assoc.
– volume: 19
  start-page: 1753
  year: 2015
  end-page: 1766
  ident: b0190
  article-title: Storm type effects on super Clausius–Clapeyron scaling of intense rainstorm properties with air temperature
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 58
  start-page: 99
  year: 1997
  end-page: 120
  ident: b0030
  article-title: Sensitivity measures,anova-like Techniques and the use of bootstrap
  publication-title: J. Stat. Comput. Simul.
– volume: 10
  start-page: 1354
  year: 2024
  end-page: 1369
  ident: b0040
  article-title: Analysis and Prediction of Rainfall with Oceanic Nino Index and Climate Variables Using Correlation Coefficient and Deep Learning
  publication-title: Civil Engineering Journal
– volume: 90
  start-page: 1095
  year: 2009
  end-page: 1108
  ident: b0095
  article-title: The Potential to Narrow Uncertainty in Regional Climate Predictions
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 42
  start-page: 153
  year: 2017
  end-page: 168
  ident: b0240
  article-title: The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview
  publication-title: Glob. Environ. Chang.
– start-page: 835
  year: 2019
  end-page: 855
  ident: b0125
  article-title: Uncertainty Quantification Using Multiple Models—Prospects and Challenges
  publication-title: Computer Simulation Validation: Fundamental Concepts, Methodological Frameworks, and Philosophical Perspectives
– volume: 529
  start-page: 477
  year: 2016
  end-page: 483
  ident: b0265
  article-title: Allowable CO2 emissions based on regional and impact-related climate targets
  publication-title: Nature
– reference: IPCC, 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed. Cambridge University Press. Doi: 10.1017/9781009157896.
– volume: 37
  start-page: 365
  year: 2023
  end-page: 384
  ident: b0355
  article-title: A New Framework for Estimating and Decomposing the Uncertainty of Climate Projections
  publication-title: J. Clim.
– volume: 119
  start-page: 345
  year: 2013
  end-page: 357
  ident: b0120
  article-title: Changes in temperature and precipitation extremes in the CMIP5 ensemble
  publication-title: Clim. Change
– year: 2024
  ident: b0195
  article-title: Relative contribution of dynamic and thermodynamic components on Southeast Asia future precipitation changes from different multi-GCM ensemble members
  publication-title: Adv. Clim. Chang. Res.
– volume: 35
  start-page: 646
  year: 2021
  end-page: 662
  ident: b0345
  article-title: Uncertainty in Projection of Climate Extremes: A Comparison of CMIP5 and CMIP6
  publication-title: J Meteorol Res
– volume: 154
  start-page: 257
  year: 2019
  end-page: 271
  ident: b0350
  article-title: Contrasting the responses of extreme precipitation to changes in surface air and dew point temperatures
  publication-title: Clim. Change
– volume: 34
  start-page: 3441
  year: 2021
  end-page: 3460
  ident: b0160
  article-title: Changes in Annual Extremes of Daily Temperature and Precipitation in CMIP6 Models
  publication-title: J. Clim.
– volume: 15
  year: 2023
  ident: b0130
  article-title: Climate Model Code Genealogy and Its Relation to Climate Feedbacks and Sensitivity
  publication-title: J. Adv. Model. Earth Syst.
– volume: 9
  start-page: 3461
  year: 2016
  end-page: 3482
  ident: b0210
  article-title: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6
  publication-title: Geosci. Model Dev.
– volume: 6
  start-page: 1
  year: 2023
  end-page: 12
  ident: b0220
  article-title: Effects of multi-observations uncertainty and models similarity on climate change projections
  publication-title: Npj Clim Atmos Sci
– volume: 37
  year: 2010
  ident: b0090
  article-title: Observed relationships between extreme sub-daily precipitation, surface temperature, and relative humidity
  publication-title: Geophys. Res. Lett.
– volume: 42
  start-page: 8767
  year: 2015
  end-page: 8774
  ident: b0225
  article-title: Does extreme precipitation intensity depend on the emissions scenario?
  publication-title: Geophys. Res. Lett.
– volume: 31
  year: 2021
  ident: b0045
  article-title: Evaluation and comparison of CMIP6 and CMIP5 model performance in simulating the seasonal extreme precipitation in the Western North Pacific and East Asia
  publication-title: Weather Clim. Extremes
– volume: 15
  start-page: 3033
  year: 2011
  end-page: 3041
  ident: b0145
  article-title: Scaling and trends of hourly precipitation extremes in two different climate zones – Hong Kong and the Netherlands
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 45
  start-page: 12320
  year: 2018
  end-page: 12330
  ident: b0010
  article-title: Global Observational Evidence of Strong Linkage Between Dew Point Temperature and Precipitation Extremes
  publication-title: Geophys. Res. Lett.
– volume: 11
  start-page: 210
  year: 2020
  end-page: 217
  ident: b0155
  publication-title: Projected Drought Conditions in Northwest China with CMIP6 Models under Combined SSPs and RCPs for 2015–2099. Advances in Climate Change Research, including Special Topic on East Asian Climate Response to 1.5/2 °c Global Warming
– volume: 35
  start-page: 601
  year: 1996
  end-page: 609
  ident: b0005
  article-title: Improved Magnus Form Approximation of Saturation Vapor Pressure
  publication-title: J. Appl. Meteor.
– volume: 8
  start-page: 1860
  year: 2024
  end-page: 1874
  ident: b0330
  article-title: Extreme Rainfall Trends and Hydrometeorological Disasters in Tropical Regions: Implications for Climate Resilience
  publication-title: Emerg. Sci. J.
– volume: 10
  start-page: 3269
  year: 2024
  end-page: 3291
  ident: b0065
  article-title: Intelligent Forecasting of Flooding Intensity Using Machine Learning
  publication-title: Civil Eng. J.
– volume: 84
  start-page: 1205
  year: 2003
  end-page: 1218
  ident: b0285
  article-title: The Changing Character of Precipitation
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 13
  start-page: 1
  year: 2022
  end-page: 13
  ident: b0165
  article-title: Evaluation of CMIP6 HighResMIP models in simulating precipitation over Central Asia
  publication-title: Adv. Clim. Chang. Res.
– volume: 49
  year: 2022
  ident: b0170
  article-title: CMIP5 and CMIP6 Model Projection Comparison for Hydrological Impacts Over North America
  publication-title: Geophys. Res. Lett.
– volume: 24
  start-page: 4634
  year: 2011
  end-page: 4643
  ident: b0335
  article-title: A Simple, Coherent Framework for Partitioning Uncertainty in Climate Predictions
  publication-title: J. Climate
– reference: Seneviratne, S.I., Nicholls, N., Easterling, D., Goodess, C.M., Kanae, S., Kossin, J., Luo, Y., Marengo, J., McInnes, K., Rahimi, M., Reichstein, M., Sorteberg, A., Vera, C., Zhang, X., Rusticucci, M., Semenov, V., Alexander, L.V., Allen, S., Benito, G., Cavazos, T., Clague, J., Conway, D., Della-Marta, P.M., Gerber, M., Gong, S., Goswami, B.N., Hemer, M., Huggel, C., Van Den Hurk, B., Kharin, V.V., Kitoh, A., Tank, A.M.G.K., Li, G., Mason, S., McGuire, W., Van Oldenborgh, G.J., Orlowsky, B., Smith, S., Thiaw, W., Velegrakis, A., Yiou, P., Zhang, T., Zhou, T., Zwiers, F.W., 2012. Changes in Climate Extremes and their Impacts on the Natural Physical Environment, in: Field, C.B., Barros, V., Stocker, T.F., Dahe, Q. (Eds.), Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge University Press, pp. 109–230. Doi: 10.1017/CBO9781139177245.006.
– volume: 1
  start-page: 511
  year: 2008
  end-page: 514
  ident: b0150
  article-title: Increase in hourly precipitation extremes beyond expectations from temperature changes
  publication-title: Nature Geosci
– volume: 15
  start-page: 3033
  year: 2011
  ident: 10.1016/j.jhydrol.2025.133260_b0145
  article-title: Scaling and trends of hourly precipitation extremes in two different climate zones – Hong Kong and the Netherlands
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-15-3033-2011
– volume: 84
  start-page: 1205
  year: 2003
  ident: 10.1016/j.jhydrol.2025.133260_b0285
  article-title: The Changing Character of Precipitation
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-84-9-1205
– volume: 8
  start-page: 1860
  year: 2024
  ident: 10.1016/j.jhydrol.2025.133260_b0330
  article-title: Extreme Rainfall Trends and Hydrometeorological Disasters in Tropical Regions: Implications for Climate Resilience
  publication-title: Emerg. Sci. J.
  doi: 10.28991/ESJ-2024-08-05-012
– year: 2024
  ident: 10.1016/j.jhydrol.2025.133260_b0195
  article-title: Relative contribution of dynamic and thermodynamic components on Southeast Asia future precipitation changes from different multi-GCM ensemble members
  publication-title: Adv. Clim. Chang. Res.
  doi: 10.1016/j.accre.2024.08.007
– ident: 10.1016/j.jhydrol.2025.133260_b0050
– volume: 181
  start-page: 259
  year: 2010
  ident: 10.1016/j.jhydrol.2025.133260_b0250
  article-title: Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2009.09.018
– volume: 18
  year: 2023
  ident: 10.1016/j.jhydrol.2025.133260_b0340
  article-title: Understanding extreme precipitation scaling with temperature: insights from multi-spatiotemporal analysis in South Korea
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ad0afa
– volume: 35
  start-page: 601
  year: 1996
  ident: 10.1016/j.jhydrol.2025.133260_b0005
  article-title: Improved Magnus Form Approximation of Saturation Vapor Pressure
  publication-title: J. Appl. Meteor.
  doi: 10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2
– volume: 10
  start-page: 1354
  year: 2024
  ident: 10.1016/j.jhydrol.2025.133260_b0040
  article-title: Analysis and Prediction of Rainfall with Oceanic Nino Index and Climate Variables Using Correlation Coefficient and Deep Learning
  publication-title: Civil Engineering Journal
  doi: 10.28991/CEJ-2024-010-05-01
– volume: 36
  year: 2022
  ident: 10.1016/j.jhydrol.2025.133260_b0110
  article-title: Quantifying CMIP6 model uncertainties in extreme precipitation projections
  publication-title: Weather Clim. Extremes
– volume: 529
  start-page: 477
  year: 2016
  ident: 10.1016/j.jhydrol.2025.133260_b0265
  article-title: Allowable CO2 emissions based on regional and impact-related climate targets
  publication-title: Nature
  doi: 10.1038/nature16542
– volume: 225
  start-page: 30
  year: 2019
  ident: 10.1016/j.jhydrol.2025.133260_b0235
  article-title: Sensitivity of extreme rainfall to temperature in semi-arid Mediterranean regions
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2019.03.036
– volume: 49
  year: 2022
  ident: 10.1016/j.jhydrol.2025.133260_b0305
  article-title: Monotonic Increase of Extreme Precipitation Intensity With Temperature When Controlled for Saturation Deficit
  publication-title: Geophys. Res. Lett.
– volume: 52
  start-page: 522
  year: 2014
  ident: 10.1016/j.jhydrol.2025.133260_b0320
  article-title: Future changes to the intensity and frequency of short-duration extreme rainfall
  publication-title: Rev. Geophys.
  doi: 10.1002/2014RG000464
– volume: 1
  start-page: 511
  year: 2008
  ident: 10.1016/j.jhydrol.2025.133260_b0150
  article-title: Increase in hourly precipitation extremes beyond expectations from temperature changes
  publication-title: Nature Geosci
  doi: 10.1038/ngeo262
– volume: 19
  start-page: 1753
  year: 2015
  ident: 10.1016/j.jhydrol.2025.133260_b0190
  article-title: Storm type effects on super Clausius–Clapeyron scaling of intense rainstorm properties with air temperature
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-19-1753-2015
– volume: 10
  year: 2015
  ident: 10.1016/j.jhydrol.2025.133260_b0140
  article-title: A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/10/8/085001
– ident: 10.1016/j.jhydrol.2025.133260_b0100
  doi: 10.1017/9781009157896
– volume: 49
  year: 2022
  ident: 10.1016/j.jhydrol.2025.133260_b0015
  article-title: Towards Quantifying the Uncertainty in Estimating Observed Scaling Rates
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2022GL099138
– volume: 6
  start-page: 1
  year: 2023
  ident: 10.1016/j.jhydrol.2025.133260_b0220
  article-title: Effects of multi-observations uncertainty and models similarity on climate change projections
  publication-title: Npj Clim Atmos Sci
  doi: 10.1038/s41612-023-00473-5
– volume: 11
  start-page: 491
  year: 2020
  ident: 10.1016/j.jhydrol.2025.133260_b0135
  article-title: Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6
  publication-title: Earth Syst. Dyn.
  doi: 10.5194/esd-11-491-2020
– volume: 9
  start-page: 3461
  year: 2016
  ident: 10.1016/j.jhydrol.2025.133260_b0210
  article-title: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-9-3461-2016
– volume: 8
  year: 2020
  ident: 10.1016/j.jhydrol.2025.133260_b0300
  article-title: A Framework to Quantify the Uncertainty Contribution of GCMs Over Multiple Sources in Hydrological Impacts of Climate Change. Earth’s
  publication-title: Future
– volume: 35
  start-page: 646
  year: 2021
  ident: 10.1016/j.jhydrol.2025.133260_b0345
  article-title: Uncertainty in Projection of Climate Extremes: A Comparison of CMIP5 and CMIP6
  publication-title: J Meteorol Res
  doi: 10.1007/s13351-021-1012-3
– volume: 7
  start-page: 423
  year: 2017
  ident: 10.1016/j.jhydrol.2025.133260_b0230
  article-title: Understanding the regional pattern of projected future changes in extreme precipitation
  publication-title: Nature Clim Change
  doi: 10.1038/nclimate3287
– volume: 10
  start-page: 255
  year: 2017
  ident: 10.1016/j.jhydrol.2025.133260_b0360
  article-title: Complexity in estimating past and future extreme short-duration rainfall
  publication-title: Nature Geosci
  doi: 10.1038/ngeo2911
– volume: 1
  start-page: 49
  year: 2015
  ident: 10.1016/j.jhydrol.2025.133260_b0200
  article-title: Precipitation Extremes Under Climate Change
  publication-title: Curr Clim Change Rep
  doi: 10.1007/s40641-015-0009-3
– volume: 37
  year: 2010
  ident: 10.1016/j.jhydrol.2025.133260_b0090
  article-title: Observed relationships between extreme sub-daily precipitation, surface temperature, and relative humidity
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2010GL045081
– volume: 2
  start-page: 112
  year: 1990
  ident: 10.1016/j.jhydrol.2025.133260_b0275
  article-title: On sensitivity estimation for nonlinear mathematical models
  publication-title: Matem. Mod.
– volume: 105
  start-page: E59
  year: 2024
  ident: 10.1016/j.jhydrol.2025.133260_b0325
  article-title: Hydrological Projections under CMIP5 and CMIP6: Sources and Magnitudes of Uncertainty
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-23-0104.1
– volume: 50
  start-page: 3608
  year: 2014
  ident: 10.1016/j.jhydrol.2025.133260_b0310
  article-title: Quantile regression for investigating scaling of extreme precipitation with temperature
  publication-title: Water Resour. Res.
  doi: 10.1002/2013WR015194
– volume: 321
  start-page: 1481
  year: 2008
  ident: 10.1016/j.jhydrol.2025.133260_b0025
  article-title: Atmospheric Warming and the Amplification of Precipitation Extremes
  publication-title: Science
  doi: 10.1126/science.1160787
– volume: 30
  start-page: 9527
  year: 2017
  ident: 10.1016/j.jhydrol.2025.133260_b0215
  article-title: Role of Convective Precipitation in the Relationship between Subdaily Extreme Precipitation and Temperature
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-17-0075.1
– volume: 38
  start-page: e1274
  year: 2018
  ident: 10.1016/j.jhydrol.2025.133260_b0035
  article-title: Temperature-extreme precipitation scaling: a two-way causality?
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.5370
– volume: 6
  start-page: 986
  year: 2016
  ident: 10.1016/j.jhydrol.2025.133260_b0075
  article-title: Observed heavy precipitation increase confirms theory and early models
  publication-title: Nature Clim Change
  doi: 10.1038/nclimate3110
– volume: 155
  start-page: 368
  year: 1850
  ident: 10.1016/j.jhydrol.2025.133260_b0055
  article-title: Ueber die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen
  publication-title: Ann. Phys.
  doi: 10.1002/andp.18501550306
– volume: 119
  start-page: 345
  year: 2013
  ident: 10.1016/j.jhydrol.2025.133260_b0120
  article-title: Changes in temperature and precipitation extremes in the CMIP5 ensemble
  publication-title: Clim. Change
  doi: 10.1007/s10584-013-0705-8
– volume: 34
  start-page: 3441
  year: 2021
  ident: 10.1016/j.jhydrol.2025.133260_b0160
  article-title: Changes in Annual Extremes of Daily Temperature and Precipitation in CMIP6 Models
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-19-1013.1
– volume: 154
  start-page: 257
  year: 2019
  ident: 10.1016/j.jhydrol.2025.133260_b0350
  article-title: Contrasting the responses of extreme precipitation to changes in surface air and dew point temperatures
  publication-title: Clim. Change
  doi: 10.1007/s10584-019-02415-8
– volume: 45
  start-page: 12320
  year: 2018
  ident: 10.1016/j.jhydrol.2025.133260_b0010
  article-title: Global Observational Evidence of Strong Linkage Between Dew Point Temperature and Precipitation Extremes
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2018GL080557
– volume: 3
  year: 2024
  ident: 10.1016/j.jhydrol.2025.133260_b0245
  article-title: State-of-the-art climate models reduce dominant dynamical uncertainty in projections of extreme precipitation
  publication-title: Environ. Res.: Climate
– volume: 6
  start-page: 2031
  year: 2019
  ident: 10.1016/j.jhydrol.2025.133260_b0295
  article-title: Modeling the Scaling of Short-Duration Precipitation Extremes With Temperature
  publication-title: Earth Space Sci.
  doi: 10.1029/2019EA000665
– volume: 628
  year: 2024
  ident: 10.1016/j.jhydrol.2025.133260_b0105
  article-title: Uncertainty separation of drought projection in the 21st century using SMILEs and CMIP6
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2023.130497
– volume: 49
  year: 2022
  ident: 10.1016/j.jhydrol.2025.133260_b0170
  article-title: CMIP5 and CMIP6 Model Projection Comparison for Hydrological Impacts Over North America
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2022GL098364
– volume: 58
  start-page: 99
  year: 1997
  ident: 10.1016/j.jhydrol.2025.133260_b0030
  article-title: Sensitivity measures,anova-like Techniques and the use of bootstrap
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/00949659708811825
– volume: 2
  start-page: 107
  year: 2021
  ident: 10.1016/j.jhydrol.2025.133260_b0080
  article-title: Anthropogenic intensification of short-duration rainfall extremes
  publication-title: Nat Rev Earth Environ
  doi: 10.1038/s43017-020-00128-6
– volume: 11
  start-page: 210
  year: 2020
  ident: 10.1016/j.jhydrol.2025.133260_b0155
  publication-title: Projected Drought Conditions in Northwest China with CMIP6 Models under Combined SSPs and RCPs for 2015–2099. Advances in Climate Change Research, including Special Topic on East Asian Climate Response to 1.5/2 °c Global Warming
– volume: 24
  start-page: 4634
  year: 2011
  ident: 10.1016/j.jhydrol.2025.133260_b0335
  article-title: A Simple, Coherent Framework for Partitioning Uncertainty in Climate Predictions
  publication-title: J. Climate
  doi: 10.1175/2011JCLI4085.1
– volume: 37
  start-page: 365
  year: 2023
  ident: 10.1016/j.jhydrol.2025.133260_b0355
  article-title: A New Framework for Estimating and Decomposing the Uncertainty of Climate Projections
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-23-0064.1
– volume: 90
  start-page: 1095
  year: 2009
  ident: 10.1016/j.jhydrol.2025.133260_b0095
  article-title: The Potential to Narrow Uncertainty in Regional Climate Predictions
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/2009BAMS2607.1
– volume: 22
  start-page: 5676
  year: 2009
  ident: 10.1016/j.jhydrol.2025.133260_b0205
  article-title: Scaling of Precipitation Extremes over a Wide Range of Climates Simulated with an Idealized GCM
  publication-title: J. Clim.
  doi: 10.1175/2009JCLI2701.1
– volume: 15
  year: 2023
  ident: 10.1016/j.jhydrol.2025.133260_b0130
  article-title: Climate Model Code Genealogy and Its Relation to Climate Feedbacks and Sensitivity
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1029/2022MS003588
– volume: 7
  start-page: 1228
  year: 2017
  ident: 10.1016/j.jhydrol.2025.133260_b0020
  article-title: Contrasting response of rainfall extremes to increase in surface air and dewpoint temperatures at urban locations in India
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-01306-1
– year: 2013
  ident: 10.1016/j.jhydrol.2025.133260_b0255
  publication-title: Simple Uncertainty Frameworks for Selecting Weighting Schemes and Interpreting Multimodel Ensemble Climate Change Experiments.
– volume: 47
  start-page: 123
  year: 2011
  ident: 10.1016/j.jhydrol.2025.133260_b0280
  article-title: Changes in precipitation with climate change
  publication-title: Climate Res.
  doi: 10.3354/cr00953
– volume: 11
  year: 2023
  ident: 10.1016/j.jhydrol.2025.133260_b0180
  article-title: Projections of Global Land Runoff Changes and Their Uncertainty Characteristics During the 21st Century. Earth’s
  publication-title: Future
– volume: 38
  year: 2011
  ident: 10.1016/j.jhydrol.2025.133260_b0290
  article-title: Does higher surface temperature intensify extreme precipitation?
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2011GL048426
– volume: 39
  year: 2012
  ident: 10.1016/j.jhydrol.2025.133260_b0185
  article-title: Relationship between hourly extreme precipitation and local air temperature in the United States
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2012GL052790
– start-page: 835
  year: 2019
  ident: 10.1016/j.jhydrol.2025.133260_b0125
  article-title: Uncertainty Quantification Using Multiple Models—Prospects and Challenges
– volume: 14
  start-page: 3197
  year: 2023
  ident: 10.1016/j.jhydrol.2025.133260_b0085
  article-title: Large anomalies in future extreme precipitation sensitivity driven by atmospheric dynamics
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-39039-7
– volume: 31
  year: 2021
  ident: 10.1016/j.jhydrol.2025.133260_b0045
  article-title: Evaluation and comparison of CMIP6 and CMIP5 model performance in simulating the seasonal extreme precipitation in the Western North Pacific and East Asia
  publication-title: Weather Clim. Extremes
– volume: 10
  start-page: 3269
  year: 2024
  ident: 10.1016/j.jhydrol.2025.133260_b0065
  article-title: Intelligent Forecasting of Flooding Intensity Using Machine Learning
  publication-title: Civil Eng. J.
  doi: 10.28991/CEJ-2024-010-10-010
– volume: 50
  start-page: 3981
  year: 2018
  ident: 10.1016/j.jhydrol.2025.133260_b0260
  article-title: Sensitivity of extreme precipitation to temperature: the variability of scaling factors from a regional to local perspective
  publication-title: Clim Dyn
  doi: 10.1007/s00382-017-3857-9
– volume: 74
  start-page: 829
  year: 1979
  ident: 10.1016/j.jhydrol.2025.133260_b0060
  article-title: Robust Locally Weighted Regression and Smoothing Scatterplots
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1979.10481038
– volume: 13
  year: 2018
  ident: 10.1016/j.jhydrol.2025.133260_b0315
  article-title: Relationship of extreme precipitation, dry-bulb temperature, and dew point temperature across Australia
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aad135
– volume: 9
  start-page: 1937
  year: 2016
  ident: 10.1016/j.jhydrol.2025.133260_b0070
  article-title: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-9-1937-2016
– ident: 10.1016/j.jhydrol.2025.133260_b0270
  doi: 10.1017/CBO9781139177245.006
– volume: 20
  start-page: 1419
  year: 2007
  ident: 10.1016/j.jhydrol.2025.133260_b0115
  article-title: Changes in Temperature and Precipitation Extremes in the IPCC Ensemble of Global Coupled Model Simulations
  publication-title: J. Clim.
  doi: 10.1175/JCLI4066.1
– volume: 11
  start-page: 786
  year: 2020
  ident: 10.1016/j.jhydrol.2025.133260_b0175
  article-title: Overview of Observed Clausius-Clapeyron Scaling of Extreme Precipitation in Midlatitudes
  publication-title: Atmos.
  doi: 10.3390/atmos11080786
– volume: 42
  start-page: 8767
  year: 2015
  ident: 10.1016/j.jhydrol.2025.133260_b0225
  article-title: Does extreme precipitation intensity depend on the emissions scenario?
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2015GL065854
– volume: 13
  start-page: 1
  year: 2022
  ident: 10.1016/j.jhydrol.2025.133260_b0165
  article-title: Evaluation of CMIP6 HighResMIP models in simulating precipitation over Central Asia
  publication-title: Adv. Clim. Chang. Res.
  doi: 10.1016/j.accre.2021.09.009
– volume: 42
  start-page: 153
  year: 2017
  ident: 10.1016/j.jhydrol.2025.133260_b0240
  article-title: The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview
  publication-title: Glob. Environ. Chang.
  doi: 10.1016/j.gloenvcha.2016.05.009
SSID ssj0000334
Score 2.49408
Snippet •Climate models are the main source of uncertainty in projecting future scaling rates.•Use at least nine models for reliable scaling rate projections.•Regional...
As temperatures rise, extreme precipitation is expected to intensify, following the Clausius–Clapeyron relation, which indicates a 7 % increase in extreme...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 133260
SubjectTerms Climate projection uncertainty
Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5) and phase 6 (CMIP6)
hydrology
Scaling rate
temperature
uncertainty
Uncertainty contribution
water policy
Title Projections and uncertainty decomposition in CMIP6 models for extreme precipitation scaling rates
URI https://dx.doi.org/10.1016/j.jhydrol.2025.133260
https://www.proquest.com/docview/3271891613
Volume 660
WOSCitedRecordID wos001481292800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0022-1694
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000334
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZgQ4IXxFWMm4zEG0pJ7NROHis0tAGbKjFQ3yw7dtR0kFVNitp_z_ElabeCBki8RJEVO9H5HPs7x-eC0OuElLEamiyiEnST1ORxpCg1EU3zpEy4MqWL4_76iZ-eZpNJPg7VNhtXToDXdbZa5fP_CjW0Adg2dPYv4O4HhQa4B9DhCrDD9Y-AH3vbinNws1Zx2Lj8sT_QbW2sC3nw03IBfyfHY-bL4TQ--_eqtRZDmzugqOYhgfebBpCsXFGiNvgc7vLZ6VovfEInIK2j7zYBg7azrbc0fLbBXqCae0vOSdVPy9HULX0fl-fR0XpZbxsiyLB3aQvWsZ0ImT5aIGG-kHG34jJfQmBn9faGhNlg5r94YN8yACWa-OevJMa258zEDg0sDkhiFt9E-4QPc1jb9kfHh5MPmx2Z0rTLGm87bCK53v7yZb_jKFd2a0dBzu6hu0HWeOQxv49umPoBuh3K2E_XD5Hcwh4D9ngLe3wJe1zV2GGPPfYYsMcBe3wJexywxw77R-jL-8Ozd0dRqKERFTRN24jpxBSZYjmJTaFZmRGQlyxjUkpeaF7a9HfQkigiEx4TrSTo--lQKQZtCujlY7RXX9TmCcLA5bQGfl5waY_rgZvHihvGQAPQkmfqAKWd1EQRvtHWOfkmOk_CmQjCFlbYwgv7AA36bnOfYeW6DlkHiQg00dM_AfPouq6vOggFLKP2bEzW5mLZCEqApIGqlNCn_z78M3Rn82M8R3vtYmleoFvFj7ZqFi_DrPwJTnidaA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Projections+and+uncertainty+decomposition+in+CMIP6+models+for+extreme+precipitation+scaling+rates&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Sothearith%2C+Min&rft.au=Ahn%2C+Kuk-Hyun&rft.date=2025-10-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.volume=660&rft_id=info:doi/10.1016%2Fj.jhydrol.2025.133260&rft.externalDocID=S0022169425005980
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon