Reward criteria impact on the performance of reinforcement learning agent for autonomous navigation
In reinforcement learning, an agent takes action at every time step (follows a policy) in an environment to maximize the expected cumulative reward. Therefore, the shaping of a reward function plays a crucial role in an agent’s learning. Designing an optimal reward function is not a trivial task. In...
Uloženo v:
| Vydáno v: | Applied soft computing Ročník 126; s. 109241 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.09.2022
|
| Témata: | |
| ISSN: | 1568-4946, 1872-9681 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!