Relative asynchronous index: a new measure for time series irreversibility

In this paper, we suggest a new measure for testing reversibility of time series which combines two different tools: the visibility algorithm and the inversion number. First, the visibility algorithm maps the time series to the network according to a geometric criterion. After that, the degree of ir...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nonlinear dynamics Ročník 93; číslo 3; s. 1545 - 1557
Hlavní autoři: Yang, Pengbo, Shang, Pengjian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.08.2018
Springer Nature B.V
Témata:
ISSN:0924-090X, 1573-269X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we suggest a new measure for testing reversibility of time series which combines two different tools: the visibility algorithm and the inversion number. First, the visibility algorithm maps the time series to the network according to a geometric criterion. After that, the degree of irreversibility of the time series can be estimated by the relative asynchronous index (RAI), based on the inverse number, between out and out ∗ degree sequences of the network (out and out ∗ represent the outgoing sequence of forward time series and reverse time series, respectively). This method does not need to rely on additional parameters, so it can avoid the error caused by parameter estimation. In addition, we also study the multiscale RAI and find that the optimal scale selection for detection time irreversibility is 1–4. Different types of time series are used to confirm the validity of this metric. Finally, we apply the method to financial time series and find that the financial crisis can be detected by RAI.
AbstractList In this paper, we suggest a new measure for testing reversibility of time series which combines two different tools: the visibility algorithm and the inversion number. First, the visibility algorithm maps the time series to the network according to a geometric criterion. After that, the degree of irreversibility of the time series can be estimated by the relative asynchronous index (RAI), based on the inverse number, between out and out ∗ degree sequences of the network (out and out ∗ represent the outgoing sequence of forward time series and reverse time series, respectively). This method does not need to rely on additional parameters, so it can avoid the error caused by parameter estimation. In addition, we also study the multiscale RAI and find that the optimal scale selection for detection time irreversibility is 1–4. Different types of time series are used to confirm the validity of this metric. Finally, we apply the method to financial time series and find that the financial crisis can be detected by RAI.
In this paper, we suggest a new measure for testing reversibility of time series which combines two different tools: the visibility algorithm and the inversion number. First, the visibility algorithm maps the time series to the network according to a geometric criterion. After that, the degree of irreversibility of the time series can be estimated by the relative asynchronous index (RAI), based on the inverse number, between out and \[\hbox {out}^*\] degree sequences of the network (out and \[\hbox {out}^*\] represent the outgoing sequence of forward time series and reverse time series, respectively). This method does not need to rely on additional parameters, so it can avoid the error caused by parameter estimation. In addition, we also study the multiscale RAI and find that the optimal scale selection for detection time irreversibility is 1–4. Different types of time series are used to confirm the validity of this metric. Finally, we apply the method to financial time series and find that the financial crisis can be detected by RAI.
In this paper, we suggest a new measure for testing reversibility of time series which combines two different tools: the visibility algorithm and the inversion number. First, the visibility algorithm maps the time series to the network according to a geometric criterion. After that, the degree of irreversibility of the time series can be estimated by the relative asynchronous index (RAI), based on the inverse number, between out and out∗ degree sequences of the network (out and out∗ represent the outgoing sequence of forward time series and reverse time series, respectively). This method does not need to rely on additional parameters, so it can avoid the error caused by parameter estimation. In addition, we also study the multiscale RAI and find that the optimal scale selection for detection time irreversibility is 1–4. Different types of time series are used to confirm the validity of this metric. Finally, we apply the method to financial time series and find that the financial crisis can be detected by RAI.
Author Shang, Pengjian
Yang, Pengbo
Author_xml – sequence: 1
  givenname: Pengbo
  surname: Yang
  fullname: Yang, Pengbo
  organization: Department of Mathematics, School of Science, Beijing Jiaotong University
– sequence: 2
  givenname: Pengjian
  surname: Shang
  fullname: Shang, Pengjian
  email: pjshang@bjtu.edu.cn
  organization: Department of Mathematics, School of Science, Beijing Jiaotong University
BookMark eNp9kE1LAzEQhoNUsFZ_gLcFz6szSfYj3qT4SUEQhd5CupnVlDZbk221_94tKwiCvczA8D4zw3PMBr7xxNgZwgUCFJcREQpMActU8iJL8YANMStEynM1HbAhKC5TUDA9YscxzgFAcCiH7PGZFqZ1G0pM3PrqPTS-WcfEeUtfV4lJPH0mSzJxHSipm5C0bklJpOCoC4VAGwrRzdzCtdsTdlibRaTTnz5ir7c3L-P7dPJ09zC-nqSVkLJN88KYGVgyHEuLUtiqyK0RhqyRAjM1M5gbMSvRgs3yUhVWQt3NayXrUgkjRuy837sKzceaYqvnzTr47qTmPFNS5DnP9qYgFwIVdnXEij5VhSbGQLWuXNv5aHwbjFtoBL3Tq3u9utOrd3o1diT-IVfBLU3Y7mV4z8Qu698o_P70P_QNNmeOWg
CitedBy_id crossref_primary_10_1016_j_physrep_2018_10_005
crossref_primary_10_3390_e23111474
crossref_primary_10_1007_s11071_018_4680_5
Cites_doi 10.1209/0295-5075/109/30005
10.1111/j.1467-9892.1982.tb00339.x
10.1016/j.physa.2003.08.022
10.1209/0295-5075/86/30001
10.1016/j.physrep.2006.11.001
10.1126/science.143.3613.1457
10.1103/PhysRevE.85.031129
10.1103/PhysRevE.77.066204
10.1103/PhysRevE.80.046103
10.1371/journal.pone.0142143
10.1016/j.amc.2016.05.013
10.1103/PhysRevE.62.1912
10.1016/0375-9601(96)00288-5
10.1140/epjb/e2012-20809-8
10.1093/oso/9780198522249.001.0001
10.1016/j.physleta.2016.03.011
10.1103/PhysRevLett.95.198102
10.1109/ICASSP.2007.366913
10.1007/s10955-004-3455-1
10.1073/pnas.0709247105
10.3390/e15031069
10.1093/biomet/86.2.483
10.1103/PhysRevLett.98.080602
10.1016/j.cnsns.2017.11.001
10.1098/rsta.2015.0182
10.1088/1367-2630/18/10/100201
10.1111/j.1467-9892.1991.tb00087.x
10.1103/PhysRevLett.98.150601
10.1088/1367-2630/11/7/073008
10.1109/ISBI.2004.1398484
10.1103/PhysRevLett.85.461
10.1007/s10558-007-9049-1
10.1063/1.166141
10.3390/e14060978
10.1142/S0218127417500596
10.1093/oso/9780198773191.001.0001
10.1103/PhysRevE.82.036120
10.1209/0295-5075/4/9/004
10.1016/j.chaos.2006.03.126
10.1103/PhysRevLett.90.108103
10.2307/3212735
10.1103/PhysRevLett.89.068102
10.1142/S0129065717500058
10.1103/PhysRevLett.105.150607
10.1109/TIT.2005.853314
10.1016/j.neuroimage.2013.08.056
10.1515/9780691218632
10.1016/0375-9601(95)00239-Y
10.1103/PhysRevE.69.056208
10.1142/S021812740100305X
10.1016/S0304-4076(99)00036-6
ContentType Journal Article
Copyright Springer Science+Business Media B.V., part of Springer Nature 2018
Copyright Springer Science & Business Media 2018
Nonlinear Dynamics is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media B.V., part of Springer Nature 2018
– notice: Copyright Springer Science & Business Media 2018
– notice: Nonlinear Dynamics is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11071-018-4275-1
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection (ProQuest)
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
Engineering Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-269X
EndPage 1557
ExternalDocumentID 10_1007_s11071_018_4275_1
GrantInformation_xml – fundername: The Beijing National Science
  grantid: 4162047
– fundername: The China National Science
  grantid: 61771035
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c344t-67aab0dea218d143dc76da3aeda43159ba16a3b81d0d56897d40f159f94f893a3
IEDL.DBID M7S
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000437130000036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-090X
IngestDate Tue Nov 04 23:33:42 EST 2025
Tue Nov 04 22:09:25 EST 2025
Sat Nov 29 03:06:20 EST 2025
Tue Nov 18 22:22:57 EST 2025
Fri Feb 21 02:32:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Degree sequences
Financial time series
Visibility algorithm
Inversion number
Relative asynchronous index
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c344t-67aab0dea218d143dc76da3aeda43159ba16a3b81d0d56897d40f159f94f893a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2259436625
PQPubID 2043746
PageCount 13
ParticipantIDs proquest_journals_2259436625
proquest_journals_2063319163
crossref_citationtrail_10_1007_s11071_018_4275_1
crossref_primary_10_1007_s11071_018_4275_1
springer_journals_10_1007_s11071_018_4275_1
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems
PublicationTitle Nonlinear dynamics
PublicationTitleAbbrev Nonlinear Dyn
PublicationYear 2018
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References RoldánÉParrondoJMEstimating dissipation from single stationary trajectoriesPhys. Rev. Lett.201010515060710.1103/PhysRevLett.105.150607
TongHNon-linear Time Series: A Dynamical System Approach1990OxfordOxford University Press0716.62085
IvanovPCLiuKKBartschRPFocus on the emerging new fields of network physiology and network medicineNew J. Phys.20161810020110.1088/1367-2630/18/10/100201
GaoZKYangYXFangPCZouYXiaCYDuMMultiscale complex network for analyzing experimental multivariate time seriesEPL (Europhys. Lett.)20151093000510.1209/0295-5075/109/30005
CammarotaCRogoraETime reversal, symbolic series and irreversibility of human heartbeatChaos Solitons Fract.20073216491654229906010.1016/j.chaos.2006.03.1261195.92014
GaspardPTime-reversed dynamical entropy and irreversibility in Markovian random processesJ. Stat. Phys.2004117599615209972910.1007/s10955-004-3455-11113.82036
GaoZKZhangSSDangWDLiSCaiQMultilayer network from multivariate time series for characterizing nonlinear flow behaviorInt. J. Bifurc. Chaos201727175005910.1142/S0218127417500596
LacasaLLuqueBLuqueJNunoJCThe visibility graph: a new method for estimating the Hurst exponent of fractional Brownian motionEPL (Europhys. Lett.)2009863000110.1209/0295-5075/86/30001
WuSDWuCWLinSGWangCCLeeKYTime series analysis using composite multiscale entropyEntropy20131510691084304114510.3390/e150310691298.65020
HamiltonJDTime Series Analysis1994PrincetonPrinceton University Press0831.62061
FlanaganRLacasaLIrreversibility of financial time series: a graph-theoretical approachPhys. Lett. A20163801689169710.1016/j.physleta.2016.03.011
CasaliKRCasaliAGMontanoNIrigoyenMCMacagnanFGuzzettiSPortaAMultiple testing strategy for the detection of temporal irreversibility in stationary time seriesPhys. Rev. E20087706620410.1103/PhysRevE.77.066204
ParrondoJMVan den BroeckCKawaiREntropy production and the arrow of timeNew J. Phys.20091107300810.1088/1367-2630/11/7/073008
YangPShangPRecurrence quantity analysis based on matrix eigenvaluesCommun. Nonlinear Sci. Numer. Simul.2018591529375837010.1016/j.cnsns.2017.11.001
SharifdoustMMahmoodiSOn time reversibility of linear time seriesJ. Math. Ext.20136334732477171332.62303
CoxDRLong-range dependence, non-linearity and time irreversibilityJ. Time Ser. Anal.199112329335113100510.1111/j.1467-9892.1991.tb00087.x0735.62088
GaoZKCaiQYangYXDongNZhangSSVisibility graph from adaptive optimal kernel time-frequency representation for classification of epileptiform EEGInt. J. Neural Syst.201727175000510.1142/S0129065717500058
Van der HeydenMDiksCPijnJVelisDTime reversibility of intracranial human EEG recordings in mesial temporal lobe epilepsyPhys. Lett. A199621628328810.1016/0375-9601(96)00288-5
LacasaLLuqueBBallesterosFLuqueJNunoJCFrom time series to complex networks: the visibility graphProc. Natl. Acad. Sci.200810549724975240309610.1073/pnas.07092471051205.05162
EckmannJPKamphorstSORuelleDRecurrence plots of dynamical systemsEPL (Europhys. Lett.)1987497310.1209/0295-5075/4/9/004
Hershey, J.R., Olsen, P.A.: Approximating the Kullback–Leibler divergence between Gaussian mixture models. In: Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on, vol. 4, pp. IV–317. IEEE (2007)
MarwanNRomanoMCThielMKurthsJRecurrence plots for the analysis of complex systemsPhys. Rep.2007438237329229169910.1016/j.physrep.2006.11.001
SprottJCRowlandsGImproved correlation dimension calculationInt. J. Bifurc. Chaos20011118651880185691210.1142/S021812740100305X1090.37561
YangACCHseuSSYienHWGoldbergerALPengCKLinguistic analysis of the human heartbeat using frequency and rank order statisticsPhys. Rev. Lett.20039010810310.1103/PhysRevLett.90.108103
CostaMGoldbergerALPengCKBroken asymmetry of the human heartbeat: loss of time irreversibility in aging and diseasePhys. Rev. Lett.20059519810210.1103/PhysRevLett.95.198102
ChenYTChouRYKuanCMTesting time reversibility without moment restrictionsJ. Econom.20009519921810.1016/S0304-4076(99)00036-60970.62053
WangQKulkarniSRVerdúSDivergence estimation of continuous distributions based on data-dependent partitionsIEEE Trans. Inf. Theory20055130643074223913610.1109/TIT.2005.8533141310.94055
LiuQWeiQFanSZLuCWLinTYAbbodMFShiehJSAdaptive computation of multiscale entropy and its application in EEG signals for monitoring depth of anesthesia during surgeryEntropy20121497899210.3390/e140609781303.92045
SchreiberTMeasuring information transferPhys. Rev. Lett.20008546110.1103/PhysRevLett.85.461
AndrieuxDGaspardPCilibertoSGarnierNJoubaudSPetrosyanAEntropy production and time asymmetry in nonequilibrium fluctuationsPhys. Rev. Lett.20079815060110.1103/PhysRevLett.98.150601
Priestley, M.B.: Spectral analysis and time series. J. Am. Stat. Assoc. 79, 385 (1981)
LinALiuKKBartschRPIvanovPCDelay-correlation landscape reveals characteristic time delays of brain rhythms and heart interactionsPhilos. Trans. R. Soc. A20163742015018210.1098/rsta.2015.0182
KennelMBTesting time symmetry in time series using data compression dictionariesPhys. Rev. E20046905620810.1103/PhysRevE.69.056208
LacasaLToralRDescription of stochastic and chaotic series using visibility graphsPhys. Rev. E20108203612010.1103/PhysRevE.82.036120
ThomasJACoverTMElements of information theory2006HobokenWiley1140.94001
BroderGWeilMHExcess lactate: an index of reversibility of shock in human patientsScience19641431457145910.1126/science.143.3613.1457
ChengQOn time-reversibility of linear processesBiometrika199986483486170536610.1093/biomet/86.2.4830933.60034
KawaiRParrondoJVan den BroeckCDissipation: the phase-space perspectivePhys. Rev. Lett.20079808060210.1103/PhysRevLett.98.080602
CostaMGoldbergerALPengCKMultiscale entropy analysis of complex physiologic time seriesPhys. Rev. Lett.20028906810210.1103/PhysRevLett.89.068102
LacasaLNunezARoldánÉParrondoJMLuqueBTime series irreversibility: a visibility graph approachEur. Phys. J. B20128511110.1140/epjb/e2012-20809-8
Weisenfeld, N.L., Warfteld, S.: Normalization of joint image-intensity statistics in MRI using the Kullback-Leibler divergence. In: Biomedical Imaging: Nano to Macro, 2004. IEEE International Symposium on, pp. 101–104. IEEE (2004)
CostaMPengCKGoldbergerALHausdorffJMMultiscale entropy analysis of human gait dynamicsPhysica A2003330536010.1016/j.physa.2003.08.0221029.92003
LobierMSiebenhühnerFPalvaSPalvaJMPhase transfer entropy: a novel phase-based measure for directed connectivity in networks coupled by oscillatory interactionsNeuroimage20148585387210.1016/j.neuroimage.2013.08.056
HinichMJTesting for Gaussianity and linearity of a stationary time seriesJ. Time Ser. Anal.1982316917669522810.1111/j.1467-9892.1982.tb00339.x0502.62079
Granger, C.W., Terasvirta, T., et al.: Modelling non-linear economic relationships. OUP Catalogue (1993)
LuqueBLacasaLBallesterosFLuqueJHorizontal visibility graphs: exact results for random time seriesPhys. Rev. E20098004610310.1103/PhysRevE.80.046103
RoldánÉParrondoJMEntropy production and Kullback–Leibler divergence between stationary trajectories of discrete systemsPhys. Rev. E20128503112910.1103/PhysRevE.85.031129
WeissGTime-reversibility of linear stochastic processesJ. Appl. Probab.19751283183638599810.2307/32127350322.60037
DiksCVan HouwelingenJTakensFDeGoedeJReversibility as a criterion for discriminating time seriesPhys. Lett. A199520122122810.1016/0375-9601(95)00239-Y
CostaMDPengCKGoldbergerALMultiscale analysis of heart rate dynamics: entropy and time irreversibility measuresCardiovasc. Eng.20088889310.1007/s10558-007-9049-1
PengCKHavlinSStanleyHEGoldbergerALQuantification of scaling exponents and crossover phenomena in nonstationary heartbeat time seriesChaos19955828710.1063/1.166141
DawCFinneyCKennelMSymbolic approach for measuring temporal irreversibilityPhys. Rev. E200062191210.1103/PhysRevE.62.1912
YinYShangPFengGModified multiscale cross-sample entropy for complex time seriesAppl. Math. Comput.2016289981103515840
BartschRPLiuKKBashanAIvanovPCNetwork physiology: how organ systems dynamically interactPLoS ONE201510e014214310.1371/journal.pone.0142143
DickeyDAFullerWADistribution of the estimators for autoregressive time series with a unit rootJ. Am. Stat. Assoc.1979744274315480360413.62075
YT Chen (4275_CR26) 2000; 95
JP Eckmann (4275_CR5) 1987; 4
RP Bartsch (4275_CR55) 2015; 10
JA Thomas (4275_CR38) 2006
P Yang (4275_CR12) 2018; 59
ZK Gao (4275_CR48) 2017; 27
C Cammarota (4275_CR18) 2007; 32
KR Casali (4275_CR43) 2008; 77
SD Wu (4275_CR52) 2013; 15
H Tong (4275_CR27) 1990
L Lacasa (4275_CR42) 2010; 82
M Costa (4275_CR7) 2002; 89
4275_CR47
4275_CR46
JC Sprott (4275_CR53) 2001; 11
MJ Hinich (4275_CR22) 1982; 3
C Daw (4275_CR33) 2000; 62
ACC Yang (4275_CR15) 2003; 90
C Diks (4275_CR13) 1995; 201
É Roldán (4275_CR31) 2012; 85
M Heyden Van der (4275_CR14) 1996; 216
L Lacasa (4275_CR44) 2012; 85
DA Dickey (4275_CR2) 1979; 74
M Sharifdoust (4275_CR23) 2013; 6
Q Wang (4275_CR37) 2005; 51
A Lin (4275_CR32) 2016; 374
MB Kennel (4275_CR34) 2004; 69
Y Yin (4275_CR51) 2016; 289
R Kawai (4275_CR24) 2007; 98
T Schreiber (4275_CR6) 2000; 85
L Lacasa (4275_CR41) 2009; 86
JD Hamilton (4275_CR1) 1994
P Gaspard (4275_CR35) 2004; 117
M Lobier (4275_CR11) 2014; 85
CK Peng (4275_CR8) 1995; 5
D Andrieux (4275_CR36) 2007; 98
ZK Gao (4275_CR9) 2015; 109
G Broder (4275_CR19) 1964; 143
L Lacasa (4275_CR40) 2008; 105
M Costa (4275_CR16) 2005; 95
4275_CR28
B Luque (4275_CR39) 2009; 80
DR Cox (4275_CR29) 1991; 12
G Weiss (4275_CR20) 1975; 12
JM Parrondo (4275_CR25) 2009; 11
4275_CR3
R Flanagan (4275_CR45) 2016; 380
Q Cheng (4275_CR21) 1999; 86
Q Liu (4275_CR50) 2012; 14
PC Ivanov (4275_CR54) 2016; 18
ZK Gao (4275_CR10) 2017; 27
É Roldán (4275_CR30) 2010; 105
N Marwan (4275_CR4) 2007; 438
M Costa (4275_CR49) 2003; 330
MD Costa (4275_CR17) 2008; 8
References_xml – reference: CostaMGoldbergerALPengCKMultiscale entropy analysis of complex physiologic time seriesPhys. Rev. Lett.20028906810210.1103/PhysRevLett.89.068102
– reference: HinichMJTesting for Gaussianity and linearity of a stationary time seriesJ. Time Ser. Anal.1982316917669522810.1111/j.1467-9892.1982.tb00339.x0502.62079
– reference: ThomasJACoverTMElements of information theory2006HobokenWiley1140.94001
– reference: IvanovPCLiuKKBartschRPFocus on the emerging new fields of network physiology and network medicineNew J. Phys.20161810020110.1088/1367-2630/18/10/100201
– reference: LobierMSiebenhühnerFPalvaSPalvaJMPhase transfer entropy: a novel phase-based measure for directed connectivity in networks coupled by oscillatory interactionsNeuroimage20148585387210.1016/j.neuroimage.2013.08.056
– reference: KawaiRParrondoJVan den BroeckCDissipation: the phase-space perspectivePhys. Rev. Lett.20079808060210.1103/PhysRevLett.98.080602
– reference: FlanaganRLacasaLIrreversibility of financial time series: a graph-theoretical approachPhys. Lett. A20163801689169710.1016/j.physleta.2016.03.011
– reference: CostaMPengCKGoldbergerALHausdorffJMMultiscale entropy analysis of human gait dynamicsPhysica A2003330536010.1016/j.physa.2003.08.0221029.92003
– reference: WangQKulkarniSRVerdúSDivergence estimation of continuous distributions based on data-dependent partitionsIEEE Trans. Inf. Theory20055130643074223913610.1109/TIT.2005.8533141310.94055
– reference: HamiltonJDTime Series Analysis1994PrincetonPrinceton University Press0831.62061
– reference: KennelMBTesting time symmetry in time series using data compression dictionariesPhys. Rev. E20046905620810.1103/PhysRevE.69.056208
– reference: Priestley, M.B.: Spectral analysis and time series. J. Am. Stat. Assoc. 79, 385 (1981)
– reference: BroderGWeilMHExcess lactate: an index of reversibility of shock in human patientsScience19641431457145910.1126/science.143.3613.1457
– reference: CostaMGoldbergerALPengCKBroken asymmetry of the human heartbeat: loss of time irreversibility in aging and diseasePhys. Rev. Lett.20059519810210.1103/PhysRevLett.95.198102
– reference: LacasaLToralRDescription of stochastic and chaotic series using visibility graphsPhys. Rev. E20108203612010.1103/PhysRevE.82.036120
– reference: SharifdoustMMahmoodiSOn time reversibility of linear time seriesJ. Math. Ext.20136334732477171332.62303
– reference: TongHNon-linear Time Series: A Dynamical System Approach1990OxfordOxford University Press0716.62085
– reference: WuSDWuCWLinSGWangCCLeeKYTime series analysis using composite multiscale entropyEntropy20131510691084304114510.3390/e150310691298.65020
– reference: GaoZKYangYXFangPCZouYXiaCYDuMMultiscale complex network for analyzing experimental multivariate time seriesEPL (Europhys. Lett.)20151093000510.1209/0295-5075/109/30005
– reference: Weisenfeld, N.L., Warfteld, S.: Normalization of joint image-intensity statistics in MRI using the Kullback-Leibler divergence. In: Biomedical Imaging: Nano to Macro, 2004. IEEE International Symposium on, pp. 101–104. IEEE (2004)
– reference: Granger, C.W., Terasvirta, T., et al.: Modelling non-linear economic relationships. OUP Catalogue (1993)
– reference: LinALiuKKBartschRPIvanovPCDelay-correlation landscape reveals characteristic time delays of brain rhythms and heart interactionsPhilos. Trans. R. Soc. A20163742015018210.1098/rsta.2015.0182
– reference: LacasaLLuqueBBallesterosFLuqueJNunoJCFrom time series to complex networks: the visibility graphProc. Natl. Acad. Sci.200810549724975240309610.1073/pnas.07092471051205.05162
– reference: LacasaLNunezARoldánÉParrondoJMLuqueBTime series irreversibility: a visibility graph approachEur. Phys. J. B20128511110.1140/epjb/e2012-20809-8
– reference: GaoZKZhangSSDangWDLiSCaiQMultilayer network from multivariate time series for characterizing nonlinear flow behaviorInt. J. Bifurc. Chaos201727175005910.1142/S0218127417500596
– reference: CostaMDPengCKGoldbergerALMultiscale analysis of heart rate dynamics: entropy and time irreversibility measuresCardiovasc. Eng.20088889310.1007/s10558-007-9049-1
– reference: AndrieuxDGaspardPCilibertoSGarnierNJoubaudSPetrosyanAEntropy production and time asymmetry in nonequilibrium fluctuationsPhys. Rev. Lett.20079815060110.1103/PhysRevLett.98.150601
– reference: DickeyDAFullerWADistribution of the estimators for autoregressive time series with a unit rootJ. Am. Stat. Assoc.1979744274315480360413.62075
– reference: PengCKHavlinSStanleyHEGoldbergerALQuantification of scaling exponents and crossover phenomena in nonstationary heartbeat time seriesChaos19955828710.1063/1.166141
– reference: DiksCVan HouwelingenJTakensFDeGoedeJReversibility as a criterion for discriminating time seriesPhys. Lett. A199520122122810.1016/0375-9601(95)00239-Y
– reference: EckmannJPKamphorstSORuelleDRecurrence plots of dynamical systemsEPL (Europhys. Lett.)1987497310.1209/0295-5075/4/9/004
– reference: ChenYTChouRYKuanCMTesting time reversibility without moment restrictionsJ. Econom.20009519921810.1016/S0304-4076(99)00036-60970.62053
– reference: GaspardPTime-reversed dynamical entropy and irreversibility in Markovian random processesJ. Stat. Phys.2004117599615209972910.1007/s10955-004-3455-11113.82036
– reference: LiuQWeiQFanSZLuCWLinTYAbbodMFShiehJSAdaptive computation of multiscale entropy and its application in EEG signals for monitoring depth of anesthesia during surgeryEntropy20121497899210.3390/e140609781303.92045
– reference: WeissGTime-reversibility of linear stochastic processesJ. Appl. Probab.19751283183638599810.2307/32127350322.60037
– reference: CoxDRLong-range dependence, non-linearity and time irreversibilityJ. Time Ser. Anal.199112329335113100510.1111/j.1467-9892.1991.tb00087.x0735.62088
– reference: YangPShangPRecurrence quantity analysis based on matrix eigenvaluesCommun. Nonlinear Sci. Numer. Simul.2018591529375837010.1016/j.cnsns.2017.11.001
– reference: SchreiberTMeasuring information transferPhys. Rev. Lett.20008546110.1103/PhysRevLett.85.461
– reference: LacasaLLuqueBLuqueJNunoJCThe visibility graph: a new method for estimating the Hurst exponent of fractional Brownian motionEPL (Europhys. Lett.)2009863000110.1209/0295-5075/86/30001
– reference: ChengQOn time-reversibility of linear processesBiometrika199986483486170536610.1093/biomet/86.2.4830933.60034
– reference: SprottJCRowlandsGImproved correlation dimension calculationInt. J. Bifurc. Chaos20011118651880185691210.1142/S021812740100305X1090.37561
– reference: RoldánÉParrondoJMEntropy production and Kullback–Leibler divergence between stationary trajectories of discrete systemsPhys. Rev. E20128503112910.1103/PhysRevE.85.031129
– reference: CasaliKRCasaliAGMontanoNIrigoyenMCMacagnanFGuzzettiSPortaAMultiple testing strategy for the detection of temporal irreversibility in stationary time seriesPhys. Rev. E20087706620410.1103/PhysRevE.77.066204
– reference: Van der HeydenMDiksCPijnJVelisDTime reversibility of intracranial human EEG recordings in mesial temporal lobe epilepsyPhys. Lett. A199621628328810.1016/0375-9601(96)00288-5
– reference: LuqueBLacasaLBallesterosFLuqueJHorizontal visibility graphs: exact results for random time seriesPhys. Rev. E20098004610310.1103/PhysRevE.80.046103
– reference: DawCFinneyCKennelMSymbolic approach for measuring temporal irreversibilityPhys. Rev. E200062191210.1103/PhysRevE.62.1912
– reference: YinYShangPFengGModified multiscale cross-sample entropy for complex time seriesAppl. Math. Comput.2016289981103515840
– reference: Hershey, J.R., Olsen, P.A.: Approximating the Kullback–Leibler divergence between Gaussian mixture models. In: Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on, vol. 4, pp. IV–317. IEEE (2007)
– reference: BartschRPLiuKKBashanAIvanovPCNetwork physiology: how organ systems dynamically interactPLoS ONE201510e014214310.1371/journal.pone.0142143
– reference: RoldánÉParrondoJMEstimating dissipation from single stationary trajectoriesPhys. Rev. Lett.201010515060710.1103/PhysRevLett.105.150607
– reference: GaoZKCaiQYangYXDongNZhangSSVisibility graph from adaptive optimal kernel time-frequency representation for classification of epileptiform EEGInt. J. Neural Syst.201727175000510.1142/S0129065717500058
– reference: CammarotaCRogoraETime reversal, symbolic series and irreversibility of human heartbeatChaos Solitons Fract.20073216491654229906010.1016/j.chaos.2006.03.1261195.92014
– reference: YangACCHseuSSYienHWGoldbergerALPengCKLinguistic analysis of the human heartbeat using frequency and rank order statisticsPhys. Rev. Lett.20039010810310.1103/PhysRevLett.90.108103
– reference: MarwanNRomanoMCThielMKurthsJRecurrence plots for the analysis of complex systemsPhys. Rep.2007438237329229169910.1016/j.physrep.2006.11.001
– reference: ParrondoJMVan den BroeckCKawaiREntropy production and the arrow of timeNew J. Phys.20091107300810.1088/1367-2630/11/7/073008
– volume: 109
  start-page: 30005
  year: 2015
  ident: 4275_CR9
  publication-title: EPL (Europhys. Lett.)
  doi: 10.1209/0295-5075/109/30005
– volume: 6
  start-page: 33
  year: 2013
  ident: 4275_CR23
  publication-title: J. Math. Ext.
– volume: 3
  start-page: 169
  year: 1982
  ident: 4275_CR22
  publication-title: J. Time Ser. Anal.
  doi: 10.1111/j.1467-9892.1982.tb00339.x
– ident: 4275_CR3
– volume: 330
  start-page: 53
  year: 2003
  ident: 4275_CR49
  publication-title: Physica A
  doi: 10.1016/j.physa.2003.08.022
– volume: 86
  start-page: 30001
  year: 2009
  ident: 4275_CR41
  publication-title: EPL (Europhys. Lett.)
  doi: 10.1209/0295-5075/86/30001
– volume: 438
  start-page: 237
  year: 2007
  ident: 4275_CR4
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2006.11.001
– volume: 143
  start-page: 1457
  year: 1964
  ident: 4275_CR19
  publication-title: Science
  doi: 10.1126/science.143.3613.1457
– volume: 74
  start-page: 427
  year: 1979
  ident: 4275_CR2
  publication-title: J. Am. Stat. Assoc.
– volume: 85
  start-page: 031129
  year: 2012
  ident: 4275_CR31
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.85.031129
– volume: 77
  start-page: 066204
  year: 2008
  ident: 4275_CR43
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.77.066204
– volume: 80
  start-page: 046103
  year: 2009
  ident: 4275_CR39
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.80.046103
– volume: 10
  start-page: e0142143
  year: 2015
  ident: 4275_CR55
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0142143
– volume: 289
  start-page: 98
  year: 2016
  ident: 4275_CR51
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2016.05.013
– volume: 62
  start-page: 1912
  year: 2000
  ident: 4275_CR33
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.62.1912
– volume: 216
  start-page: 283
  year: 1996
  ident: 4275_CR14
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(96)00288-5
– volume: 85
  start-page: 1
  year: 2012
  ident: 4275_CR44
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2012-20809-8
– volume-title: Non-linear Time Series: A Dynamical System Approach
  year: 1990
  ident: 4275_CR27
  doi: 10.1093/oso/9780198522249.001.0001
– volume: 380
  start-page: 1689
  year: 2016
  ident: 4275_CR45
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2016.03.011
– volume: 95
  start-page: 198102
  year: 2005
  ident: 4275_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.198102
– ident: 4275_CR47
  doi: 10.1109/ICASSP.2007.366913
– volume: 117
  start-page: 599
  year: 2004
  ident: 4275_CR35
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-004-3455-1
– volume: 105
  start-page: 4972
  year: 2008
  ident: 4275_CR40
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0709247105
– volume: 15
  start-page: 1069
  year: 2013
  ident: 4275_CR52
  publication-title: Entropy
  doi: 10.3390/e15031069
– volume: 86
  start-page: 483
  year: 1999
  ident: 4275_CR21
  publication-title: Biometrika
  doi: 10.1093/biomet/86.2.483
– volume: 98
  start-page: 080602
  year: 2007
  ident: 4275_CR24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.080602
– volume: 59
  start-page: 15
  year: 2018
  ident: 4275_CR12
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2017.11.001
– volume: 374
  start-page: 20150182
  year: 2016
  ident: 4275_CR32
  publication-title: Philos. Trans. R. Soc. A
  doi: 10.1098/rsta.2015.0182
– volume: 18
  start-page: 100201
  year: 2016
  ident: 4275_CR54
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/10/100201
– volume: 12
  start-page: 329
  year: 1991
  ident: 4275_CR29
  publication-title: J. Time Ser. Anal.
  doi: 10.1111/j.1467-9892.1991.tb00087.x
– volume: 98
  start-page: 150601
  year: 2007
  ident: 4275_CR36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.150601
– volume: 11
  start-page: 073008
  year: 2009
  ident: 4275_CR25
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/11/7/073008
– ident: 4275_CR46
  doi: 10.1109/ISBI.2004.1398484
– volume: 85
  start-page: 461
  year: 2000
  ident: 4275_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.461
– volume: 8
  start-page: 88
  year: 2008
  ident: 4275_CR17
  publication-title: Cardiovasc. Eng.
  doi: 10.1007/s10558-007-9049-1
– volume: 5
  start-page: 82
  year: 1995
  ident: 4275_CR8
  publication-title: Chaos
  doi: 10.1063/1.166141
– volume: 14
  start-page: 978
  year: 2012
  ident: 4275_CR50
  publication-title: Entropy
  doi: 10.3390/e14060978
– volume: 27
  start-page: 1750059
  year: 2017
  ident: 4275_CR10
  publication-title: Int. J. Bifurc. Chaos
  doi: 10.1142/S0218127417500596
– ident: 4275_CR28
  doi: 10.1093/oso/9780198773191.001.0001
– volume: 82
  start-page: 036120
  year: 2010
  ident: 4275_CR42
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.82.036120
– volume: 4
  start-page: 973
  year: 1987
  ident: 4275_CR5
  publication-title: EPL (Europhys. Lett.)
  doi: 10.1209/0295-5075/4/9/004
– volume: 32
  start-page: 1649
  year: 2007
  ident: 4275_CR18
  publication-title: Chaos Solitons Fract.
  doi: 10.1016/j.chaos.2006.03.126
– volume: 90
  start-page: 108103
  year: 2003
  ident: 4275_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.108103
– volume-title: Elements of information theory
  year: 2006
  ident: 4275_CR38
– volume: 12
  start-page: 831
  year: 1975
  ident: 4275_CR20
  publication-title: J. Appl. Probab.
  doi: 10.2307/3212735
– volume: 89
  start-page: 068102
  year: 2002
  ident: 4275_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.068102
– volume: 27
  start-page: 1750005
  year: 2017
  ident: 4275_CR48
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065717500058
– volume: 105
  start-page: 150607
  year: 2010
  ident: 4275_CR30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.150607
– volume: 51
  start-page: 3064
  year: 2005
  ident: 4275_CR37
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2005.853314
– volume: 85
  start-page: 853
  year: 2014
  ident: 4275_CR11
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.08.056
– volume-title: Time Series Analysis
  year: 1994
  ident: 4275_CR1
  doi: 10.1515/9780691218632
– volume: 201
  start-page: 221
  year: 1995
  ident: 4275_CR13
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(95)00239-Y
– volume: 69
  start-page: 056208
  year: 2004
  ident: 4275_CR34
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.69.056208
– volume: 11
  start-page: 1865
  year: 2001
  ident: 4275_CR53
  publication-title: Int. J. Bifurc. Chaos
  doi: 10.1142/S021812740100305X
– volume: 95
  start-page: 199
  year: 2000
  ident: 4275_CR26
  publication-title: J. Econom.
  doi: 10.1016/S0304-4076(99)00036-6
SSID ssj0003208
Score 2.2263498
Snippet In this paper, we suggest a new measure for testing reversibility of time series which combines two different tools: the visibility algorithm and the inversion...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1545
SubjectTerms Algorithms
Automotive Engineering
Classical Mechanics
Control
Dynamical Systems
Engineering
Mechanical Engineering
Multiscale analysis
Original Paper
Parameter estimation
Regression analysis
Sequences
Time series
Vibration
Visibility
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yfdAHp1NxOiUPPimBLk3TxDcRh4gM8Yu9laRJQdBO2m2w_95LP1aVKehrc2nL5ZL7XXL5HUInXhJbypQlobGKME0TIoyWJBGepr7kgU4KEtfbcDgUo5G8q-5x53W2e30kWazUzWU3iFRc6CsIo2FAIORZBW8nXL2G-4fnxfLr06IMnQeBhduEGNVHmcte8dUZNQjz26Fo4WsG7X_95RbarKAlvihtYRut2LSD2hXMxNUkzjto4xMH4Q66KdPhZharfJ7Gjit3PM1xwaJ4jhUG2I3fyo1EDAAXu2L02NmtBaHMEUBlVYbtfBc9Da4eL69JVWCBxD5jE8JDpbQHgwR-3gBwMnHIjfKVNQpwRSC16nPla4C0ngm4kKFhXgLPE8kSwDnK30OtdJzafYRpEPddbKKtoEwbLkwiQU4IHlufy34XebWmo7hiH3dFMF6jhjfZaS4CzUVOcxF0OV10eS-pN34T7tXDF1WzMI8o4C9YYgByLm-G0I_5HCLALjqrR7Np_vFbB3-SPkTr1JlDkTTYQ61JNrVHaC2eTV7y7Liw3Q9p_-gn
  priority: 102
  providerName: Springer Nature
Title Relative asynchronous index: a new measure for time series irreversibility
URI https://link.springer.com/article/10.1007/s11071-018-4275-1
https://www.proquest.com/docview/2063319163
https://www.proquest.com/docview/2259436625
Volume 93
WOSCitedRecordID wos000437130000036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7x6AEOhQIVb_nQE5XVxHEcuxcECISqaoV4VHuL_IqE1O7SzYLEv2fsdXahKly45BDbiZUZj78ZT74B-JI11jOuPa2c15Qb1lDpjKKNzAwrlChNE0lcf1a9nuz31UUKuLUprbKzidFQu6ENMfJvqHeKFwLh-uHdXxqqRoXT1VRCYx4WA0tCHlP3rqaWuGCxIl2GPkaIR_S7U8346xz6PcGRlpSzqqT5y31pBjb_OR-N287ZynsnvAofE-AkRxMN-QRzfrAGKwl8krS02zVYfsZMuA4_JklyD57o9nFgA4Pu8L4lkVvxO9EEwTj5MwkvEoS9JJSoJ0GbPXYaBVqoUcq7fdyAm7PT65NzmsouUFtwPqai0tpkKDrc_R3CKWcr4XShvdOINkpldC50YRDoZq4UUlWOZw3ebxRvEP3o4jMsDIYDvwmElTYPHovxknHjhHSNwn5SCusLofItyLqPXtvESR5KY_yuZ2zKQU41yqkOcqpxyMF0yN2EkOOtzrudbOq0NtuaISpDw4NA9P_NU7ltwddO-LPmV9-1_fbDdmCJBW2LuYO7sDAe3fs9-GAfxrftaB8Wj097F5f7UX_xenn16wn6mvWS
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1dTxQxFL0BNEEeREEDitoHfYE0znY6ndbEGKMSkHVDAiT7NvRrkk1gF3YWzP4pf6O3nZldNcAbD77OdD57eu-57e25AG-T0nrGtae585pyw0oqnVG0lIlhqRKZKaOIazfv9WS_rw4X4Fe7FyakVbY2MRpqN7Jhjvw94k7xVCBd_3RxSUPVqLC62pbQqGFx4Kc_MWSrPu5_xf59x9jut-Mve7SpKkBtyvmEilxrk-CboXNzyBaczYXTqfZOozPNlNEdoVODPC5xmZAqdzwp8XipeInOXad430V4gDSCqZgqeDSz_CmLFfASjGnC_Ee_XUWNW_UwzgqBu6Sc5Rnt_O0H5-T2n_XY6OZ2V_-3H_QEHjeEmnyuR8BTWPDDNVhtyDVpTFe1Bit_KC-uw_c6CfDaE11NhzYoBI-uKhK1Iz8QTTDYIOf19ClBWk8mg3NPwmj12GgcZK_GTV7x9Bmc3Mv3PYel4WjoN4CwzHZCRGa8ZNw4IV2psJ2UwvpUqM4mJG0nF7bRXA-lP86KuVp0wEWBuCgCLgq8ZHt2yUUtOHJX460WC0Vje6qCIetEw4pE--bTM5xswk4LtvnpW5_14u6bvYHlveMf3aK73zt4CY9YQHrMk9yCpcn4yr-Ch_Z6MqjGr-OYIXB63xj8DfyDUJY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA6iInpwF3dz8KQEO2mapt5EHVyGYcCFuZWkSUDQztDWgfn3vnRxVFQQr03SlpeX5PuSl-8hdOjZxFAmDQm1kYQpaonQKiJWeIr6EQ-ULUVcO2G3K_r9qFfnOc2baPfmSLK60-BUmtLiZKjtyeTiG7AWR4MFYTQMCNCfGebi6B1dv3t8n4p9Wqak84BkuA2JfnOs-d0rPi9ME7T55YC0XHfaS__-42W0WENOfFb5yAqaMukqWqrhJ64Hd76KFj5oE66hmypMbmSwzMdp4jR0B685LtUVT7HEAMfxS7XBiAH4YpekHjt_NlApc8JQWR15O15HD-3L-_MrUideIInPWEF4KKXyoPNg_dcAqHQSci19abQEvBFESra49BVAXU8HXEShZp6F5zZiFvCP9DfQdDpIzSbCNEhajrMoIyhTmgttI6gnBE-Mz6PWFvIaq8dJrUrukmM8xxM9ZWe5GCwXO8vF0OTovcmwkuT4rfJu05VxPTrzmAIug6kHoOj3xUAJmc-BGW6h46ZnJ8U_fmv7T7UP0Fzvoh13rru3O2ieOs8o4wp30XSRvZo9NJuMiqc82y9d-g3yNPPv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relative+asynchronous+index%3A+a+new+measure+for+time+series+irreversibility&rft.jtitle=Nonlinear+dynamics&rft.au=Yang%2C+Pengbo&rft.au=Shang%2C+Pengjian&rft.date=2018-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=93&rft.issue=3&rft.spage=1545&rft.epage=1557&rft_id=info:doi/10.1007%2Fs11071-018-4275-1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon