An APG-MUSIC Algorithm Based-on Optimized Sampling Array

This paper proposes a novel two-dimensional direction of arrival (2D-DOA) estimation with optimized sparse sampling array, which is combined with Accelerated Proximal Gradient singular value thresholding(APG) and Multiple Signal Classification(MUSIC). Firstly, a signal model of 2D-DOA estimation in...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:MATEC web of conferences Ročník 208; s. 1004
Hlavní autori: Li, Mengxia, Hu, Wen, Di, Jiaying, Li, Hongtao
Médium: Journal Article Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: Les Ulis EDP Sciences 01.01.2018
Predmet:
ISSN:2261-236X, 2274-7214, 2261-236X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper proposes a novel two-dimensional direction of arrival (2D-DOA) estimation with optimized sparse sampling array, which is combined with Accelerated Proximal Gradient singular value thresholding(APG) and Multiple Signal Classification(MUSIC). Firstly, a signal model of 2D-DOA estimation in sparse array is established, which is proved to satisfy low rank feature and NULL Space Property(NSP). Then, Genetic algorithm (GA) is applied to a sparse sampling array to optimize the performance of matrix completion(MC). Finally, MUSIC combined with APG is studied to recover received signal matrix and estimate the direction of arrival. The results of computer simulation demonstrate that compared with conventional 2D-DOA algorithms, the proposed algorithm reduces the number of array elements needed dramatically and effectively lowers the average sidelobes level of spatial spectrum.
Bibliografia:ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
ISSN:2261-236X
2274-7214
2261-236X
DOI:10.1051/matecconf/201820801004